首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的: 探讨雌激素处理人骨髓间充质干细胞(hBMSC)对高糖诱导的人脐静脉血管内皮细胞(HUVEC)损伤的保护作用及机制。方法: 采用30 mmol/L葡萄糖刺激hBMSC细胞建立高糖模型并分组:以无刺激者为高糖对照组(HG组)、以20 μmol/L雌激素处理者为高糖雌激素组(HG+E2组)、以5 μmo/L蛋白激酶B(PKB/Akt)抑制剂Triciribine预处理45 min后,再以20 μmol/L雌激素处理者为高糖Akt抑制剂组(HG+E2+Triciribine组)和正常条件培养的hBMSC为正常对照组(NG组)。分别于处理12 h后,采用CCK8法检测各组hBMSC的细胞活力,硝酸还原酶法和ELISA法检测各组培养基上清中NO、VEGF和IL-8的含量(n=6),48 h后采用Western blot检测内皮型一氧化氮合酶(eNOS)和磷酸化eNOS(p-eNOS)蛋白表达水平(n=3)。此外,提取各组hBMSC的培养基上清作为条件培养基(CM)培养人脐静脉血管内皮细胞(HUVEC)并分组为:HG-CM组(HG组条件培养基处理)、HG+E2-CM组(HG+E2组条件培养液处理)、HG+E2+Triciribine-CM组(HG+E2+Triciribine组条件培养基处理)和HG-H组(高糖对照组,30 mmol/L葡萄糖终浓度处理),分别于12 h后,采用CCK8法检测各组HUVEC的细胞活力(n=6),24 h后采用流式细胞术检测各组HUVEC细胞的凋亡率(n=3);48 h后采用划痕实验观察各组HUVEC细胞的迁移率(n=3)。结果: 与NG组相比,HG组中hBMSC细胞活力和细胞内eNOS蛋白磷酸化水平降低(P<0.05),细胞培养液上清中NO、VEGF和IL-8含量减少(P<0.05);与HG组相比,HG+E2组中hBMSC的细胞活力和细胞中eNOS蛋白磷酸化水平显著增加(P<0.05),细胞培养基上清中NO、VEGF和IL-8含量增加(P<0.05),而当hBMSC细胞中Akt蛋白活性被抑制后,HG+E2+Triciribine组中上述结果指标呈反向变化(P<0.05)。此外,与HG-CM组相比,HG+E2-CM组中HUVECs的细胞活力和迁移能力显著增加(P<0.05),细胞凋亡比例降低(P<0.05),而与HG+E2-CM组相比,HG+E2+Triciribine-CM组中HUVECs的细胞活力和迁移能力降低(P<0.05),细胞凋亡比例增加(P< 0.05)。结论: 雌激素可能通过激活hBMSC细胞Akt/eNOS信号通路,促进NO、VEGF和IL-8的分泌,进而增加HUVECs的细胞活力和迁移能力,并抑制细胞凋亡的发生,对高糖诱导的HUVECs细胞损伤发挥保护作用。  相似文献   

2.

[Purpose]

This study examined whether conjugated linoleic acid (CLA) supplementation and endurance exercise affect appetite-regulating hormones and pro-inflammatory cytokines in rats.

[Methods]

Seven-week-old male Sprague-Dawley rats were divided randomly into the high-fat diet sedentary group (HS, n=8), the 1.0% CLA supplemented high-fat diet sedentary group (CS, n=8), and the 1.0% CLA supplemented high-fat diet exercise group (CE, n=8). Rats in the CE group swam 60 min/day, 5 days/week for 4 weeks.

[Results]

Leptin and insulin levels in the CS and CE groups were significantly lower than those in the HS group (p<0.001), whereas leptin (p<0.01) and insulin (p<0.05) levels decreased significantly in the CE compared to those in the CS group. Interleukin (IL)-1β (p<0.001) and IL-6 (p<0.01) levels in the CS and CE groups decreased significantly compared to those in the HS group. Leptin (IL-1β: r=0.835, p<0.001), IL-6 (r=0.607, p<0.05), insulin (IL-1β: r=0.797, p<0.01), and IL-6 (r=0.827, p<0.01) levels were positively related with pro-inflammatory cytokine levels.

[Conclusion]

Endurance exercise may play an important role during CLA supplementation of rats on a high-fat diet.  相似文献   

3.
Background: Recently published research demonstrated direct renoprotective effects of the glucagon-like peptide-1 receptor agonist GLP 1 RA, but the relevant molecular mechanisms are still not clear. The aim of this research was to assess the effects of Liraglutide in a cell culture model of diabetic nephropathy on cell viability, antioxidant (GSH) and transforming growth factor beta 1 (TGF- β1) levels and extracellular matrix (ECM) expression. The metabolic activity in hyperglycemic conditions and the effect of Liraglutide treatment were assessed by measuring Akt, pAkt, GSK3β, pGSK3β, pSTAT3, SOCS3, iNOS and NOX4 protein expression with Western blot. F actin distribution was used to assess the structural changes of the cells upon treatment. Materials and methods: The cells were exposed to high glucose (HG30 mM) followed by 0.5 mM H2O2 and a combination of glucose and H2O2 during 24 h. Subsequently, the cells were treated with different combinations of HG30, H2O2 and Liraglutide. Cell viability was determined by an MTT colorimetric test, and the GSH, TGF-β1 concentration and ECM expression were measured using a spectrophotometric/microplate reader assay and an ELISA kit, respectively. Western blotting was used to detect the protein level of Akt, pAkt, GSK3β, pGSK3β, pSTAT3, SOCS3, iNOS and NOX4. The F-actin cytoskeleton was visualized with Phalloidin stain and subsequently quantified. Results: Cell viability was decreased as well as GSH levels in cells treated with a combination of HG30/H2O2, and HG30 alone (p < 0.001). The addition of Liraglutide improved the viability in cells treated with HG30, but it did not affect the cell viability in the cell treated with the addition of H2O2. GSH increased with the addition of Liraglutide in HG30/H2O2 (p < 0.001) treated cells, with no effect in cells treated only with HG30. TGF-β1 levels (p < 0.001) were significantly increased in HG30 and HG30/H2O2. The addition of Liraglutide significantly decreased the TGF-β1 levels (p < 0.01; p < 0.05) in all treated cells. The synthesis of collagen was significantly increased in HG30/H2O2 (p < 0.001), while the addition of Liraglutide in HG30/H2O2 significantly decreased collagen (p < 0.001). Akt signaling was not significantly affected by treatment. The GSK3b and NOX4 levels were significantly reduced (p < 0.01) after the peroxide and glucose treatment, with the observable restoration upon the addition of Liraglutide suggesting an important role of Liraglutide in oxidative status regulation and mitochondrial activity. The treatment with Liraglutide significantly upregulated STAT3 (p < 0.01) activity, with no change in SOCS3 indicating a selective regulation of the STAT 3 signaling pathway in glucose and the oxidative overloaded environment. A significant reduction in the distribution of F-actin was observed in cells treated with HG30/H2O2 (p < 0.01). The addition of Liraglutide to HG30-treated cells led to a significant decrease of distribution of F-actin (p < 0.001). Conclusion: The protective effect of Liraglutide is mediated through the inhibition of TGF beta, but this effect is dependent on the extent of cellular damage and the type of toxic environment. Based on the WB analysis we have revealed the signaling pathways involved in cytoprotective and cytotoxic effects of the drug itself, and further molecular studies in vitro and vivo are required to elucidate the complexity of the pathophysiological mechanisms of Liraglutide under conditions of hyperglycemia and oxidative stress.  相似文献   

4.

Background

Hantaan virus (HTNV) infection causes a severe form of HFRS(hemorrhagic fever with renal syndrome)in Asia. Although HTNV has been isolated for nearly forty years, the pathogenesis of HFRS is still unknown, and little is known regarding the signaling pathway that is activated by the virus.

Methodology/Principal Findings

Cardamonin was selected as a NF-κB inhibitor, and indirect immunofluorescence assays were used to detect the effect of cardamonin on HTNV-infected HUVECs. The effect of cardamonin on the HTNV-induced phosphorylation of Akt and DNA-binding activity of NF-κB were determined using Western blot analysis and electrophoretic mobility shift assays (EMSAs), respectively. Then, flow cytometric and quantitative real-time PCR analyses were performed to quantify the expression levels of the adhesion molecules ICAM-1 and VCAM-1, and the concentrations of IL-6, IL-8, and CCL5 in HUVEC supernatants were examined using ELISA. The results showed that cardamonin did not effect the proliferation of HUVECs or the replication of HTNV in HUVECs. Instead, cardamonin inhibited the phosphorylation of Akt and nuclear transduction of NF-κB and further reduced the expression of the adhesion molecules ICAM-1 and VCAM-1 in HTNV-infected HUVECs. Cardamonin also inhibited the secretion of IL-6 and CCL5, but not IL-8.

Conclusion/Significance

HTNV replication may not be dependent upon the ability of the virus to activate NF-κB in HUVECs. The Akt/NF-κB pathways may be involved in the pathogenesis of HFRS; therefore, cardamonin may serve as a potential beneficial agent for HFRS therapy.  相似文献   

5.
Helicobacter pylori is a potent carcinogen associated with gastric cancer malignancy. Recently, H. pylori Heat shock protein 60 (HpHSP60) has been reported to promote cancer development by inducing chronic inflammation and promoting tumor cell migration. This study demonstrates a role for HpHSP60 in angiogenesis, a necessary precursor to tumor growth. We showed that HpHSP60 enhanced cell migration and tube formation, but not cell proliferation, in human umbilical vein endothelial cells (HUVECs). HpHSP60 also indirectly promoted HUVEC proliferation when HUVECs were co-cultured with supernatants collected from HpHSP60-treated AGS or THP-1 cells. The angiogenic array showed that HpHSP60 dramatically induced THP-1 cells and HUVECs to produce the chemotactic factors IL-8 and GRO. Inhibition of CXCR2, the receptor for IL-8 and GRO, or downstream PLCβ2/Ca2+-mediated signaling, significantly abolished HpHSP60-induced tube formation. In contrast, suppression of MAP K or PI3 K signaling did not affect HpHSP60-mediated tubulogenesis. These data suggest that HpHSP60 enhances angiogenesis via CXCR2/PLCβ2/Ca2+ signal transduction in endothelial cells.  相似文献   

6.
7.
Angiogenesis plays an important role in tumor progression. Piperine, a major alkaloid constituent of black pepper, has diverse physiological actions including killing of cancer cells; however, the effect of piperine on angiogenesis is not known. Here we show that piperine inhibited the proliferation and G1/S transition of human umbilical vein endothelial cells (HUVECs) without causing cell death. Piperine also inhibited HUVEC migration and tubule formation in vitro, as well as collagen-induced angiogenic activity by rat aorta explants and breast cancer cell-induced angiogenesis in chick embryos. Although piperine binds to and activates the cation channel transient receptor potential vanilloid 1 (TRPV1), its effects on endothelial cells did not involve TRPV1 since the antiproliferative effect of piperine was not affected by TRPV1-selective antagonists, nor did HUVECs express detectable TRPV1 mRNA. Importantly, piperine inhibited phosphorylation of Ser 473 and Thr 308 residues of Akt (protein kinase B), which is a key regulator of endothelial cell function and angiogenesis. Consistent with Akt inhibition as the basis of piperine's action on HUVECs, inhibition of the phosphoinositide-3 kinase/Akt signaling pathway with LY-294002 also inhibited HUVEC proliferation and collagen-induced angiogenesis. Taken together, these data support the further investigation of piperine as an angiogenesis inhibitor for use in cancer treatment.  相似文献   

8.
Macrophages play crucial roles in the formation of atherosclerotic lesions. Akt, a serine/threonine protein kinase B, is vital for cell proliferation, migration, and survival. Macrophages express three Akt isoforms, Akt1, Akt2, and Akt3, but the roles of Akt1 and Akt2 in atherosclerosis in vivo remain unclear. To dissect the impact of macrophage Akt1 and Akt2 on early atherosclerosis, we generated mice with hematopoietic deficiency of Akt1 or Akt2. After 8 weeks on Western diet, Ldlr−/− mice reconstituted with Akt1−/− fetal liver cells (Akt1−/−Ldlr−/−) had similar atherosclerotic lesion areas compared with control mice transplanted with WT cells (WT→Ldlr−/−). In contrast, Akt2−/−Ldlr−/− mice had dramatically reduced atherosclerotic lesions compared with WT→Ldlr−/− mice of both genders. Similarly, in the setting of advanced atherosclerotic lesions, Akt2−/−Ldlr−/− mice had smaller aortic lesions compared with WT→Ldlr−/− and Akt1−/−Ldlr−/− mice. Importantly, Akt2−/−Ldlr−/− mice had reduced numbers of proinflammatory blood monocytes expressing Ly-6Chi and chemokine C-C motif receptor 2. Peritoneal macrophages isolated from Akt2−/− mice were skewed toward an M2 phenotype and showed decreased expression of proinflammatory genes and reduced cell migration. Our data demonstrate that loss of Akt2 suppresses the ability of macrophages to undergo M1 polarization reducing both early and advanced atherosclerosis.  相似文献   

9.

Background

The present study aims to examine the expression patterns and roles of nucleolin during the recovery of heat-denatured human umbilical vein endothelial cells (HUVECs).

Methods

Deep partial thickness burn model in Sprague–Dawley rats and the heat denatured cell model (52 °C, 35 s) were used. The expression of nucleolin was measured using Western blot analysis and real-time PCR. Angiogenesis was assessed using in vitro parameters including endothelial cell proliferation, transwell migration assay, and scratched wound healing. Gene transfection and RNA interference approaches were employed to investigate the roles of nucleolin.

Results

Nucleolin mRNA and protein expression showed a time-dependent increase during the recovery of heat-denatured dermis and HUVECs. Heat-denaturation time-dependently promoted cell growth, adhesion, migration, scratched wound healing and formation of tube-like structures in HUVECs. These effects of heat denaturation on endothelial wound healing and formation of tube-like structures were prevented by knockdown of nucleolin, whereas over-expression of nucleolin increased cell growth, migration, and formation of tube-like structures in cultured HUVEC endothelial cells. In addition, we found that the expression of vascular endothelial growth factor (VEGF) increased during the recovery of heat-denatured dermis and HUVECs, and nucleolin up-regulated VEGF in HUVECs.

Conclusions

The present study reveals that the expression of nucleolin is up-regulated, and plays a pro-angiogenic role during the recovery of heat-denatured dermis and its mechanism is probably dependent on production of VEGF.

General significance

We find a novel and important pro-angiogenic role of nucleolin during the recovery of heat-denatured dermis.  相似文献   

10.
In sepsis-induced inflammation, polymorphonuclear neutrophils (PMNs) contribute to vascular dysfunction. The serine proteases proteinase 3 (PR3) and human leukocyte elastase (HLE) are abundant in PMNs and are released upon degranulation. While HLE’s role in inflammation-induced endothelial dysfunction is well studied, PR3’s role is largely uninvestigated. We hypothesized that PR3, similarly to HLE, contributes to vascular barrier dysfunction in sepsis. Plasma PR3 and HLE concentrations and their leukocyte mRNA levels were measured by ELISA and qPCR, respectively, in sepsis patients and controls. Exogenous PR3 or HLE was applied to human umbilical vein endothelial cells (HUVECs) and HUVEC dysfunction was assessed by FITC-dextran permeability and electrical resistance. Both PR3 and HLE protein and mRNA levels were significantly increased in sepsis patients (P < 0.0001 and P < 0.05, respectively). Additionally, each enzyme independently increased HUVEC monolayer FITC-dextran permeability (P < 0.01), and decreased electrical resistance in a time- and dose-dependent manner (P < 0.001), an effect that could be ameliorated by novel treatment with carbon monoxide-releasing molecule 3 (CORM-3). The serine protease PR3, in addition to HLE, lead to vascular dysfunction and increased endothelial permeability, a hallmark pathological consequence of sepsis-induced inflammation. CORMs may offer a new strategy to reduce serine protease-induced vascular dysfunction.  相似文献   

11.
The role of resistance training on collagen deposition, the inflammatory profile and muscle weakness in heart failure remains unclear. Therefore, this study evaluated the influence of a resistance training program on hemodynamic function, maximum strength gain, collagen deposition and inflammatory profile in chronic heart failure rats. Thirty-two male Wistar rats submitted to myocardial infarction by coronary artery ligation or sham surgery were assigned into four groups: sedentary sham (S-Sham, n = 8); trained sham (T-Sham, n = 8); sedentary chronic heart failure (S-CHF, n = 8) and trained chronic heart failure (T-CHF, n = 8). The maximum strength capacity was evaluated by the one maximum repetition test. Trained groups were submitted to an 8-week resistance training program (4 days/week, 4 sets of 10–12 repetitions/session, at 65% to 75% of one maximum repetition). After 8 weeks of the resistance training program, the T-CHF group showed lower left ventricular end diastolic pressure (P<0.001), higher left ventricular systolic pressure (P<0.05), higher systolic blood pressure (P<0.05), an improvement in the maximal positive derivative of ventricular pressure (P<0.05) and maximal negative derivative of ventricular pressure (P<0.05) when compared to the S-CHF group; no differences were observed when compared to Sham groups. In addition, resistance training was able to reduce myocardial hypertrophy (P<0.05), left ventricular total collagen volume fraction (P<0.01), IL-6 (P<0.05), and TNF-α/IL-10 ratio (P<0.05), as well as increasing IL-10 (P<0.05) in chronic heart failure rats when compared to the S-CHF group. Eight weeks of resistance training promotes an improvement of cardiac function, strength gain, collagen deposition and inflammatory profile in chronic heart failure rats.  相似文献   

12.
Formaldehyde (FA) is a well-known irritant, and it is suggested to increase the risk of immune diseases and cancer. The present study aimed to evaluate the distribution of major lymphocyte subsets and cytokine expression profiles in the peripheral blood of FA-exposed workers. A total of 118 FA-exposed workers and 79 controls were enrolled in the study. High performance liquid chromatography, flow cytometry, and cytometric bead array were used to analyze FA in air sample and formic acid in urine, blood lymphocyte subpopulations, and serum cytokines, respectively. The FA-exposed workers were divided into low and high exposure groups according to their exposure levels. The results showed that both the low and high FA-exposed groups had a significant increase of formic acid in urine when compared to the controls. Both the low and high exposure groups had a significant increase in the percentage of B cells (CD19+) compared to the control group (p<0.01). A significant increase in the percentage of the natural killer (NK) cells (CD56+) was observed in the low exposure group compared to the control (p = 0.013). Moreover, the FA-exposed workers in both exposure groups showed a significant higher level of IL-10 but lower level of IL-8 than the control (p<0.01). Subjects in the high exposure group had a higher level of IL-4 but a lower level of IFN-γ than the control (p<0.05). Finally, there is a significant correlation between the levels of IL-10, IL-4, and IL-8 and formic acid (p<0.05). The findings from the present study may explain, at least in part, the association between FA exposure and immune diseases and cancer.  相似文献   

13.

Background and Objectives

Cladribine is a cytotoxic drug which ameliorates the clinical course of relapsing-remitting multiple sclerosis. In addition to cytotoxicity, the mode of action may include immunomodulatory mechanisms. This in vitro study was designed to investigate cladribine’s effects on cell function after the removal of cladribine to distinguish cytotoxic versus immunomodulatory effects.

Methods

Cells were incubated in the absence or presence of cladribine (1×10-8 M to 1×10-5 M) for 72 h. Cladribine was removed from the cell culture and surviving peripheral blood mononuclear cells were cultured up to 58 days to determine the immunomodulatory effects of cladribine on cell function (e.g., proliferation and cytokine release).

Results

In the long-term, brief cladribine exposure did not impair the proliferation of surviving peripheral blood mononuclear cells. However, it induced an anti-inflammatory shift in the cytokine milieu with significantly enhanced release of IL-4 (Days 9 and 44, p<0.01; Day 58, p<0.05) and IL-5 (Day 9, p<0.01), resulting in an increased IL-4/INF-gamma ratio (Days 9 and 44, p<0.01; Day 58, p<0.05). Additionally, a trend towards an increased IL-10 production was observed. No changes were found in the production of IFN-gamma, TNF-alpha, IL-6, IL-8, IL-17A, IL-23 or NGF-beta.

Conclusions

In vitro cladribine exposure induces a sustained anti-inflammatory shift in the cytokine profile of surviving peripheral blood mononuclear cells. This immunomodulatory action might contribute to cladribine’s beneficial effects in the treatment of multiple sclerosis.  相似文献   

14.
ObjectivesConditioned medium (CM) from 2D cell culture can mitigate the weakened regenerative capacity of the implanted stem cells. However, the capacity of 3D CM to prime dental pulp stem cells (DPSCs) for pulp regeneration and its protein profile are still elusive. We aim to investigate the protein profile of CM derived from 3D tooth germs, and to unveil its potential for DPSCs‐based pulp regeneration.Materials and MethodsWe prepared CM of 3D ex vivo cultured tooth germ organs (3D TGO‐CM) and CM of 2D cultured tooth germ cells (2D TGC‐CM) and applied them to prime DPSCs. Influences on cell behaviours and protein profiles of CMs were compared. In vivo pulp regeneration of CMs‐primed DPSCs was explored using a tooth root fragment model on nude mice.ResultsTGO‐CM enhanced DPSCs proliferation, migration, in vitro mineralization, odontogenic differentiation, and angiogenesis performances. The TGO‐CM group generated superior pulp structures, more odontogenic cells attachment, and enhanced vasculature at 4 weeks post‐surgery, compared with the TGC‐CM group. Secretome analysis revealed that TGO‐CM contained more odontogenic and angiogenic growth factors and fewer pro‐inflammatory cytokines. Mechanisms leading to the differential CM profiles may be attributed to the cytokine–cytokine receptor interaction and PI3K‐Akt signalling pathway.ConclusionsThe unique secretome profile of 3D TGO‐CM made it a successful priming cocktail to enhance DPSCs‐based early pulp regeneration.  相似文献   

15.

Background

Myelodysplastic syndromes (MDS) are clonal marrow stem-cell disorders with a high risk of progression to acute myeloid leukemia (AML). Treatment options are limited and targeted therapies are not available for MDS. In the present study, we investigated the cytotoxicity and the molecular mechanism of Homoharringtonine (HHT) and Bortezomib towards high-risk MDS cell line SKM-1 in vitro and the role of miR-3151 was first evaluated in SKM-1 cells.

Methods

SKM-1 cells were treated with different concentrations of HHT or Bortezomib, and cell viability was analyzed with CCK-8 assay. The influence on cell proliferation, cell cycle distribution and the percentage of apoptosis cells were analyzed by flow cytometry. Calcusyn software was used to calculate combination index (CI) values. Western blot was used to analysis phosphorylation of Akt and nuclear NF-κB protein expression in SKM-1 cells. Mature miR-3151 level and p53 protein level were detected after HHT or Bortezomib treatment. The cell proliferation and p53 protein level were reassessed in SKM-1 cells infected with lentivirus to overexpress miR-3151.

Results

Simultaneous exposure to HHT and Bortezomib (10.4:1) resulted in a significant reduction of cell proliferation in SKM-1 cells (P < 0.05). Cell cycle arrest at G0/G1 and G2/M phase was observed (P < 0.05). HHT and Bortezomib synergistically induced cell apoptosis by regulating members of caspase 9, caspase 3 and Bcl-2 family (P < 0.01). The mechanisms of the synergy involved Akt and NF-κB signaling pathway inhibition, downregulation of mature miR-3151 and increment of downstream p53 protein level. Overexpression of miR-3151 promoted cell proliferation and inhibited p53 protein expression in SKM-1 (P < 0.01).

Conclusions

HHT and Bortezomib synergistically inhibit SKM-1 cell proliferation and induce apoptosis in vitro. Inhibition of Akt and NF-κB pathway signaling contribute to molecular mechanism of HHT and Bortezomib. miR-3151 abundance is implicated in SKM-1 cell viability, cell proliferation and p53 protein expression.  相似文献   

16.
Purpose: Our previous data indicated that miR-24-3p is involved in the regulation of vascular endothelial cell (EC) proliferation and migration/invasion. However, whether IL-1β affects hypoxic HUVECs by miR-24-3p is still unclear. Therefore, the present study aimed to investigate the role and underlying mechanism of interleukin 1β (IL-1β) in hypoxic HUVECs.Methods: We assessed the mRNA expression levels of miR-24-3p, hypoxia-inducible factor-1α (HIF1A) and NF-κB-activating protein (NKAP) by quantitative real-time polymerase chain reaction (RT-qPCR). ELISA measured the expression level of IL-1β. Cell counting kit-8 (CCK-8) assays evaluated the effect of miR-24-3p or si-NKAP+miR-24 on cell proliferation (with or without IL-1β). Transwell migration and invasion assays were used to examine the effects of miR-24-3p or si-NKAP+miR-24-3p on cell migration and invasion (with or without IL-1β). Luciferase reporter assays were used to identify the target of miR-24-3p.Results: We demonstrated that in acute myocardial infarction (AMI) patient blood samples, the expression of miR-24-3p is down-regulated, the expression of IL-1β or NKAP is up-regulated, and IL-1β or NKAP is negatively correlated with miR-24-3p. Furthermore, IL-1β promotes hypoxic HUVECs proliferation by down-regulating miR-24-3p. In addition, IL-1β also significantly promotes the migration and invasion of hypoxic HUVECs; overexpression of miR-24-3p can partially rescue hypoxic HUVECs migration and invasion. Furthermore, we discovered that NKAP is a novel target of miR-24-3p in hypoxic HUVECs. Moreover, both the overexpression of miR-24-3p and the suppression of NKAP can inhibit the NF-κB/pro-IL-1β signaling pathway. However, IL-1β mediates suppression of miR-24-3p activity, leading to activation of the NKAP/NF-κB pathway. In conclusion, our results reveal a new function of IL-1β in suppressing miR-24-3p up-regulation of the NKAP/NF-κB pathway.  相似文献   

17.
Generalized osteoporosis is common in patients with inflammatory diseases, possibly because of circulating inflammatory factors that affect osteoblast and osteoclast formation and activity. Serum levels of the inflammatory factors CXCL8 and CCL20 are elevated in rheumatoid arthritis, but whether these factors affect bone metabolism is unknown. We hypothesized that CXCL8 and CCL20 decrease osteoblast proliferation and differentiation, and enhance osteoblast-mediated osteoclast formation and activity. Human primary osteoblasts were cultured with or without CXCL8 (2–200 pg/ml) or CCL20 (5–500 pg/ml) for 14 days. Osteoblast proliferation and gene expression of matrix proteins and cytokines were analyzed. Osteoclast precursors were cultured with CXCL8 (200 pg/ml) and CCL20 (500 pg/ml), or with conditioned medium (CM) from CXCL8 and CCL20-treated osteoblasts with or without IL-6 inhibitor. After 3 weeks osteoclast formation and activity were determined. CXCL8 (200 pg/ml) and CCL20 (500 pg/ml) enhanced mRNA expression of KI67 (2.5–2.7-fold), ALP (1.6–1.7-fold), and IL-6 protein production (1.3–1.6-fold) by osteoblasts. CXCL8-CM enhanced the number of osteoclasts with 3–5 nuclei (1.7-fold), and with >5 nuclei (3-fold). CCL20-CM enhanced the number of osteoclasts with 3–5 nuclei (1.3-fold), and with >5 nuclei (2.8-fold). IL-6 inhibition reduced the stimulatory effect of CXCL8-CM and CCL20-CM on formation of osteoclasts. In conclusion, CXCL8 and CCL20 did not decrease osteoblast proliferation or gene expression of matrix proteins. CXCL8 and CCL20 did not directly affect osteoclastogenesis. However, CXCL8 and CCL20 enhanced osteoblast-mediated osteoclastogenesis, partly via IL-6 production, suggesting that CXCL8 and CCL20 may contribute to osteoporosis in rheumatoid arthritis by affecting bone cell communication.  相似文献   

18.
Background: Monocyte count and serum albumin (Alb) have been proven to be involved in the process of systemic inflammation. Therefore, we investigated the prognostic value of monocyte-to-albumin ratio (MAR) in patients who underwent percutaneous coronary intervention (PCI).Methods: We enrolled a total of 3561 patients in the present study from January 2013 to December 2017. They were divided into two groups according to MAR cut-off value (MAR < 0.014, n=2220; MAR ≥ 0.014, n=1119) as evaluated by receiver operating characteristic (ROC) curve. The average follow-up time was 37.59 ± 22.24 months.Results: The two groups differed significantly in the incidences of all-cause mortality (ACM; P<0.001), cardiac mortality (CM; P<0.001), major adverse cardiovascular events (MACEs; P=0.038), and major adverse cardiovascular and cerebrovascular events (MACCEs; P=0.037). Multivariate Cox regression analyses revealed MAR as an independent prognostic factor for ACM and CM. The incidence of ACM increased by 56.5% (hazard ratio [HR] = 1.565; 95% confidence interval [CI], 1.086–2.256; P=0.016) and that of CM increased by 76.3% (HR = 1.763; 95% CI, 1.106–2.810; P=0.017) in patients in the higher-MAR group. Kaplan–Meier survival analysis suggested that patients with higher MAR tended to have an increased accumulated risk of ACM (Log-rank P<0.001) and CM (Log-rank P<0.001).Conclusion: The findings of the present study suggested that MAR was a novel independent predictor of long-term mortality in patients who underwent PCI.  相似文献   

19.

Aims

The goals of this paper were to evaluate the differentiation of bone marrow mesenchymal stem cells (BMSCs) into hepatocyte-like cells in vitro, and to determine whether stem cells can migrate and plant into the liver with portal hypertension accompanied by the end-stage of liver disease.

Methods

BMSCs were isolated from rats and amplified with hepatocyte growth factor (HGF) and fibroblast growth factor-4 (FGF-4). The expression of alpha-fetoprotein (AFP), cytokeratin 18 (CK-18), and albumin (ALB) was detected by immunofluorescence in induced cells. Rats were randomly divided into experimental (with common bile duct ligation) and control groups. After injection of fluorescence labeled cells, cell distribution was observed under a fluorescence microscope. The integrated optical density (IOD) and cell distribution scores were evaluated using Image-Pro Plus 6.0 software. The portal pressure was measured before the rats were killed.

Results

After being induced with HGF and FGF-4, the Golgi apparatus, endoplasmic reticulum, ribosomes, and mitochondria all significantly increased in the fifth generation cells. Immunofluorescent analysis showed that the induced cells expressed AFP, CK-18, and ALB. BMSCs were stained by CM-Dil, and the labeling rate was as high as 95.5%. The portal pressure in experimental group was much higher than that of the control group (18.04±2.35 vs. 9.75±1.40cm H2O p<0.01). The IOD of transplanted cells in the experimental group was also significantly higher than that of the control group (11.30±2.09×105 vs. 2.93±0.88×105, p<0.01). In addition, the cell distribution score in the experimental group was lower than that of the control group (1.99±0.36 vs. 2.36±0.27, P<0.05).

Conclusions

The combination of HGF and FGF-4 induces the differentiation of BMSCs into hepatocyte-like cells, which express AFP, CK-18, and ALB. In addition, the recruitment of BMSCs (after transplantation in the spleen) was improved in rats with portal hypertension.  相似文献   

20.
BackgroundSevere acute pancreatitis (SAP) is associated with high morbidity and mortality. Bone marrow mesenchymal stem cells (BMSCs) have shown obvious protective effect on SAP. However, little is known about the underlying mechanism. The objective of this study is to unravel the role and regulatory mechanism of miR-181a-5p in BMSCs-mediated pancreatic repair.MethodsBMSCs were isolated from Sprague-Dawley rats and characterized by flow cytometry and Oil Red O staining. Sodium taurocholate- and caerulein-induced models were used as SAP models in vivo and in vitro, respectively. Pancreatic injury were evaluated by H&E and histopathological analysis, as well as by measuring levels of amylase, lipase and cytokines. qRT-PCR and western blotting were performed to detect the level of miR-181a-5p and the protein levels of PTEN/Akt, respectively. ELISA was conducted to detect the levels of TNF-α, IL-1β, IL-6, angiopoietin, IL-4, IL-10 and TGF-β1. The apoptotic rate of AR42 J cells was quantitated by concurrent staining with Annexin-V-FITC and PI.ResultsBMSCs significantly attenuated pancreatic injury in SAP rats by reducing inflammatory infiltration and necrosis, and this effect was abolished by CXCR4 agonist AMD3100. ADM3100 exhibited more severe pancreatic injury and decreased miR-181a-5p levels in the pancreas and serum compared to SAP group. Overexpression of miR-181a-5p in BMSCs (BMSCs-miR-181a-5p) markedly potentiated the protective effect of BMSCs by reducing histological damage and levels of amylase and lipase. Moreover, BMSCs-miR-181a-5p dramatically reduced levels of angiopoietin, TNF-α, IL-1β and IL-6, but induced the levels of IL-4 and IL-10. In caerulein-treated AR42 J cells, co-culturing of BMSCs-miR-181a-5p alleviated caerulein-induced increase of amylase and lipase, and apoptosis via PTEN/Akt/TGF-β1 signaling.ConclusionBMSCs alleviate SAP and reduce inflammatory responses and apoptosis by secreting miR-181a-5p to target PTEN/Akt/TGF-β1 signaling. Hence, BMSCs-miR-181a-5p could serve as potential therapeutic target for SAP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号