首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The insulin receptor of rat brain is coupled to tyrosine kinase activity   总被引:13,自引:0,他引:13  
Insulin receptors from rat brain were studied for receptor-associated tyrosine kinase activity. In solubilized, lectin-purified receptor preparations, insulin stimulated the phosphorylation of the beta subunit of its receptor as well as of exogenous substrates. Phosphoamino acid analysis of casein phosphorylated by these preparations revealed that 32P incorporation occurred predominantly on tyrosine residues. Receptor and casein phosphorylations were specific for insulin and analogues that also bind to the insulin receptor. The insulin dose response for phosphorylation of brain receptor resembled that reported for the purified insulin receptor from human placenta (Kasuga, M., Fujita-Yamaguchi, Y., Blithe, D.L., and Kahn, C.R. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 2137-2141), suggesting similar insulin sensitivity and coupling of the brain receptor kinase. Four polyclonal antisera to the insulin receptor were able to bind and immunoprecipitate the brain receptor; however, only two antisera activated the receptor-associated kinase. Thus, the brain insulin receptor, like the well studied non-neural receptor, is coupled to tyrosine kinase activity, making regulation of cellular events by insulin in neural tissue possible.  相似文献   

2.
Since the identification of the insulin receptor by insulin-binding activity almost two decades ago, our understanding of the structure and function of the insulin receptor has progressed tremendously. The importance of the intrinsic tyrosine protein kinase activity of the insulin receptor is implied by the fact that the insulin receptor belongs to a family of receptor tyrosine kinases which play a role in growth control, by experiments demonstrating the intimate association of normal kinase activity and insulin action, and by evidence that the intrinsic kinase activity can be regulated under certain conditions. There are still some major gaps in our knowledge concerning the structure/function of the insulin receptor such as how activation of the intrinsic kinase activity of the receptor leads to altered cellular physiology. The kinase may phosphorylate endogenous substrates or autophosphorylation may simply alter beta subunit conformation so it can then interact with an effector system (i.e. a serine kinase) directly, or indirectly through a G-protein. The truth may lie somewhere between these two pathways.  相似文献   

3.
The physiological function of alkaline phosphatase (ALP) remains controversial. It was recently suggested that this membrane-bound enzyme has a role in the modulation of transmembranar transport systems into hepatocytes and Caco-2 cells. ALP activity expressed on the apical surface of blood-brain barrier cells, and its relationship with (125)I-insulin internalization were investigated under physiological conditions using p-nitrophenylphosphate (p-NPP) as substrate. For this, an immortalized cell line of rat capillary cerebral endothelial cells (RBE4 cells) was used. ALP activity and (125)I-insulin internalization were evaluated in these cells. The results showed that RBE4 cells expressed ALP, characterized by an ecto-oriented active site which was functional at physiological pH. Orthovanadate (100 microM), an inhibitor of phosphatase activities, decreased both RBE4-ALP activity and (125)I-insulin internalization. In the presence of L-arginine (1 mM) or adenosine (100 microM) RBE4-ALP activity and (125)I-insulin, internalization were significantly reduced. However, D-arginine (1 mM) had no significant effect. Additionally, RBE4-ALP activity and (125)I-insulin internalization significantly increased in the presence of the bioflavonoid kaempferol (100 microM), of the phorbol ester PMA (80 nM), IBMX (1 mM), progesterone (200 microM and 100 microM), beta-estradiol (100 microM), iron (100 microM) or in the presence of all-trans retinoic acid (RA) (10 microM). The ALP inhibitor levamisole (500 microM) was able to reduce (125)I-insulin internalization to 69.1 +/- 7.1% of control. Our data showed a positive correlation between ecto-ALP activity and (125)I-insulin incorporation (r = 0.82; P < 0.0001) in cultured rat brain endothelial cells, suggesting that insulin entry into the blood-brain barrier may be modulated through ALP.  相似文献   

4.
Insulin elicits the autophosphorylation of the beta-subunit of its receptor on tyrosine residues: this effect appears to be the earliest post-binding event involved in insulin action. In the present study we have raised highly specific antibodies to phosphotyrosine residues, and we have taken advantage of these antibodies to further evaluate the role of the insulin receptor tyrosine kinase in the generation of insulin's biological responses. Using a cell-free phosphorylation assay, we show here that these antibodies increase the tyrosine kinase activity of the receptor, and its phosphorylation on tyrosine residues. In contrast, the antibodies do not interfere with dephosphorylation of the insulin receptor. Introduction of the same antibodies in living Fao hepatoma cells enhances the effect of insulin on both glucose transport and aminoacid uptake. As a whole our data indicate that the insulin receptor kinase is involved in the generation of an early (glucose transport) and late (aminoacid uptake) response to insulin. Further, conformational changes in phosphotyrosine containing domains of the insulin receptor appear to modulate insulin's biological effects. Finally, the injection of antibodies in intact cells provides us with a novel and promising tool to search for cellular substrates for the insulin receptor tyrosine kinase.  相似文献   

5.
Summary The effects of purified Ca2+, phospholipid-dependent protein kinase (C-kinase) were studied on adenylate cyclase activity from rat brain striatum. C-kinase treatment of the membranes stimulated adenylate cyclase activity, the maximal stimulation between 50–80% was observed at 3.5 U/ml, whereas the catalytic subunit of cAMP dependent protein kinase did not show any effect on enzyme activity. The inclusion of Ca2+ and phosphatidyl serine did not augment the percent stimulation of adenylate cyclase by C-kinase, however EGTA inhibited the stimulatory effect of C-kinase on enzyme activity. Furthermore, the known inhibitors of C-kinase such as polymyxin-B and 1-(5-Isoquinoline sulfonyl)-2-methylpiperazine dihydrochloride (H-7) also inhibited the stimulatory effect of C-kinase on adenylate cyclase activity. In addition, in the presence of GTP the stimulatory effects of C-kinase on basal and N-Ethylcarboxamide adenosine- (NECA-), dopamine-(DA) and forskolin- (FSK) sensitive adenylate cyclase activities were augmented. On the other hand, the inhibitory effect of high concentrations of GTP on enzyme activity was attenuated by C-kinase treatment. In addition, oxotremorine inhibited adenylate cyclase activity in a concentration dependent manner, with an apparent Ki of about 10 µM and C-kinase treatment almost completely abolished this inhibition. These data suggest that C-kinase may play an important role in the regulation of adenylate cyclase activity possibly by interacting with a guanine nucleotide regulatory protein.Abbreviations C-kinase Ca2– phospholipid-dependent protein kinase - NECA N-Ethylcarboxamide adenosine - DA Dopamine - FSK Forskolin - PMA Phorbol 12-(-Myristate), 13-Acetate, H-7, 1-(5-isoquinoline sulfonyl)-2-methylpiperazine dihydrochloride Presented in part at the VIth International Conference on Cyclic nucleotides, calcium and protein phosphorylation signal transduction in biological systems. September 2-6, 1986, Bethesda, MD (USA).M.B.A.-S. was Canadian Heart Foundation Scholar during the course of these studies.  相似文献   

6.
IGF-I and insulin receptors possess tyrosine-kinase enzymatic activity considered to be essential for signal transduction and thereby mediating the putative effects of these hormones on fetal growth and development. We investigated the ontogeny of IGF-I and insulin receptor tyrosine-kinase activity in at least 3 separate membrane preparations from liver of rats at 21 day of embryonic life (21ED), 1 and 5 day of postnatal life (1PD and 5PD respectively) and adult. Receptors purified by wheat germ agglutinin chromatography (WGA) were exposed to graded concentrations of IGF-I or insulin, and tyrosine-kinase activity was measured by quantifying incorporation of 32P into the exogenous substrate poly[Glu,Tyr; 4:1]. IGF-I stimulated tyrosine-kinase solely at 1 PD as documented by a maximal increase of 346 +/- 167% over basal kinase activity with 6.6 nmol/L IGF-I. While the lack of response in adult animals could be explained by a striking decrease in receptors at that age, 125I-IGF-I binding and affinity labelling of the WGA preparations indicated substantial IGF-I receptors were present in the liver at each of the perinatal ages. Furthermore, this dissociation between IGF-I binding and the tyrosine-kinase activity of these IGF-I receptors could not be attributed to the presence/absence of IGF-I binding proteins as judged by affinity labelling. In contrast, insulin-stimulated tyrosine-kinase activity was observed at all ages tested although it appeared greatest at 1PD. We conclude that (i) expression of IGF-I tyrosine-kinase activity is linked to developmental events and differs from that found for the insulin receptor tyrosine-kinase activity, (ii) during the perinatal period there is an apparent dissociation between ligand binding by the IGF-I receptor and receptor tyrosine-kinase activity. These observations suggest modulation of IGF-I receptor tyrosine-kinase activity may be an important regulator of IGF-I action during the perinatal period.  相似文献   

7.
Three agents which mimic insulin action in intact cells (concanavalin A, wheat germ agglutinin, and polyclonal insulin receptor antibody), mimicked insulin's ability to stimulate the kinase activity of purified insulin receptors. In contrast, monoclonal insulin receptor antibody, an antagonist of insulin action, did not stimulate the phosphorylation of the insulin receptor either in intact IM-9 cells or in purified receptor preparations. This antibody, however, antagonized the ability of insulin to stimulate the phosphorylation of the receptor both in intact cells and in the purified receptor. These studies with insulin mimickers and an insulin antagonist are consistent with a role for the kinase activity of the receptor mediating the actions of insulin.  相似文献   

8.
Hexokinase 1 (HK1) purified from rat brain exhibits protein kinase activity, including autophosphorylation and phosphorylation of histone H2A. This protein kinase activity is observed only in the absence of the HK1 carbohydrate substrate, glucose. Analysis of the ATP-binding domains of the mammalian HK1 protein sequences shows significant homology with other mammalian protein kinases.  相似文献   

9.
10.
Glycerol kinase activity was found in the particulate fraction of rat brain homogenates predominantly associated with mitochondria. The enzyme remained bound to the particulate fraction after treatment with a variety of solubilizing agents.  相似文献   

11.
In vivo studies have demonstrated that the liver is the main site of insulin resistance in hyperthyroidism. To further investigate the effect of thyroid hormone in the liver, we have incubated primary cultures of rat hepatocytes in the presence and absence of triiodothyronine (T3) 1 ng/ml and 5 ng/ml for 20 hr. Without affecting basal activity, T3 5 ng/ml decreased insulin-stimulated (1 x 10(-7) M) lipid synthesis but not insulin-stimulated alpha-aminoisobutyric acid uptake. These changes occur in the absence of any abnormalities in 125I-insulin binding, degradation, internalization or insulin receptors structure as determined by affinity-labeling methods. However, basal insulin receptor kinase activity using Glu4: Tyrl as phospho-acceptor was decreased by T3 without altering its insulin responsiveness. These results demonstrate the heterogeneity of T3's effects at the postinsulin binding level in the liver.  相似文献   

12.
The insulin receptor is associated with a protein kinase activity. This has been shown for the receptor of liver, fat, and some other tissues which are not primary targets of insulin action. Here kinase activity is demonstrated for the insulin receptor of rat skeletal and cardiac muscle with similar characteristics. Insulin (10(-7) mol/l) stimulates phosphorylation of the 95-kDa receptor subunit 3- to 18-fold. The effect is detectable at 10(-10) mol/l insulin; the ED50 is approx. 3 X 10(-9) mol/l. The kinase phosphorylates exogenous substrate as well, and it is recovered after immunoprecipitation of the receptor with antireceptor antibody suggesting that kinase activity is intrinsic to the muscle receptor.  相似文献   

13.
The first step in insulin action consists in binding of the hormone to specific cell surface receptors. This receptor displays two functional domains: an extracellular alpha-subunit containing the majority or the totality of the hormone binding site and an intracellular beta-subunit possessing insulin-stimulated tyrosine kinase activity. A general consensus has been reached in favour of the idea that this receptor enzymic function is essential for generation of the metabolic and growth-promoting effects of insulin. Concerning the mechanism of transmembrane signalling, we like to think that interaction of insulin with the receptor alpha-subunit triggers a conformational change, which is propagated to the beta-subunit and activates it. The active receptor kinase leads then to the phosphorylation of cellular protein substrates, which are likely to belong to two broad categories, those generating metabolic effects of insulin and those resulting in growth-promoting effects. The phosphorylated and active substrates then generate the final effects of insulin.  相似文献   

14.
We are interested in developing methods to rigorously characterize the intrinsic enzymatic activity of the insulin receptor. We have previously shown that the intact, kinase active form of the receptor can be separated from inactive forms isolated from human placenta. Therefore, the determination of kinase activity, when normalized to the number of receptors based on binding, is not complicated by the presence of insulin receptor forms which bind insulin normally, but are kinase inactive. We now have extended this separation technique to insulin receptor preparations from rat liver. Thus, the determination and comparison of the intrinsic kinase activity of insulin receptor from human placenta and rat liver was performed. When normalized to the same number of insulin receptors which are autophosphorylated to the same degree, the rat liver insulin receptor catalyzes the transfer of phosphate from ATP to three different substrates, on average, 2.8-fold quicker than receptor from human placenta. This probably represents an inherent difference in the intrinsic kinase activity (Vmax), since the values for KM of the substrates are essentially identical, for insulin receptors from both sources. Intrinsic kinase differences may reflect different biological roles and/or differential regulation by exogenous factors. We are now examining this hypothesis in light of reports that demonstrate regulation of intrinsic kinase activity of the insulin receptor in certain physiological and pathological states.  相似文献   

15.
Insulin receptor activity and its relationship with catecholamines and serotonin were investigated in rat whole brain membranes, synaptosomes and choroid plexus in alloxan induced short term and long term hyperglycemia and hyperinsulinemia. Insulin receptor activity was measured by [125I]insulin binding and catecholamines by high performance liquid chromatography with electrochemical detection. While choroid plexus insulin receptors modulate along with norepinephrine, dopamine and serotonin with the changes in insulin and/or plasma glucose levels, insulin receptor activity in synaptosomes and total membranes is not affected to a great extent except in long term hyperglycemia.  相似文献   

16.
Tyrosine kinase activity of brain insulin and IGF-1 receptors   总被引:3,自引:0,他引:3  
Lectin-purified rat brain preparations demonstrate specific [125I]insulin and [125I]-IGF-1 binding. Insulin-stimulable tyrosine kinase activity as measured by exogenous substrate phosphorylation was present in brain and liver lectin purified preparations with the delta kinase activity/B/F of brain approximately 2.5 fold greater than that of liver. Insulin-stimulable tyrosine kinase activity was abolished in liver but decreased by only approximately 50 percent in brain after immuno-depletion with antiserum which recognizes insulin but not IGF-1 receptors. Insulin and IGF-1 dose responses for phosphorylation of the immunodepleted brain preparations suggested that the remaining tyrosine kinase activity was IGF-1 receptor mediated. Thus, functional IGF-1 receptors are present in rat brain, and the doses of insulin typically used to evaluate insulin receptor tyrosine kinase activity will stimulate IGF-1 receptor tyrosine kinase activity as well.  相似文献   

17.
Insulin receptor activity and its relationship with catecholamines and serotonin were investigated in rat brain using Triton X-100 extracts from total membranes, synaptosomes and choroid plexus in experimental hypothyroidism and hyperthyroidism. Insulin receptor activity was assessed by binding to [125I]insulin and catecholamines by high performance liquid chromatography. In choroid plexus thyronines effects are well pronounced and there is modulation vis a vis plasma hormone concentrations. Triiodothyronine levels increase in brain in all experimental groups. This suggests that rat may serve as a useful model for thyronine homeostasis in brain and there may be involvement of very complex regulatory mechanisms in glucose tolerance.  相似文献   

18.
Various lipids were tested as substrates for the insulin receptor kinase using either receptor partially purified from rat hepatoma cells by wheat-germ-agglutinin-Sepharose chromatography or receptor purified from human placenta by insulin-Sepharose affinity chromatography. Phosphatidylinositol was phosphorylated to phosphatidylinositol 4-phosphate by the partially purified insulin receptor. In contrast, phosphatidylinositol 4-phosphate and diacylglycerol were not phosphorylated. In some, but not all preparations of partially purified insulin receptor, the phosphatidylinositol kinase activity was stimulated by insulin (mean effect 33%). Phosphatidylinositol kinase activity was retained in insulin receptor purified to homogeneity. Insulin regulation of the phosphatidylinositol kinase was lost in the purified receptor; however, dithiothreitol stimulated both autophosphorylation of the purified receptor and phosphatidylinositol kinase activity in parallel about threefold. (Glu80Tyr20)n, a polymeric substrate specific to tyrosine kinases, inhibited the phosphatidylinositol kinase activity of the purified receptor by greater than 90% and inhibited receptor autophosphorylation by 67%. Immunoprecipitation by specific anti-receptor antibodies depleted by greater than 90% the phosphatidylinositol kinase activity in the supernatant of the purified receptor and the phosphatidylinositol kinase activity was recovered in the precipitate in parallel with receptor autophosphorylation activity. These characteristics of the phosphatidylinositol kinase activity of the purified insulin receptor and its metal ion preference paralleled those of the receptor tyrosine kinase activity and differed from bulk phosphatidylinositol kinase activity in cell extracts, which was not significantly inhibited by (Glu80Tyr20)n, stimulated by dithiothreitol or depleted by immunoprecipitation with anti-(insulin receptor) antibody. These results suggest that the insulin receptor is associated with a phosphatidylinositol kinase activity; however, this activity is not well regulated by insulin. This kinase appears to be distinct from the major phosphatidylinositol kinase(s) of cells. Its relationship to insulin action needs further study.  相似文献   

19.
Various proteins modulate the kinase activity of the insulin receptor   总被引:2,自引:0,他引:2  
Previous studies of the substrate specificity of the purified insulin receptor tyrosine kinase using synthetic random polymers have demonstrated that the receptor kinase phosphorylates poly (Glu, Tyr) 4:1 but not poly (Glu, Tyr) 1:1. In the present study, insulin treatment of Chinese hamster ovary cells overexpressing the human insulin receptor was found to stimulate the ability of their membrane extracts to phosphorylate poly (Glu, Tyr) 1:1. It was concluded that this activity was due to the receptor itself because: 1) it was precipitated with a monoclonal antibody to the receptor; 2) the addition of various membrane extracts to purified insulin receptor preparations stimulated the ability of these preparations to phosphorylate poly (Glu, Tyr) 1:1; and 3) certain purified proteins, including bovine serum albumin and casein, were also capable of stimulating the purified receptor to phosphorylate poly (Glu, Tyr) 1:1. The effect of albumin was dose-dependent; 0.5 and 10 mg/ml bovine serum albumin stimulated the phosphorylation of poly (Glu, Tyr) 1:1 by 2- and 230-fold, respectively. In contrast, albumin had no effect on the phosphorylation of poly (Glu, Tyr) 4:1. These results indicate that the activity of the insulin receptor kinase on certain substrates can be modulated by the presence of other proteins.  相似文献   

20.
To explain the insulin resistance induced by catecholamines, we studied the tyrosine kinase activity of insulin receptors in a state characterized by elevated noradrenaline concentrations in vivo, i.e. cold-acclimation. Insulin receptors were partially purified from brown adipose tissue of 3-week- or 48 h-cold-acclimated mice. Insulin-stimulated receptor autophosphorylation and tyrosine kinase activity of insulin receptors prepared from cold-acclimated mice were decreased. Since the effect of noradrenaline is mediated by cyclic AMP and cyclic AMP-dependent protein kinase, we tested the effect of the purified catalytic subunit of this enzyme on insulin receptors purified by wheat-germ agglutinin chromatography. The catalytic subunit had no effect on basal phosphorylation, but completely inhibited the insulin-stimulated receptor phosphorylation. Similarly, receptor kinase activity towards exogenous substrates such as histone or a tyrosine-containing copolymer was abolished. This inhibitory effect was observed with receptors prepared from brown adipose tissue, isolated hepatocytes and skeletal muscle. The same results were obtained on epidermal-growth-factor receptors. Further, the catalytic subunit exerted a comparable effect on the phosphorylation of highly purified insulin receptors. To explain this inhibition, we were able to rule out the following phenomena: a change in insulin binding, a change in the Km of the enzyme for ATP, activation of a phosphatase activity present in the insulin-receptor preparation, depletion of ATP, and phosphorylation of a serine residue of the receptor. These results suggest that the alteration in the insulin-receptor tyrosine kinase activity induced by cyclic AMP-dependent protein kinase could contribute to the insulin resistance produced by catecholamines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号