共查询到20条相似文献,搜索用时 0 毫秒
1.
Audrey Valverde Julie Dunys Thomas Lorivel Delphine Debayle Anne-Sophie Gay Cline Caillava Mounia Chami Frdric Checler 《The Journal of biological chemistry》2021,297(2)
The amyloid cascade hypothesis, which proposes a prominent role for full-length amyloid β peptides in Alzheimer’s disease, is currently being questioned. In addition to full-length amyloid β peptide, several N-terminally truncated fragments of amyloid β peptide could well contribute to Alzheimer’s disease setting and/or progression. Among them, pyroGlu3–amyloid β peptide appears to be one of the main components of early anatomical lesions in Alzheimer’s disease–affected brains. Little is known about the proteolytic activities that could account for the N-terminal truncations of full-length amyloid β, but they appear as the rate-limiting enzymes yielding the Glu3–amyloid β peptide sequence that undergoes subsequent cyclization by glutaminyl cyclase, thereby yielding pyroGlu3–amyloid β. Here, we investigated the contribution of dipeptidyl peptidase 4 in Glu3–amyloid β peptide formation and the functional influence of its genetic depletion or pharmacological blockade on spine maturation as well as on pyroGlu3–amyloid β peptide and amyloid β 42–positive plaques and amyloid β 42 load in the triple transgenic Alzheimer’s disease mouse model. Furthermore, we examined whether reduction of dipeptidyl peptidase 4 could rescue learning and memory deficits displayed by these mice. Our data establish that dipeptidyl peptidase 4 reduction alleviates anatomical, biochemical, and behavioral Alzheimer’s disease–related defects. Furthermore, we demonstrate that dipeptidyl peptidase 4 activity is increased early in sporadic Alzheimer’s disease brains. Thus, our data demonstrate that dipeptidyl peptidase 4 participates in pyroGlu3–amyloid β peptide formation and that targeting this peptidase could be considered as an alternative strategy to interfere with Alzheimer’s disease progression. 相似文献
2.
Phuc N. H. Trinh Jo-Anne Baltos Shane D. Hellyer Lauren T. May Karen J. Gregory 《Purinergic signalling》2022,18(3):359
Alzheimer’s disease (AD) is the most common dementia in the elderly and its increasing prevalence presents treatment challenges. Despite a better understanding of the disease, the current mainstay of treatment cannot modify pathogenesis or effectively address the associated cognitive and memory deficits. Emerging evidence suggests adenosine G protein-coupled receptors (GPCRs) are promising therapeutic targets for Alzheimer’s disease. The adenosine A1 and A2A receptors are expressed in the human brain and have a proposed involvement in the pathogenesis of dementia. Targeting these receptors preclinically can mitigate pathogenic β-amyloid and tau neurotoxicity whilst improving cognition and memory. In this review, we provide an accessible summary of the literature on Alzheimer’s disease and the therapeutic potential of A1 and A2A receptors. Although there are no available medicines targeting these receptors approved for treating dementia, we provide insights into some novel strategies, including allosterism and the targeting of oligomers, which may increase drug discovery success and enhance the therapeutic response. 相似文献
3.
Masanori A. Murayama Nagisa Arimitsu Jun Shimizu Naruyoshi Fujiwara Kenji Takai Yoshiki Ikeda Yoko Okada Chieko Hirotsu Erika Takada Tomoko Suzuki Noboru Suzuki 《Experimental Animals》2021,70(3):398
Alzheimer’s disease (AD) is a prevalent neurological disorder affecting memory function in elderly persons. Indeed, AD exhibits abnormality in cognitive behaviors and higher susceptibility to neuropsychiatric symptoms (NPS). Various factors including aging, sex difference and NPS severity, are implicated during in development of AD. In this study, we evaluated behavioral abnormalities of AD model, PDAPP transgenic mice at young age using the Morris Water Maze test, which was established to assess hippocampal-dependent learning and memory. We found that female AD model mice exhibited spatial learning dysfunction and highly susceptible to NPS such as anxiety and depression, whereas spatial reference memory function was comparable in female PDAPP Tg mice to female wild type (WT) mice. Spatial learning function was comparable in male AD model mice to male WT mice. Multiple regression analysis showed that spatial learning dysfunction was associated with NPS severity such as anxiety and depression. Furthermore, the analysis showed that spatial reference memory function was associated with status of depression, but not anxiety. Thus, these results suggest female dominance of spatial learning dysfunction in the AD model mice accompanying increased NPS severity. The understandings of AD model may be useful for the development of therapeutic agents and methods in human AD. 相似文献
4.
Luke Tait Marinho A. Lopes George Stothart John Baker Nina Kazanina Jiaxiang Zhang Marc Goodfellow 《PLoS computational biology》2021,17(8)
People with Alzheimer’s disease (AD) are 6-10 times more likely to develop seizures than the healthy aging population. Leading hypotheses largely consider hyperexcitability of local cortical tissue as primarily responsible for increased seizure prevalence in AD. However, in the general population of people with epilepsy, large-scale brain network organization additionally plays a role in determining seizure likelihood and phenotype. Here, we propose that alterations to large-scale brain network organization seen in AD may contribute to increased seizure likelihood. To test this hypothesis, we combine computational modelling with electrophysiological data using an approach that has proved informative in clinical epilepsy cohorts without AD. EEG was recorded from 21 people with probable AD and 26 healthy controls. At the time of EEG acquisition, all participants were free from seizures. Whole brain functional connectivity derived from source-reconstructed EEG recordings was used to build subject-specific brain network models of seizure transitions. As cortical tissue excitability was increased in the simulations, AD simulations were more likely to transition into seizures than simulations from healthy controls, suggesting an increased group-level probability of developing seizures at a future time for AD participants. We subsequently used the model to assess seizure propensity of different regions across the cortex. We found the most important regions for seizure generation were those typically burdened by amyloid-beta at the early stages of AD, as previously reported by in-vivo and post-mortem staging of amyloid plaques. Analysis of these spatial distributions also give potential insight into mechanisms of increased susceptibility to generalized (as opposed to focal) seizures in AD vs controls. This research suggests avenues for future studies testing patients with seizures, e.g. co-morbid AD/epilepsy patients, and comparisons with PET and MRI scans to relate regional seizure propensity with AD pathologies. 相似文献
5.
6.
7.
Gowoon Son Ali Jahanshahi Seung-Jun Yoo Jackson T. Boonstra David A. Hopkins Harry W. M. Steinbusch Cheil Moon 《BMB reports》2021,54(6):295
Olfactory neuropathology is a cause of olfactory loss in Alzheimer’s disease (AD). Olfactory dysfunction is also associated with memory and cognitive dysfunction and is an incidental finding of AD dementia. Here we review neuropathological research on the olfactory system in AD, considering both structural and functional evidence. Experimental and clinical findings identify olfactory dysfunction as an early indicator of AD. In keeping with this, amyloid-β production and neuroinflammation are related to underlying causes of impaired olfaction. Notably, physiological features of the spatial map in the olfactory system suggest the evidence of ongoing neurodegeneration. Our aim in this review is to examine olfactory pathology findings essential to identifying mechanisms of olfactory dysfunction in the development of AD in hopes of supporting investigations leading towards revealing potential diagnostic methods and causes of early pathogenesis in the olfactory system. 相似文献
8.
We previously showed that simvastatin (SV) restored memory in a mouse model of Alzheimer disease (AD) concomitantly with normalization in protein levels of memory-related immediate early genes in hippocampal CA1 neurons. Here, we investigated age-related changes in the hippocampal memory pathway, and whether the beneficial effects of SV could be related to enhanced neurogenesis and signaling in the Wnt/β-catenin pathway. APP mice and wild-type (WT) littermate controls showed comparable number of proliferating (Ki67-positive nuclei) and immature (doublecortin (DCX)-positive) granule cells in the dentate gyrus until 3 months of age. At 4 months, Ki67 or DCX positive cells decreased sharply and remained less numerous until the endpoint (6 months) in both SV-treated and untreated APP mice. In 6 month-old APP mice, dendritic extensions of DCX immature neurons in the molecular layer were shorter, a deficit fully normalized by SV. Similarly, whereas mature granule cells (calbindin-immunopositive) were decreased in APP mice and not restored by SV, their dendritic arborizations were normalized to control levels by SV treatment. SV increased Prox1 protein levels (↑67.7%, p < 0.01), a Wnt/β-catenin signaling target, while significantly decreasing (↓61.2%, p < 0.05) the upregulated levels of the β-catenin-dependent Wnt pathway inhibitor DKK1 seen in APP mice. In APP mice, SV benefits were recapitulated by treatment with the Wnt/β-catenin specific agonist WAY-262611, whereas they were fully abolished in mice that received the Wnt/β-catenin pathway inhibitor XAV939 during the last month of SV treatment. Our results indicate that activation of the Wnt-β-catenin pathway through downregulation of DKK1 underlies SV neuronal and cognitive benefits.Subject terms: Alzheimer''s disease, Adult neurogenesis 相似文献
9.
Deposition of amyloid-β (Aβ) in the brain is one of the important histopathological features of Alzheimer’s disease (AD). Previously, we reported a correlation between cell adhesion molecule L1 (L1) expression and the occurrence of AD, but its relationship was unclear. Here, we report that the expression of L1 and a 70 kDa cleavage product of L1 (L1-70) was reduced in the hippocampus of AD (APPswe) mice. Interestingly, upregulation of L1-70 expression in the hippocampus of 18-month-old APPswe mice, by parabiosis involving the joining of the circulatory system of an 18-month-old APPswe mouse with a 2-month-old wild-type C57BL/6 mouse, reduced amyloid plaque deposition. Furthermore, the reduction was accompanied by the appearance of a high number of activated microglia. Mechanistically, we observed that L1-70 could combine with topoisomerase 1 (Top1) to form a complex, L1-70/Top1, that was able to regulate expression of macrophage migration inhibitory factor (MIF), resulting in the activation of microglia and reduction of Aβ plaques. Also, transforming growth factor β1 (TGFβ-1) transferred from the blood of young wild-type C57BL/6 mice to the aged AD mice, was identified as a circulating factor that induces full-length L1 and L1-70 expression. All together, these findings suggest that L1-70 contributes to the clearance of Aβ in AD, thereby adding a novel perspective in understanding AD pathogenesis.Subject terms: Cell death, Cognitive ageing 相似文献
10.
Yizhou Yu Giorgio Fedele Ivana Celardo Samantha H. Y. Loh L. Miguel Martins 《Cell death & disease》2021,12(7)
Alzheimer’s disease is the most common age-related neurodegenerative disorder. Familial forms of Alzheimer’s disease associated with the accumulation of a toxic form of amyloid-β (Aβ) peptides are linked to mitochondrial impairment. The coenzyme nicotinamide adenine dinucleotide (NAD+) is essential for both mitochondrial bioenergetics and nuclear DNA repair through NAD+-consuming poly (ADP-ribose) polymerases (PARPs). Here we analysed the metabolomic changes in flies overexpressing Aβ and showed a decrease of metabolites associated with nicotinate and nicotinamide metabolism, which is critical for mitochondrial function in neurons. We show that increasing the bioavailability of NAD+ protects against Aβ toxicity. Pharmacological supplementation using NAM, a form of vitamin B that acts as a precursor for NAD+ or a genetic mutation of PARP rescues mitochondrial defects, protects neurons against degeneration and reduces behavioural impairments in a fly model of Alzheimer’s disease. Next, we looked at links between PARP polymorphisms and vitamin B intake in patients with Alzheimer’s disease. We show that polymorphisms in the human PARP1 gene or the intake of vitamin B are associated with a decrease in the risk and severity of Alzheimer’s disease. We suggest that enhancing the availability of NAD+ by either vitamin B supplements or the inhibition of NAD+-dependent enzymes such as PARPs are potential therapies for Alzheimer’s disease.Subject terms: Metabolomics, Cell death in the nervous system, Alzheimer''s disease 相似文献
11.
Alzheimer’s disease (AD) is the most common neurodegenerative disease with multifactorial pathologies including Aβ containing senile plaques and neurofibrillary tangles (NFT) consisted of aggregated Tau. Most of the AD patients are sporadic and the familial mutation hereditary patients are composed only 1% of all cases. However, the current AD mouse models employ mutated APP, PS1, or even Tau mutant, in order to display a portion of AD pathologies. Delta-secretase (legumain, or asparaginyl endopeptidase, AEP) simultaneously cleaves both APP and Tau and augments Aβ production and Tau hyperphosphorylation and aggregation, contributing to AD pathogenesis. Here we show that δ-secretase is sufficient to promote prominent AD pathologies in wild-type hAPP/hMAPT double transgenic mice. We crossed hAPP l5 mice and hMAPT mice to generate double transgenic mouse model carrying both human wild-type APP and Tau. Compared to the single transgenic parents, these double transgenic mice demonstrated AD-related pathologies in one-year-old hAPP/hMAPT mice. Notably, overexpression of δ-secretase in hAPP/hMAPT double-transgenic mice evidently accelerated enormous senile plaques and NFT, associated with prominent synaptic defects and cognitive deficits. Hence, δ-secretase facilitates AD pathogenesis independent of any patient-derived mutation.Subject terms: Alzheimer''s disease, Neurological disorders 相似文献
12.
Michael R. Lindstrom Manuel B. Chavez Elijah A. Gross-Sable Eric Y. Hayden David B. Teplow 《PLoS computational biology》2021,17(7)
Oligomers of the amyloid β-protein (Aβ) have been implicated in the pathogenesis of Alzheimer’s disease (AD) through their toxicity towards neurons. Understanding the process of oligomerization may contribute to the development of therapeutic agents, but this has been difficult due to the complexity of oligomerization and the metastability of the oligomers thus formed. To understand the kinetics of oligomer formation, and how that relates to the progression of AD, we developed models of the oligomerization process. Here, we use experimental data from cell viability assays and proxies for rate constants involved in monomer-dimer-trimer kinetics to develop a simple mathematical model linking Aβ assembly to oligomer-induced neuronal degeneration. This model recapitulates the rapid growth of disease incidence with age. It does so through incorporation of age-dependent changes in rates of Aβ monomer production and elimination. The model also describes clinical progression in genetic forms of AD (e.g., Down’s syndrome), changes in hippocampal volume, AD risk after traumatic brain injury, and spatial spreading of the disease due to foci in which Aβ production is elevated. Continued incorporation of clinical and basic science data into the current model will make it an increasingly relevant model system for doing theoretical calculations that are not feasible in biological systems. In addition, terms in the model that have particularly large effects are likely to be especially useful therapeutic targets. 相似文献
13.
Heather M. Wilkins Xiaowan Wang Blaise W. Menta Scott J. Koppel Rebecca Bothwell Annette M. Becker Heidi Anderson Erin Schwartz Dong Pei Nanda K. Yellapu Prabhakar Chalise Cynthia M. Gouvion Mohammad Haeri Jeffrey M. Burns Russell H. Swerdlow 《Aging cell》2021,20(5)
We examined the impact of an APOE ε4 genotype on Alzheimer''s disease (AD) subject platelet and lymphocyte metabolism. Mean platelet mitochondrial cytochrome oxidase Vmax activity was lower in APOE ε4 carriers and lymphocyte Annexin V, a marker of apoptosis, was significantly higher. Proteins that mediate mitophagy and energy sensing were higher in APOE ε4 lymphocytes which could represent compensatory changes and recapitulate phenomena observed in post‐mortem AD brains. Analysis of the lipid synthesis pathway found higher AceCSI, ATP CL, and phosphorylated ACC levels in APOE ε4 lymphocytes. Lymphocyte ACC changes were also observed in post‐mortem brain tissue. Lymphocyte RNAseq showed lower APOE ε4 carrier sphingolipid Transporter 3 (SPNS3) and integrin Subunit Alpha 1 (ITGA1) expression. RNAseq pathway analysis revealed APOE ε4 alleles activated inflammatory pathways and modulated bioenergetic signaling. These findings support a relationship between APOE genotype and bioenergetic pathways and indicate platelets and lymphocytes from APOE ε4 carriers exist in a state of bioenergetic stress. Neither medication use nor brain‐localized AD histopathology can account for these findings, which define an APOE ε4‐determined molecular and systemic phenotype that informs AD etiology. 相似文献
14.
Antonella Tramutola Nidhi Sharma Eugenio Barone Chiara Lanzillotta Andrea Castellani Federica Iavarone Federica Vincenzoni Massimo Castagnola D. Allan Butterfield Silvana Gaetani Tommaso Cassano Marzia Perluigi Fabio Di Domenico 《生物化学与生物物理学报:疾病的分子基础》2018,1864(10):3309-3321
PET scan analysis demonstrated the early reduction of cerebral glucose metabolism in Alzheimer disease (AD) patients that can make neurons vulnerable to damage via the alteration of the hexosamine biosynthetic pathway (HBP). Defective HBP leads to flawed protein O-GlcNAcylation coupled, by a mutual inverse relationship, with increased protein phosphorylation on Ser/Thr residues. Altered O-GlcNAcylation of Tau and APP have been reported in AD and is closely related with pathology onset and progression. In addition, type 2 diabetes patients show an altered O-GlcNAcylation/phosphorylation that might represent a link between metabolic defects and AD progression. Our study aimed to decipher the specific protein targets of altered O-GlcNAcylation in brain of 12-month-old 3×Tg-AD mice compared with age-matched non-Tg mice. Hence, we analysed the global O-GlcNAc levels, the levels and activity of OGT and OGA, the enzymes controlling its cycling and protein specific O-GlcNAc levels using a bi-dimensional electrophoresis (2DE) approach. Our data demonstrate the alteration of OGT and OGA activation coupled with the decrease of total O-GlcNAcylation levels. Data from proteomics analysis led to the identification of several proteins with reduced O-GlcNAcylation levels, which belong to key pathways involved in the progression of AD such as neuronal structure, protein degradation and glucose metabolism. In parallel, we analysed the O-GlcNAcylation/phosphorylation ratio of IRS1 and AKT, whose alterations may contribute to insulin resistance and reduced glucose uptake. Our findings may contribute to better understand the role of altered protein O-GlcNAcylation profile in AD, by possibly identifying novel mechanisms of disease progression related to glucose hypometabolism. 相似文献
15.
16.
17.
Jens V. Andersen Niels H. Skotte Sofie K. Christensen Filip S. Polli Mohammad Shabani Kia H. Markussen Henriette Haukedal Emil W. Westi Marta Diaz-delCastillo Ramon C. Sun Kristi A. Kohlmeier Arne Schousboe Matthew S. Gentry Heikki Tanila Kristine K. Freude Blanca I. Aldana Matthias Mann Helle S. Waagepetersen 《Cell death & disease》2021,12(11)
Alzheimer’s disease (AD) is an unremitting neurodegenerative disorder characterized by cerebral amyloid-β (Aβ) accumulation and gradual decline in cognitive function. Changes in brain energy metabolism arise in the preclinical phase of AD, suggesting an important metabolic component of early AD pathology. Neurons and astrocytes function in close metabolic collaboration, which is essential for the recycling of neurotransmitters in the synapse. However, this crucial metabolic interplay during the early stages of AD development has not been sufficiently investigated. Here, we provide an integrative analysis of cellular metabolism during the early stages of Aβ accumulation in the cerebral cortex and hippocampus of the 5xFAD mouse model of AD. Our electrophysiological examination revealed an increase in spontaneous excitatory signaling in the 5xFAD hippocampus. This hyperactive neuronal phenotype coincided with decreased hippocampal tricarboxylic acid (TCA) cycle metabolism mapped by stable 13C isotope tracing. Particularly, reduced astrocyte TCA cycle activity and decreased glutamine synthesis led to hampered neuronal GABA synthesis in the 5xFAD hippocampus. In contrast, the cerebral cortex of 5xFAD mice displayed an elevated capacity for oxidative glucose metabolism, which may suggest a metabolic compensation in this brain region. We found limited changes when we explored the brain proteome and metabolome of the 5xFAD mice, supporting that the functional metabolic disturbances between neurons and astrocytes are early primary events in AD pathology. In addition, synaptic mitochondrial and glycolytic function was selectively impaired in the 5xFAD hippocampus, whereas non-synaptic mitochondrial function was maintained. These findings were supported by ultrastructural analyses demonstrating disruptions in mitochondrial morphology, particularly in the 5xFAD hippocampus. Collectively, our study reveals complex regional and cell-specific metabolic adaptations in the early stages of amyloid pathology, which may be fundamental for the progressing synaptic dysfunctions in AD.Subject terms: Proteomics, Alzheimer''s disease, Molecular neuroscience, Alzheimer''s disease 相似文献
18.
19.
20.
Manish D. Paranjpe Mark Chaffin Sohail Zahid Scott Ritchie Jerome I. Rotter Stephen S. Rich Robert Gerszten Xiuqing Guo Susan Heckbert Russ Tracy John Danesh Eric S. Lander Michael Inouye Sekar Kathiresan Adam S. Butterworth Amit V. Khera 《PLoS genetics》2022,18(9)
For Alzheimer’s disease–a leading cause of dementia and global morbidity–improved identification of presymptomatic high-risk individuals and identification of new circulating biomarkers are key public health needs. Here, we tested the hypothesis that a polygenic predictor of risk for Alzheimer’s disease would identify a subset of the population with increased risk of clinically diagnosed dementia, subclinical neurocognitive dysfunction, and a differing circulating proteomic profile. Using summary association statistics from a recent genome-wide association study, we first developed a polygenic predictor of Alzheimer’s disease comprised of 7.1 million common DNA variants. We noted a 7.3-fold (95% CI 4.8 to 11.0; p < 0.001) gradient in risk across deciles of the score among 288,289 middle-aged participants of the UK Biobank study. In cross-sectional analyses stratified by age, minimal differences in risk of Alzheimer’s disease and performance on a digit recall test were present according to polygenic score decile at age 50 years, but significant gradients emerged by age 65. Similarly, among 30,541 participants of the Mass General Brigham Biobank, we again noted no significant differences in Alzheimer’s disease diagnosis at younger ages across deciles of the score, but for those over 65 years we noted an odds ratio of 2.0 (95% CI 1.3 to 3.2; p = 0.002) in the top versus bottom decile of the polygenic score. To understand the proteomic signature of inherited risk, we performed aptamer-based profiling in 636 blood donors (mean age 43 years) with very high or low polygenic scores. In addition to the well-known apolipoprotein E biomarker, this analysis identified 27 additional proteins, several of which have known roles related to disease pathogenesis. Differences in protein concentrations were consistent even among the youngest subset of blood donors (mean age 33 years). Of these 28 proteins, 7 of the 8 proteins with concentrations available were similarly associated with the polygenic score in participants of the Multi-Ethnic Study of Atherosclerosis. These data highlight the potential for a DNA-based score to identify high-risk individuals during the prolonged presymptomatic phase of Alzheimer’s disease and to enable biomarker discovery based on profiling of young individuals in the extremes of the score distribution. 相似文献