首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Objective: Central counter‐regulatory mechanisms, including those related to the orexigenic hormone neuropeptide Y (NPY), may limit the weight loss observed with conventional pharmacological monotherapy. This study evaluated whether blockade of the NPY Y5 receptor (NPY5R) with the selective antagonist MK‐0557 potentiates sibutramine and orlistat weight loss effects. Research Methods and Procedures: Obese patients (497, BMI 30 to 43 kg/m2) were randomized to 1 of 5 treatment arms [placebo, n = 101; sibutramine 10 mg/d, n = 100; MK‐0557 1 mg/d plus sibutramine 10 mg/d, n = 98; orlistat 120 mg TID, n = 99; MK‐0557 1 mg/d plus orlistat 120 mg TID, n = 99] in conjunction with a hypocaloric diet for 24 weeks. The all‐patients‐treated population, imputing missing data using last observation carried forward, was used to assess weight loss from baseline. Results: The study was completed by 71% of patients in placebo, 76% in sibutramine alone, 79% in MK‐0557 + sibutramine, 69% in orlistat alone, and 76% in MK‐0557 + orlistat groups. Least squares (LS) mean difference [95% confidence interval (CI)] in weight change from baseline between MK‐0557 + sibutramine and sibutramine alone was ?0.1 (?1.6, 1.4) kg (p = 0.892) and between MK‐0557 + orlistat and orlistat alone was ?0.9 (?2.4, 0.6) kg (p = 0.250). Sibutramine alone induced a LS mean weight loss of ?5.9 (?6.9, ?4.9) kg vs. ?4.6 (?5.7, ?3.6) kg for orlistat (p = 0.097). There were no serious drug‐related adverse events and MK‐0557 was well tolerated. Discussion: Blockade of the NPY5R with the potent antagonist MK‐0557 did not significantly increase the weight loss efficacy of either orlistat or sibutramine monotherapy.  相似文献   

2.
Objective: To evaluate whether MK‐0557, a highly selective, orally administered neuropeptide Y Y5 receptor antagonist, could limit weight regain after very‐low‐calorie diet (VLCD)‐induced weight loss. Research Methods and Procedures: We enrolled 502 patients 18 to 65 years of age with a BMI of 30 to 43 kg/m2. Patients were placed on a VLCD (800 kcal/d liquid diet) for 6 weeks. Patients who lost ≥6% of initial body weight (n = 359) were randomized to 52 weeks of 1 mg/d MK‐0557 or placebo and maintained on a hypocaloric diet (300 kcal below weight maintenance requirements). Results: In randomized patients, the VLCD was associated with an average weight loss of 9.1 kg. After 12 weeks of double‐blind treatment, weight began to gradually increase for both placebo‐ and MK‐0557‐treated patients. The mean weight change (95% confidence interval) from baseline at the end of the VLCD to Week 52 was +3.1 (2.1, 4.0) and +1.5 (0.5, 2.4) kg for patients treated with placebo and MK‐0557, respectively. The difference of 1.6 kg between the two groups was significant (p = 0.014). Secondary endpoints, such as blood pressure, lipid profile, insulin, and leptin, as well as waist circumference and quality‐of‐life measurements, did not show significant differences between MK‐0557 and placebo treatments. Discussion: Although the difference in weight regain between placebo‐ and MK‐0557‐treated patients was statistically significant, the magnitude of the effect was small and not clinically meaningful. Antagonism of the neuropeptide Y Y5 receptor is not an efficacious treatment strategy for reducing weight regain after VLCD.  相似文献   

3.
Objective: Neuropeptide Y (NPY), a 36‐amino acid peptide with orexigenic properties, is expressed abundantly in the central nervous system and binds to several NPY receptor subtypes. This study examines the roles of the NPY Y1, Y2, and Y5 receptor(s) in energy homeostasis. Research Methods and Procedures: We administered intracerebroventricular NPY (3 μg/d) or selective peptide agonists for the Y1, Y2, and Y5 receptor subtypes to C57Bl/6 mice for 6 days by mini‐osmotic pumps to assess the role of each receptor subtype in NPY‐induced obesity. Energy expenditure (EE) and respiratory quotient (RQ) were studied using indirect calorimetry. Adiposity was measured by DXA scanning and fat pad dissection. Insulin sensitivity was tested by whole‐blood glucose measurement after an insulin challenge. Results: Central administration of the selective Y1 agonist, Y5 agonist, or NPY for 6 days in mice significantly increased body weight, adiposity, and RQ, with significant hyperphagia in the Y5 agonist‐ and NPY‐treated groups but not in the Y1 agonist‐treated group. The NPY, Y1, or Y5 agonist‐treated mice had little change in total EE during ad libitum and pair‐feeding conditions. Conversely, selective activation of the Y2 receptor reduced feeding and resulted in a significant, but transient, weight loss. Discussion: Central activation of both Y1 and Y5 receptors increases RQ and adiposity, whereas only Y5 receptor activation reduces energy expended per energy ingested. Selective activation of Y2 autoreceptors leads to hypophagia and transient weight loss, with little effect on total EE. Our study indicates that all three NPY receptor subtypes may play a role in regulating energy homeostasis in mice.  相似文献   

4.
A novel series of spirocyclic derivatives was synthesized and evaluated as NPY Y5R antagonists for the treatment of obesity. Cis and trans analogs 7a and 8a were equipotent in a Y5R binding assay (K(i)'s ≤ 1 nM) and displayed good stability in human and rat liver microsome preparations. Compound 7a failed to demonstrate weight loss activity in a diet-induced obese (DIO) rat model at unbound drug levels in the brain that exceeded the Y5R K(i) value by 25-fold over a 24-h time-period.  相似文献   

5.
Many mammals, nearing the end of life, spontaneously decrease their food intake and body weight, a stage we refer to as senescence. The spontaneous decrease in food intake and body weight is associated with attenuated responses to intracerebroventricular injections of neuropeptide Y (NPY) compared with old presenescent or with young adult rats. In the present study, we tested the hypothesis that this blunted responsiveness involves the number and expression of hypothalamic paraventricular nucleus (PVN) Y(1) and/or Y(5) NPY receptors, both of which are thought to mediate NPY-induced food intake. We found no significant difference in mRNA levels, via quantitative PCR, for Y(1) and Y(5) receptors in the PVN of senescent vs. presenescent rats. In contrast, immunohistochemistry indicated that the number of PVN neurons staining for Y(1) receptor protein was greater in presenescent compared with senescent rats. We conclude that a decreased expression and number of Y(1) or Y(5) receptors in the PVN cannot explain the attenuated responsiveness of the senescent rats to exogenous NPY.  相似文献   

6.
Hypothalamic concentrations of neuropeptide Y (NPY), a potent central appetite stimulant, increase dramatically in food-restricted and insulin-deficient diabetic rats. This suggest that NPY may drive hyperphagia in these conditions, which are characterized by weight loss and insulin deficiency. To test the hypothesis that insulin deficiency and weight loss are specific stimuli to hypothalamic NPY, we measured NPY concentrations in individual hypothalamic regions in rats with hyperphagia caused by insulin-induced hypoglycemia. Groups of 8 male Wistar rats were injected with ultralente insulin (20-60 U/kg) to induce either acute hypoglycemia (7 h after a single injection) or chronic hypoglycemia (8 days with daily injections). In hypoglycemic rats, plasma insulin concentrations were increased 6- to 7-fold compared with saline-injected controls; food intake was significantly increased with acute and chronic hypoglycemia and weight gain was significantly increased in the chronically hypoglycemic group. NPY concentrations were measured by radioimmunoassay in 8 hypothalamic regions microdissected from fresh brain slices. NPY concentrations were not increased in any region in either acute or chronic hypoglycemia. NPY therefore seems unlikely to mediate hyperphagia in hyperinsulinemia-induced hypoglycemia, supporting the hypothesis that weight loss is a specific stimulus to hypothalamic NPY and that insulin deficiency may be the metabolic signal responsible.  相似文献   

7.
Accumulating data implicate a pathological role for sympathetic neurotransmitters like neuropeptide Y (NPY) in breast cancer progression. Our group and others reported that NPY promotes proliferation and migration in breast cancer cells, however the angiogenic potential of NPY in breast cancer is unknown. Herein we sought to determine if NPY promotes angiogenesis in vitro by increasing vascular endothelial growth factor (VEGF) expression and release from 4T1 breast cancer cells. Western blot analysis revealed that NPY treatment caused a 52 ± 14% increase in VEGF expression in the 4T1 cells compared to non-treated controls. Using selective NPY Y-receptor agonists (Y1R, Y2R and Y5R) we observed an increase in VEGF expression only when cells were treated with Y5R agonist. Congruently, using selective Y1R, Y2R, or Y5R antagonists, NPY-induced increases in VEGF expression in 4T1 cells were attenuated only under Y5R antagonism. Endothelial tube formation assays were conducted using conditioned media (CM) from NPY treated 4T1 cells. Concentration-dependent increases in number of branch points and complete endothelial networks were observed in HUVEC exposed to NPY CM. CM from Y5R agonist treated 4T1 cells caused similar increases in number of branch points and complete endothelial networks. VEGF concentration was quantified in CM (ELISA) from agonist experiments; we observed a 2-fold and 2.5-fold increase in VEGF release from NPY and Y5R agonist treated 4T1 cells respectively. Overall these data highlight a novel mechanism by which NPY may promote breast cancer progression, and further implicate a pathological role of the NPY Y5R.  相似文献   

8.
Neuropeptide Y (NPY) and melanocortin (MC) peptides have opposite effects on food intake: NPY-like peptides and MC receptor antagonists stimulate feeding and increase body weight, whereas melanocortins and NPY antagonists inhibit food intake. In this study we tested whether the orexigenic effect of the selective MC4 receptor antagonist HS014 (1 nmol) could be inhibited by three different NPY antagonists, (R)-N2-(diphenylacetyl)-N-[(4-hydroxy-phenyl)methyl]D-argininam ide (BIBP3226), (R)-N-[[4-(aminocarbonylaminomethyl)-phenyl]methyl]-N2(diphenyl acetyl)-argininamidetrifluoroacetate (BIBO3304), and decapeptide [D-Tyr(27,36)D-Thr32]NPY(27-36), after icv administration in freely feeding male rats. All three NPY receptor antagonists inhibited the orexigenic effects of HS014 partially and with markedly different potency. [D-Tyr(27,36)D-Thr32]NPY(27-36) was active only in subconvulsive dose. The NPY Y1 selective antagonist BIBP3226 was more effective in inhibiting the effect of HS014 than BIBO3304 despite in vitro data indicating that BIBP3226 is about 10 times less potent than BIBO3304 at NPY Y1 receptor. An enantiomer of BIBO3304, BIBO3457, failed to inhibit HS014-induced feeding, indicating that the effects of BIBO3304 were stereoselective. These results suggest that stimulation of food intake caused by weakening of melanocortinergic tone at the MC4 receptor is partially but not exclusively related to NPY Y1 receptor activation.  相似文献   

9.
Fasting increases neuropeptide Y (NPY) concentrations in the arcuate nucleus (ARC), its site of synthesis, and in other regions of the rat hypothalamus. Neuropeptide Y is a potent central orexigenic agent and may therefore stimulate appetite during fasting. We tested the hypothesis that low plasma insulin levels stimulate ARC levels of NPY in fasted rats. Compared with freely fed controls (n = 8), rats fasted for 72 h (n = 8) showed significantly lower plasma insulin levels (28.9 ± 1.6 vs. 52.6 ± 5.7 pmol/l; p < 0.001) and higher ARC NPY concentrations (14.2 ± 1.8 vs. 8.4 ± 2.2 fmol/μg protein; p < 0.001). Fasted rats treated with subcutaneous insulin (5 U/kg/day; n = 10), which nearly normalized plasma insulin (46.6 ± 2.8 pmol/l), showed intermediate ARC NPY levels (11.2 ± 1.4 fmol/μg protein; p < 0.01 vs. controls and untreated fasted rats). Insulin administered peripherally, therefore, attenuates fasting-induced NPY increases in the ARC, supporting the hypothesis that hypoinsulinemia stimulates hypothalamic NPY.  相似文献   

10.
Overexpression of neuropeptide Y (NPY) and its receptors has been found in various cancers. In our previous study, we demonstrated expression of NPY Y5 receptor (Y5R) in various breast cancer cell lines along with Y1 receptor. In Y5R expressing BT-549 cells, NPY induced cell proliferation that was blocked by Y5R-selective antagonist CGP1683A (CGP). Here, NMR-based metabonomics was used to monitor the metabolic profile of BT-549 cells in the presence of NPY and CGP to assess the effect of Y5R activation and inhibition during NPY-induced cell proliferation. To study changes in intra and extra cellular metabolites in response to various treatments, 1D 1H-NMR spectra of both hydrophilic cell extracts and growth medium were recorded from BT-549 with three treatments: (1) NPY, (2) CGP, and (3) CGP followed by NPY (CGP/NPY). Principal component analysis and statistical significance analysis indicated changes in intracellular concentrations of seven metabolites in hydrophilic cell extracts with NPY treatment: decreases in lactate, succinate, myo-inositol, and creatine, and increases in acetate, glutamate, and aspartate. A significant increase in intracellular lactate level and attenuation of other metabolites to baseline was detected in CGP/NPY group. Also, significant decreases in lactate and increases in pyruvate were observed in growth medium from NPY treated cells. Based on the metabonomics analysis, Y5R activation induces cell proliferation by increasing the rate of glycolysis, glutaminolysis, and TCA cycle. Inhibition of Y5R by CGP counteracts NPY-induced changes in cellular metabolites. These changes may play a role in cell proliferation and migration by NPY through Y5R activation.  相似文献   

11.
The turn-inducing sequence Ala-Aib introduced into positions 31 and 32 of neuropeptide Y (NPY) and its analogues has been identified as the key structure for Y(5)-receptor selectivity. Analogues of NPY and PP/NPY chimera containing the motif Ala-Aib were prepared; these peptides turned out to be selective for the Y(5)-receptor. The affinity of the NPY-based peptides was in the range of 6-150 nM, while the affinity of three (Ala-Aib)-containing PP/NPY chimera was in the range of 0.2-0.9 nM. The circular dichroism spectra of the Aib analogues in aqueous solution were all characteristic of an alpha helix; however, they had different intensities of the two negative bands at 220 and 208 nm. Affinity and selectivity for the Y(5)-receptor were correlated with the ratio of the ellipticity at 220 nm versus the one at 208 nm (R), which indicates the presence of a pronounced helix (R > 1) versus a less stabile one (R < 1). When R was in the range 0.74-0.96, the affinity at the Y(5)-receptor was in the range >5 nM, while there was complete loss of affinity at the Y(4)-receptor. R > 1.15 was associated with very high affinity at the Y(5)-receptor and weak affinity at the Y(4)-receptor. These results suggest that the selectivity of the Ala(31)-Aib(32) motif for the Y(5)-receptor derives from a specific conformation that must be correlated with the bioactive conformation of NPY at this subtype.  相似文献   

12.
Neuropeptide Y (NPY) and nuclear factor-kappa B (NF-κB) are involved in regulating anorexia elicited by phenylpropanolamine (PPA), a sympathomimetic drug. This study explored whether NPY Y1 receptor (Y1R) is involved in this process, and a potential role for the proopiomelanocortin system was identified. Rats were given PPA once a day for 4 days. Changes in the hypothalamic expression of the NPY, Y1R, NF-κB, and melanocortin receptor 4 (MC4R) levels were assessed and compared. The results indicated that food intake and NPY expression decreased, with the largest reductions observed on Day 2 (approximately 50% and 45%, respectively), whereas NF-κB, MC4R, and Y1R increased, achieving maximums on Day 2 (160%, 200%, and 280%, respectively). To determine the role of Y1R, rats were pretreated with Y1R antisense or a Y1R antagonist via intracerebroventricular injection 1 h before the daily PPA dose. Y1R knockdown and inhibition reduced PPA anorexia and partially restored the normal expression of NPY, MC4R, and NF-κB. The data suggest that hypothalamic Y1R participates in the appetite-suppression from PPA by regulating MC4R and NF-κB. The results of this study increase our understanding of the molecular mechanisms in PPA-induced anorexia.  相似文献   

13.
Y receptors (YRs) are G protein-coupled receptors whose Y(1)R, Y(2)R, and Y(5)R subtypes preferentially bind neuropeptide Y (NPY) and peptide YY, whereas mammalian Y(4)Rs show a higher affinity for pancreatic polypeptide (PP). Comparison of YR orthologs and paralogs revealed Asp(6.59) to be fully conserved throughout all of the YRs reported so far. By replacing this conserved aspartic acid residue with alanine, asparagine, glutamate, and arginine, we now show that this residue plays a crucial role in binding and signal transduction of NPY/PP at all YRs. Sensitivity to distinct replacements is, however, receptor subtype-specific. Next, we performed a complementary mutagenesis approach to identify the contact site of the ligand. Surprisingly, this conserved residue interacts with two different ligand arginine residues by ionic interactions; although in Y(2)R and Y(5)R, Arg(33) is the binding partner of Asp(6.59), in Y(1)R and Y(4)R, Arg(35) of human PP and NPY interacts with Asp(6.59). Furthermore, Arg(25) of PP and NPY is involved in ligand binding only at Y(2)R and Y(5)R. This suggests significant differences in the docking of YR ligands between Y(1/4)R and Y(2/5)R and provides new insights into the molecular binding mode of peptide agonists at GPCRs. Furthermore, the proposed model of a subtype-specific binding mode is in agreement with the evolution of YRs.  相似文献   

14.
Neuropeptide Y (NPY) has been reported to be a potent anti-inflammatory peptide with ability to directly modulate activity of granulocytes and macrophages. The present study aimed to correlate the effects of NPY in vivo on lipopolysaccharide-induced air-pouch exudates cells and in vitro on peripheral blood leukocytes functions. The role of different Y receptors was examined using NPY-related peptides and antagonists with diverse subtype specificity and selectivity for Y receptors. Y1, Y2 and Y5 receptors were detected on air-pouch exudates cells (flow cytometry) and peripheral blood granulocytes (immunocitochemistry). NPY in vivo reduced inflammatory cells accumulation into the air pouch, and decreased their adherence and phagocytic capacity via Y2/Y5 and Y1/Y2 receptors, respectively. Quite the opposite, NPY in vitro potentiated adhesiveness and phagocytosis of peripheral blood granulocytes and monocytes by activating Y1 receptor. The differences between in vivo and in vitro effects of NPY on rat inflammatory cells functions are mostly due to dipeptidyl peptidase 4 activity. In addition, suppressive effect of NPY in vivo is highly dependent on the local microenvironment, peptide truncation and specific Y receptors interplay.  相似文献   

15.
A series of benzimidazoles (4) was synthesized and evaluated in vitro as potent and selective NPY Y1 receptor antagonists. Substitution of the piperidine nitrogen of 4 with appropriate R groups resulted in compounds with more than 80-fold higher affinity at the Y receptor compared to the parent compound 5 (R = H). The most potent benzimidazole in this series was 21 (Ki = 0.052 nM).  相似文献   

16.
The anorexia of aging syndrome in humans is characterized by spontaneous body weight loss reflecting diminished food intake. We reported previously that old rats undergoing a similar phenomenon of progressive weight loss (i.e., senescent rats) also display altered feeding behavior, including reduced meal size and duration. Here, we tested the hypothesis that blunted responsiveness to neuropeptide Y (NPY), a feeding stimulant, occurs concurrently with senescence-associated anorexia/hypophagia. Young (8 mo old, n = 9) and old (24-30 mo old, n = 11) male Fischer 344 rats received intracerebroventricular NPY or artificial cerbrospinal fluid injections. In response to a maximum effective NPY dose (10 microg), the net increase in size of the first meal after injection was similar in old weight-stable (presenescent) and young rats (10.85 +/- 1.73 and 12.63 +/- 2.52 g/kg body wt (0.67), respectively). In contrast, senescent rats that had spontaneously lost approximately 10% of body weight had significantly lower net increases at their first post-NPY meal (1.33 +/- 0.33 g/kg body wt (0.67)) than before they began losing weight. Thus altered feeding responses to NPY occur in aging rats concomitantly with spontaneous decrements in food intake and body weight near the end of life.  相似文献   

17.
Neuropeptide Y (NPY), a 36-amino acid peptide, is widely expressed in the central and peripheral nervous system. NPY is involved in the regulation of several physiological processes, including energy balance, food intake, and nociception. Recently, we showed that activation of the NPY Y1 receptor is required for cutaneous neurogenic inflammation. Because neurogenic inflammation could participate in colitis, the aim of this study was to investigate the role of the NPY Y1 receptor in acute colitis using mice genetically deficient of NPY Y1 receptor. In addition, the Y1 receptor antagonist H409/22, was also investigated. Animals received 5% dextran sulfate sodium (DSS) in drinking water for 7 days. One group of animals also received the Y1 receptor antagonist, administered intraperitoneally twice daily. Disease activity was assessed daily for 7 days in all groups. DSS induced colitis in all animals resulting in weight loss, diarrhea, epithelial damage, crypt shortening, and inflammatory infiltration. However, clinical manifestation of the disease was markedly attenuated in Y1 null mutant mice as well as in mice receiving the Y1 antagonist. Histological analysis showed that tissue damage and ulceration were less severe in Y1-deficient animals. Consistent with the clinical and histological data, capsaicin-induced plasma extravasation was significantly reduced in the gut of Y1 null mutant animals compared with treated wild-type animals. These data indicate that NPY and Y1 receptor are involved in intestinal inflammation and suggest that inhibition of NPY Y1 receptor signaling may provide a novel therapeutic approach in the treatment of colonic inflammation.  相似文献   

18.
The neuropeptide Y (NPY) Y(5) receptor has been proposed to mediate several physiological effects of NPY, including the potent orexigenic activity of the peptide. However, the lack of selective NPY Y(5) receptor ligands limits the characterization of the physiological roles of this receptor. Screening of several analogs of NPY revealed that [D-Trp(34)]NPY is a potent and selective NPY Y(5) receptor agonist. Unlike the prototype selective NPY Y(5) receptor agonist [D-Trp(32)]NPY, [D-Trp(34)]NPY markedly increases food intake in rats, an effect that is blocked by the selective NPY Y(5) receptor antagonist CGP 71683A. These data demonstrate that [D-Trp(34)]NPY is a useful tool for studies aimed at determining the physiological roles of the NPY Y(5) receptor.  相似文献   

19.
Continuing medicinal chemistry studies to identify spiropiperidine-derived NPY Y5 receptor antagonists are described. Aryl urea derivatives of a variety of spiropiperidines were tested for their NPY Y5 receptor binding affinities. Of the spiropiperidines so far examined, spiro[3-oxoisobenzofurane-1(3H),4′-piperidine] was a useful scaffold for producing orally active NPY Y5 receptor antagonists. Oral administration of 5c significantly inhibited the Y5 agonist-induced food intake in rats with a minimum effective dose of 3 mg/kg. In addition, this compound was efficacious in decreasing body weight in diet-induced obese mice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号