首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Male-biased sexual size dimorphism (SSD) in mammals has been explained by sexual selection favouring large, competitive males. However, new research has identified other potential factors leading to SSD. The aim of this review is to evaluate current research on the causes of SSD in mammals and to investigate some consequences of SSD, including costs to the larger sex and sexual segregation. 2. While larger males appear to gain reproductive benefits from their size, studies have also identified alternative mating strategies, unexpected variance in mating success and found no clear relationship between degree of polygyny and dimorphism. This implies that sexual selection is unlikely to be the single selective force directing SSD. 3. Latitude seems to influence SSD primarily through variation in overall body size and seasonal food availability, which affect potential for polygyny. Likewise, population density influences resource availability and evidence suggests that food scarcity differentially constrains the growth of the sexes. Diverging growth patterns between the sexes appear to be the primary physiological mechanism leading to SSD. 4. Female-biased dimorphism is most adequately explained by reduced male–male competition resulting in a decrease in male size. Female–female competition for dominance and resources, including mates, may also select for increased female size. 5. Most studies found that sexual segregation arises through asynchrony of activity budgets between the sexes. The larger sex can suffer sex-biased mortality through increased parasite load, selective predation and the difficulty associated with sustaining a larger body size under conditions of resource scarcity. 6. None of the variables considered here appears to contribute a disproportionate amount to SSD in mammals. Several promising avenues of research are currently overlooked and long-term studies, which have previously been biased toward ungulates, should be carried out on a variety of taxa.  相似文献   

2.
The degree and/or direction of sexual size dimorphism (SSD) varies considerably among species and among populations within species. Although this variation is in part genetically based, much of it is probably due to the sexes exhibiting differences in body size plasticity. Here, we use the hawkmoth, Manduca sexta, to test the hypothesis that moths reared on different diet qualities and at different temperatures will exhibit sex-specific body size plasticity. In addition, we explore the proximate mechanisms that potentially create sex-specific plasticity by examining three physiological variables known to regulate body size in this insect: the growth rate, the critical weight (which measures the cessation of juvenile hormone secretion from the corpora allata) and the interval to cessation of growth (ICG; which measures the time interval between the critical weight and the secretion of the ecdysteroids that regulate pupation and metamorphosis). We found that peak larval mass of males and females did not exhibit sex-specific plasticity in response to diet or temperature. However, the sexes did exhibit sex-specific plasticity in the mechanism that controls size; males and females exhibited sex-specific plasticity in the growth rate and the critical weight in response to both diet and temperature, whereas the ICG only exhibited sex-specific plasticity in response to diet. Our results suggest it is important for the sexes to maintain the same degree of SSD across environments and that this is accomplished by the sexes exhibiting differential sensitivity of the physiological factors that determine body size to environmental variation.  相似文献   

3.
动物体型性别二态性(Sexual size dimorphism,SSD)是存在于动物界的普遍现象,作用于某一性别体型的选择压力与作用于另一性别体型的选择压力大小或方向的不同被认为是SSD 产生的原因。伦施法则认为,在雄性体型比雌性体型大的动物类群中,SSD 随体型增大而增大,相反地,在雌性体型比雄性体型大的生物类群中随体型增大而减小。本文从动物体型性别二态性产生的原因及规律方面概述了其研究现状,以及蝙蝠性别二态性研究的进展,并提出关于蝙蝠体型性别二态性尚未解决的科学问题及未来的研究展望。  相似文献   

4.
Abstract.— Sexual size dimorphism (SSD), the difference in body size between males and females, is common in almost all taxa of animals and is generally assumed to be adaptive. Although sexual selection and fecundity selection alone have often been invoked to explain the evolution of SSD, more recent views indicate that the sexes must experience different lifetime selection pressures for SSD to evolve and be maintained. We estimated selection acting on male and female adult body size (total length) and components of body size in the waterstrider Aquarius remigis during three phases of life history. Opposing selection pressures for overall body size occurred in separate episodes of fitness for females in both years and for males in one year. Specific components of body size were often the targets of the selection on overall body size. When net adult fitness was estimated by combining each individual's fitnesses from all episodes, we found stabilizing selection in both sexes. In addition, the net optimum overall body size of males was smaller than that of females. However, even when components of body size had experienced opposing selection pressures in individual episodes, no components appeared to be under lifetime stabilizing selection. This is the first evidence that contemporary selection in a natural population acts to maintain female size larger than male size, the most common pattern of SSD in nature.  相似文献   

5.
Sexual size dimorphism (SSD) arises when the net effects of natural and sexual selection on body size differ between the sexes. Quantitative SSD variation between taxa is common, but directional intraspecific SSD reversals are rare. We combined micro‐ and macroevolutionary approaches to study geographic SSD variation in closely related black scavenger flies. Common garden experiments revealed stark intra‐ and interspecific variation: Sepsis biflexuosa is monomorphic across the Holarctic, while S. cynipsea (only in Europe) consistently exhibits female‐biased SSD. Interestingly, S. neocynipsea displays contrasting SSD in Europe (females larger) and North America (males larger), a pattern opposite to the geographic reversal in SSD of S. punctum documented in a previous study. In accordance with the differential equilibrium model for the evolution of SSD, the intensity of sexual selection on male size varied between continents (weaker in Europe), whereas fecundity selection on female body size did not. Subsequent comparative analyses of 49 taxa documented at least six independent origins of male‐biased SSD in Sepsidae, which is likely caused by sexual selection on male size and mediated by bimaturism. Therefore, reversals in SSD and the associated changes in larval development might be much more common and rapid and less constrained than currently assumed.  相似文献   

6.
As a general rule, males of sexually dimorphic ungulate species have evolved larger body size than females but shorter reproductive life spans as elements of their strategy for intrasexual competition for mating opportunities. Evolutionary theories of senescence predict that the durability of somatic structures should relate to the length of reproductive life span. This prediction has recently been tested for red deer (Cervus elaphus): molariform teeth of males are smaller and less durable than those of females, which corresponds with sex differences in reproductive life span. However, general evidence that male teeth are smaller than expected by allometric rules as a consequence of sexual selection for increasing male body mass requires an interspecific comparison between dimorphic and nondimorphic ungulates. Here we investigate the relationship between cheek-teeth size (occlusal surface area; OSA) and body mass in 123 species of extant ungulates. We found lower slopes for dimorphic species compared with nondimorphic ones and smaller OSA, relative to body mass, in males of dimorphic species compared with females of dimorphic species. Rates of evolution of OSA relative to rates of evolution of body mass were greater in females than in males and also greater in nondimorphic than in dimorphic species. Our results are consistent with the hypothesis that sexual selection in polygynous male ungulates favors body size more than tooth size, with possible consequences in male senescence via early depletion of male teeth compared to females.  相似文献   

7.
Sexual dimorphism, or sex-specific trait expression, may evolve when selection favours different optima for the same trait between sexes, that is, under antagonistic selection. Intra-locus sexual conflict exists when the sexually dimorphic trait under antagonistic selection is based on genes shared between sexes. A common assumption is that the presence of sexual-size dimorphism (SSD) indicates that sexual conflict has been, at least partly, resolved via decoupling of the trait architecture between sexes. However, whether and how decoupling of the trait architecture between sexes has been realized often remains unknown. We tested for differences in architecture of adult body size between sexes in a species with extreme SSD, the African hermit spider (Nephilingis cruentata), where adult female body size greatly exceeds that of males. Specifically, we estimated the sex-specific importance of genetic and maternal effects on adult body size among individuals that we laboratory-reared for up to eight generations. Quantitative genetic model estimates indicated that size variation in females is to a larger extent explained by direct genetic effects than by maternal effects, but in males to a larger extent by maternal than by genetic effects. We conclude that this sex-specific body-size architecture enables body-size evolution to proceed much more independently than under a common architecture to both sexes.  相似文献   

8.
ABSTRACT.   Sexual size dimorphism (SSD) may be due to sexual and natural selection, but identifying specific mechanisms that generate such dimorphism in a species is difficult. I examined SSD in Carolina Wrens ( Thryothorus ludovicianus ) by examining (1) the degree of SSD in the population and between pairs using five morphometrics, (2) assortative mating patterns based on size and age, and (3) relationships between size and longevity. Analysis revealed that males were significantly larger than females in all body measurements. For example, mass, bill, and wing measurements yielded a canonical variable that permitted separation of the sexes and linear classification functions correctly determined the sex of 95% (238/250) of all wrens measured. No evidence was found to suggest that SSD was related to resource partitioning. However, assortative mating trends based on morphometrics (e.g., wing length), positive associations between longevity and morphometrics (e.g., wing length in females and body size in males), and intense male-male contests for territorial resources year-round provide evidence that sexual selection may contribute to SSD in Carolina Wrens.  相似文献   

9.
Sexual dimorphism is prevalent in most living organisms. The difference in size between sexes of a given species is generally known as sexual size dimorphism (SSD). The magnitude of the SSD is determined by Rensch's rule where size dimorphism increases with increasing body size when the male is the larger sex and decreases with increasing average body size when the female is the larger sex. The unique underground environment that zokors (Eospalax baileyi) live under in the severe habitat of the Qinghai‐Tibetan Plateau (QTP) could create SSD selection pressures that may or may not be supported by Rensch's rule, making this scientific question worthy of investigation. In this study, we investigated the individual variation between sexes in body size and SSD of plateau zokors using measurements of 19 morphological traits. We also investigated the evolutionary mechanisms underlying SSD in plateau zokors. Moreover, we applied Rensch's rule to all extant zokor species. Our results showed male‐biased SSD in plateau zokors: The body‐ and head‐related measurements were greater in males than in females. Linear regression analysis between body length, body weight, and carcass weight showed significant relationships with some traits such as skull length, lower incisor length, and tympanic bulla width, which might support our prediction that males have faster growth rates than females. Further, the SSD pattern corroborated the assumption of Rensch's rule in plateau zokors but not in the other zokor species. Our findings suggest that the natural underground habitat and behavioral differences between sexes can generate selection pressures on male traits and contribute to the evolution of SSD in plateau zokors.  相似文献   

10.
Rensch’s rule refers to a pattern in sexual size dimorphism (SSD) in which SSD increases with body size when males are the larger sex and decreases with body size when females are the larger sex. Using data on body size from 40 populations and age from 31 populations of the rice frog Rana limnochari with female-biased size dimorphism, I tested the consistency of allometric relationships between males and females with Rensch’s rule and evaluated the hypothesis that SSD was largely a function of age differences between the sexes. Statistical comparisons of body sizes between the sexes showed the evidence for the inverse of Rensch’s rule, indicating the level of SSD increased with increasing mean body size. One of the explanations for the occurrence of the inverse of Rensch’s rule may be the fecundity selection hypothesis assuming increased reproductive output in large females. However, differences in age between males and females among populations could explain mildly the variation in SSD.  相似文献   

11.
Size and scaling of sexually-selected traits in the lizard, Uta palmeri   总被引:1,自引:0,他引:1  
Differences between the sexes in overall body size and in the size of other morphological traits, relative to overall body size, are common in many animals. In this study, patterns of growth and scaling of sexually dimorphic tratis are assessedin a lilzard and then used to sugest general developmental mechanisms responsible for sexual size dimorphism (SSD). Adult make Uta palmeri lizards are larger than adult females inoverall body size (snout-vent length, SVL), body mass, jaw length head width, and head depth. Two general growth processes produce this adult SSD. First, juvenile males have greater annual SVL growth rates than do juvenile females, contributing to adult SSD because males will be larger than females in any trait positively correlated with SVL. Secondly, males and females differ in age-related changes in growth of the three head size traits, relative to growth in SVL. Comparing slopes from reduced major axis regressions of each trait on SVL reveals that the sexes do not differ in the scaling of these traits as juveniles, but as adults males have greater slopes than adult females, indicating ontogenetic differences in scaling of these traits in males. Two other topics in SSD are addressed with these data. First, comparing these data on scaling to those of an earlier analysis that used ordinary least squares regression reveals that conclusions about underlying mechanisms in an analysis of scaling can be altered by the choice of a regression model. Secondly, these data indicate that postmaturational differences in scaling contribute to adult sexual size differences, contrary to an earlier study. Shine (1990) found that for many ectotherms, which continue to grow after sexual maturation, post-maturational events contribute little to sexual differences in overall body size. Results for U. palmeri suggest that these findings may only hold for measures of overall body size (e.g. SVL) and may not generalize to traits that exhibit sex difference in scaling.  相似文献   

12.
Natural selection favors animals that evolve developmental and behavioral responses that buffer the negative effects of food restrictions. These buffering responses vary both between species and within species. Many studies have shown sex‐specific responses to environmental changes, usually in species with sexual size dimorphism (SSD), less found in species with weak or no SSD, which suggests that sizes of different sexes are experiencing different selections. However, previous studies usually investigated development and behavior separately, and the balanced situation where males and females of sexually dimorphic species respond in the same way to food restriction remains little known. Here, we investigated this in Phintelloides versicolor (Salticidae) that presents sexual dimorphism in color and shape but weak SSD. We examined whether food restriction induced the same responses in males and females in development duration, adult body size and weight, daily time allocated to foraging, and hunting. We found food restriction induced similar responses in both sexes: both exhibited longer development duration, smaller adult body size and weight, higher probability of staying outside nests and noticing prey immediately, and higher hunting success. However, there were sexual differences regardless of food condition: females showed faster development, smaller adult body size, higher probability of staying outside of nests, and higher hunting success. These indicated the differential selection on male and female sizes of P. versicolor could be under a balanced situation, where males and females show equal developmental and behavioral plasticity to environmental constraints.  相似文献   

13.
Evolutionary ecologists dating back to Darwin (1871) have sought to understand why males are larger than females in some species, and why females are the larger sex in others. Although the former is widespread in mammals, rodents and other small mammals usually exhibit low levels of sexual size dimorphism (SSD). Here, we investigate patterns of sexual dimorphism in 34 vole species belonging to the subfamily Arvicolinae in a phylogenetic comparative framework. We address the potential role of sexual selection and fecundity selection in creating sex differences in body size. No support was found for hyperallometric scaling of male body size to female body size. We observed a marginally significant relationship between SSD and the ratio of male to female home range size, with the latter being positively related to the level of intrasexual competition for mates. This suggests that sexual selection favours larger males. Interestingly, we also found that habitat type, but not mating system, constitutes a strong predictor of SSD. Species inhabiting open habitats – where males have extensive home ranges in order to gain access to as many females as possible – exhibit a higher mean dimorphism than species inhabiting closed habitats, where females show strong territoriality and an uniform distribution preventing males to adopt a territorial strategy for gaining copulations. Nonetheless, variation in the strength of sexual selection is not the only selective force shaping SSD in voles; we also found a positive association between female size and litter size across lineages. Assuming this relationship also exists within lineages (i.e. fecundity selection on female size), this suggests an additional role for variation in the strength of fecundity selection shaping interspecific differences in female size, and indirectly in SSD. Therefore our results suggest that different selective processes act on the sizes of males and females, but because larger size is favoured in both sexes, SSD is on average relatively small.  相似文献   

14.
Sex differences in parental care are thought to arise from differential selection on the sexes. Sexual dimorphism, including sexual size dimorphism (SSD), is often used as a proxy for sexual selection on males. Some studies have found an association between male‐biased SSD (i.e., males larger than females) and the loss of paternal care. While the relationship between sexual selection on males and parental care evolution has been studied extensively, the relationship between female‐biased SSD (i.e., females larger than males) and the evolution of parental care has received very little attention. Thus, we have little knowledge of whether female‐biased SSD coevolves with parental care. In species displaying female‐biased SSD, we might expect dimorphism to be associated with the evolution of paternal care or perhaps the loss of maternal care. Here, drawing on data for 99 extant frog species, we use comparative methods to evaluate how parental care and female‐biased SSD have evolved over time. Generally, we find no significant correlation between the evolution of parental care and female‐biased SSD in frogs. This suggests that differential selection on body size between the sexes is unlikely to have driven the evolution of parental care in these clades and questions whether we should expect sexual dimorphism to exhibit a general relationship with the evolution of sex differences in parental care.  相似文献   

15.
Sexual size dimorphisms (SSDs) in body size are expected to evolve when selection on female and male sizes favors different optima. Many insects show female-biased SSD that is usually explained by the strong fecundity advantage of larger females. However, in some insects, males are as large as or even larger than females. The seed bug Togo hemipterus (Scott) also exhibits a male-biased SSD in body size. Many studies that have clarified the evolutionary causes of male-biased SSD have focused only on male advantages due to male–male competition. To clarify the evolutionary causes of male-biased SSD in body size, we should examine the degree of not only the sexual selection that favors larger males but also natural selection that is acting on female fecundity. The obtained results, which showed higher mating acceptance rates to larger males, implies that females prefer larger males. No significant relationship was detected between female body size and fecundity; body size effects on female fecundity were weak or undetectable. We conclude that male-biased SSD in T. hemipterus can be accounted for by a combination of sexual selection through male–male competition and female choice favoring large males, plus weak or undetectable natural selection that favors large females due to a fecundity advantage.  相似文献   

16.
Males and females of almost all organisms exhibit sexual differences in body size, a phenomenon called sexual size dimorphism (SSD). How the sexes evolve to be different sizes, despite sharing the same genes that control growth and development, and hence a common genetic architecture, has remained elusive. Here, we show that the genetic architecture (heritabilities and genetic correlations) of the physiological mechanism that regulates size during the last stage of larval development of a moth, differs between the sexes, and thus probably facilitates, rather than hinders, the evolution of SSD. We further show that the endocrine system plays a critical role in generating SSD. Our results demonstrate that knowledge of the genetic architecture underlying the physiological process during development that ultimately produces SSD in adults can elucidate how males and females of organisms evolve to be of different sizes.  相似文献   

17.
Sexual size dimorphism (SSD) is a conspicuous yet poorly understood pattern across many organisms. Although artificial selection is an important tool for studying the evolution of SSD, previous studies have applied selection to only a single sex or to both sexes in the same direction. In nature, however, SSD likely arises through sex-specific selection on body size. Here, we use Tribolium castaneum flour beetles to investigate the evolution of SSD by subjecting males and females to sexually antagonistic selection on body size (sexes selected in opposite directions). Additionally, we examined correlated responses to body size selection in larval growth rates and development time. After seven generations, SSD remained unchanged in all selected lines; this observed lack of response to short-term selection may be attributed to evolutionary constraints arising from between-sex body size correlations. Developmental traits showed complex correlated responses under different selection treatments. These results suggest that sex-specific larval development patterns may facilitate the evolution of SSD.  相似文献   

18.
Råberg L  Stjernman M  Nilsson JA 《Oecologia》2005,145(3):496-503
In birds and mammals with sexual size dimorphism (SSD), the larger sex is typically more sensitive to adverse environmental conditions, such as food shortage, during ontogeny. However, some recent studies of altricial birds have found that the larger sex is less sensitive, apparently because large size renders an advantage in sibling competition. Still, this effect is not an inevitable outcome of sibling competition, because several studies of other species of altricial birds have found the traditional pattern. We investigated if the sexes differ in environmental sensitivity during ontogeny in the blue tit, a small altricial bird with c. 6% SSD in body mass (males larger than females). We performed a cross-fostering and brood size manipulation experiment during 2 years to investigate if the sexes were differently affected as regards body size (body mass, tarsus and wing length on day 14 after hatching) and pre-fledging survival. We also investigated if the relationship between body size and post-fledging survival differed between the sexes. Pre-fledging mortality was higher in enlarged than in reduced broods, representing poor and good environments, respectively, but the brood size manipulation did not affect the mortality rate of males and females differently. In both years, both males and females were smaller on day 14 after hatching in enlarged as compared to reduced broods. In one of the years, we also found significant Sex × Experiment interactions for body size, such that females were more affected by poor environmental conditions than that of males. Body size was positively correlated with post-fledging survival, but we found no interactive effects of sex and morphological traits on survival. We conclude that in the blue tit, females (the smaller sex) are more sensitive to adverse environmental conditions which, in our study, was manifest in terms of fledgling size. A review of published studies of sex differences in environmental sensitivity in sexually size-dimorphic altricial birds suggests that the smaller sex is more sensitive than the larger sex in species with large brood size and vice versa.  相似文献   

19.
Body mass is often viewed as a proxy of past access to resources and of future survival and reproductive success. Links between body mass and survival or reproduction are, however, likely to differ between age classes and sexes. Remarkably, this is rarely taken into account in selection analyses. Selection on body mass is likely to be the primary target accounting for juvenile survival until reproduction but may weaken after recruitment. Males and females also often differ in how they use resources for reproduction and survival. Using a long‐term study on body mass and annual survival in yellow‐bellied marmots (Marmota flaviventer), we show that body mass was under stabilizing viability selection in the first years of life, before recruitment, which changed to positive directional selection as age increased and animals matured. We found no evidence that viability selection across age classes on body mass differed between sexes. By investigating the link between running speed and body mass, we show that the capacity to escape predators was not consistent across age classes and followed a quadratic relationship at young ages only. Overall, our results indicate that mature age classes exhibit traditional patterns of positive viability selection on body mass, as expected in a hibernating mammal, but that mass in the first years of life is subjected to stabilizing selection which may come from additional predation pressures that negate the benefits of the largest body masses. Our study highlights the importance to disentangle selection pressures on traits across critical age (or life) classes.  相似文献   

20.
In 1950, Rensch noted that in clades where males are the larger sex, sexual size dimorphism (SSD) tends to be more pronounced in larger species. This fundamental allometric relationship is now known as ‘Rensch''s rule’. While most researchers attribute Rensch''s rule to sexual selection for male size, experimental evidence is lacking. Here, we suggest that ultimate hypotheses for Rensch''s rule should also apply to groups of individuals and that individual trait plasticity can be used to test those hypotheses experimentally. Specifically, we show that in the sex-changing fish Parapercis cylindrica, larger males have larger harems with larger females, and that SSD increases with harem size. Thus, sexual selection for male body size is the ultimate cause of sexual size allometry. In addition, we experimentally illustrate a positive relationship between polygyny potential and individual growth rate during sex change from female to male. Thus, sexual selection is the ultimate cause of variation in growth rate, and variation in growth rate is the proximate cause of sexual size allometry. Taken together, our results provide compelling evidence in support of the sexual selection hypothesis for Rensch''s rule and highlight the potential importance of individual growth modification in the shaping of morphological patterns in Nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号