首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Detailed analysis of the action of prostaglandins (PGs) on the corpus luteum in primate species is very limited. In this study we examined the response of the adenylate cyclase system to PGs in homogenates prepared from the corpus luteum of rhesus monkeys at midluteal phase of the menstrual cycle. The conversion of [alpha 32p] ATP to [32p] cyclic AMP (cAMP) was assessed in the absence (control activity; 50 microM GTP) and presence of various concentrations of seven PGs and arachidonic acid, either alone or in combination with 250 nM hCG. Cyclic AMP production increased up to three-fold in the presence of PGD2, PGE2, PGI2 or PGF2 alpha; however PGA2, PGB2, 13, 14-dihydro-15-keto PGE2 and arachidonic acid alone did not alter cAMP levels. In dose-response studies, adenylate cyclase was 10 and 100-fold more sensitive to PGD2 (Vmax at 1 X 10(-5) M) than to PGE2 or to PGI2 and PGF2 alpha, respectively. Activity in the presence of hCG plus either PGD2, PGE2, PGI2 or PGF2 alpha did not differ from that for hCG (or the PG) alone. In contrast, addition of PGA2 or arachidonate inhibited (p less than 0.05) hCG-stimulated cAMP production by 50 and 100 percent. We conclude that the gonadotropin-sensitive adenylate cyclase of the macaque corpus luteum is also modulated by several PGs. These factors may either mimic (e.g., PGD2, PGE2, PGI2) or suppress (PGA2) gonadotropin-stimulated cAMP production and possibly cAMP-mediated events in luteal cells.  相似文献   

2.
Basal and calcium ionophore (CaI)-influenced production of prostaglandins (PGs) by corpora lutea (CL) destined to be normal or short-lived were compared. Ovulation was induced in 24 lactating beef cows with human chorionic gonadotropin (hCG, 1000 IU) administered between 35 and 40 days postpartum. Ten cows received norgestomet implants for 9 days prior to induced ovulation (Normal CL) and 14 served as untreated controls (Subnormal CL). Five cows in each treatment were unilaterally ovariectomized on Day 6 (Day 0 = day of hCG administration) and CL were collected. Blood samples were collected daily through-out the experimental period from cows not ovariectomized. Plasma progesterone (P4) in ovary-intact animals indicated that short-lived CL were induced in 8/8 cows not pretreated with norgestomet, and normal luteal lifespan was observed in 4/5 implanted cows. Dispersed luteal cells were incubated for 8 h with 0, 0.05, 0.5, or 5 microM CaI (A23187). Incubation media were analyzed for P4, PGF2 alpha, 6-keto-PGF1 alpha (PGI), and PGE2. The weight, cell number, and basal or CaI-influenced production of P4 did not differ between Normal CL and Subnormal CL. Basal production of PGF2 alpha, PGI, and PGE2 was higher in Subnormal CL than in Normal CL (p less than 0.05). In response to 0.05 microM CaI, PGF2 alpha was stimulated in Subnormal CL (p less than 0.01), while PGI (p less than 0.05) and PGE2 (p less than 0.1) were increased in Normal CL. Production of PGs was reduced by 5 microM CaI in Subnormal CL (p less than 0.01), but not in Normal CL.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Recent data suggest that prostaglandins (PGs) are involved in the regulation of basophil activation. The aim of this study was to characterize the basophil PG-binding sites by means of radioreceptor assays using 3H-labeled PGs. Scatchard analysis for pure (greater than 95%) chronic myeloid leukemia (CML) basophils revealed two classes of PGE1-binding sites differing in their affinity for the natural ligand (Bmax1 = 217 +/- 65 fmol/10(8) cells; Kd1 = 0.5 +/- 0.2 nM; Bmax2 = 2462 +/- 381 fmol/10(8) cells; Kd2 = 47 +/- 20 nM; IC50 = PGE1 less than PGI2 less than PGD2 less than PGE2 less than PGF2 alpha) as well as two classes of PGI2 (iloprost)-binding sites (Bmax1 = 324 +/- 145 fmol/10(8) cells; Kd1 = 0.5 +/- 0.3 nM; Bmax2 = 2541 +/- 381; Kd2 = 27 +/- 6 nM; IC50 = PGI2 less than PGE1 less than PGD2 less than PGE2 less than PGF2 alpha. In addition, CML basophils exhibited a single class of PGD2-binding sites (Bmax = 378 +/- 98 fmol/10(8) cells; Kd = 13 +/- 4 nM; IC50: PGD2 less than PGI2 less than PGE1 less than PGE2 less than PGF2 alpha). In contrast, we were unable to detect specific saturable PGE2-binding sites. Primary and immortalized (KU812) CML basophils revealed an identical pattern of PG receptor expression. Basophils (KU812) expressed significantly (p less than 0.001) lower number of PGE1 (PGI2)-binding sites (Bmax1: 9% (20%) of control; Bmax2: 36% (50%) of control) when cultured with recombinant interleukin 3 (rhIL-3), a basophil-activating cytokine, whereas rhIL-2 had no effect on PG receptor expression. Functional significance of binding of PGs to basophils was provided by the demonstration of a dose-dependent increase in cellular cAMP upon agonist activation, with PGE1 (ED50 = 1.7 +/- 1.1 nM) and PGI2 (ED50 = 2.8 +/- 2.3 nM) being the most potent compounds. These findings suggest that human basophils express specific receptors for PGE1, PGI2 as well as for PGD2.  相似文献   

4.
Dispersed ovine luteal cells collected on day 7 or 16 postestrus were incubated in vitro with hCG, PGE1 or PGE2 in the presence or absence of adenosine, dipyridamole (inhibitor of adenosine uptake) or PGF2 alpha in two separate experiments. Secretion of progesterone was increased by hCG, PGE1 or PGE2 when incubated with day 7 luteal cells (P less than or equal to 0.05) which was increased further when co-incubated with adenosine (P less than or equal to 0.05). PGF2 alpha alone or in the presence of hCG decreased (P less than or equal to 0.05) the secretion of progesterone by day 7 luteal cells, PGF2 alpha decreased post treatment cell viability with or without hCG (P less than or equal to 0.05) and adenosine reduced (P less than or equal to 0.05) the inhibitory effect of PGF2 alpha on hCG actions and luteal cell viability. Day 16 luteal cells were not functional based on jugular progesterone (P less than or equal to 0.05) and did not respond to hCG, PGE1, or PGE2 in the presence of adenosine or PGF2 alpha (P greater than or equal to 0.05). It is concluded that adenosine enhances the response of functional luteal cells to the luteotropins hCG, PGE1 or PGE2 and adenosine reduces the luteolytic response to PGF2 alpha by hCG-stimulated ovine luteal cells in vitro.  相似文献   

5.
Prostaglandins (PGs) are produced by the corpus luteum (CL) of many domestic and laboratory species and may play a role in CL regulation. The production of PGs by luteal tissue of the rhesus monkey has yet to be clearly elucidated. The production of PGE2, PGF2 alpha, and 6-keto-PGF1 alpha by CL from rhesus monkeys and the incubation conditions (time and cell number) that permit assessment of their synthesis were examined. CL (n = 3 per characterization) were surgically removed from nonpregnant monkeys during the mid-luteal phase of the menstrual cycle (approximately 8-10 days after ovulation). Luteal tissue was dissociated and the cells were incubated at varying concentrations for increasing periods of time at 37 degrees C. Subsequent to defining incubation conditions, various exogenous factors were examined for their potential to modify PG production. Indomethacin, calcium ionophore, human chorionic gonadotropin (hCG), estradiol-17 beta (E2), progesterone (P), testosterone (T), dihydrotestosterone (DHT), and 1-4-6 androstatriene-3, 17-dione (ATD) were incubated with luteal cells in increasing doses. PG and P concentrations in the medium were determined by radioimmunoassay. PGs in the medium after 6 h incubation were detectable at all cell concentrations tested (50,000, 100,000, 200,000 cells/tube). Concentrations of PGs and P increased with cell number (p less than 0.05). Luteal cells (50,000 cells/tube) were incubated for times of 0-24 h. Concentrations of P, PGE2, and PGF2 alpha in the medium were relatively low prior to incubation (0 h), increased (p less than 0.05) linearly within the first 6-12 h, and plateaued through the remaining 24 h.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
We examined the involvement of cyclooxygenase (COX)-1 and COX-2 on mechanical scratching-induced prostaglandins (PGs) production in the skin of mice. The dorsal regions of mice were scratched using a stainless brush. COXs expressions in the skin were analyzed using real-time PCR and Western blotting. The effect of acetylsalicylic acid (ASA) on the ability of PGs production were determined based on skin PGs level induced by arachidonic acid (AA) application. Mechanical scratching increased PGD2, PGE2, PGI2 and PGF(2 alpha). COX-1 was constitutively expressed and COX-2 expression was enhanced by scratching. Intravenous administration of ASA inhibited PGs biosynthesis in the normal skin. PGs levels of the skin 6h after ASA administration (ASA 6 h) were almost equal to those of the skin 10 min after ASA administration (ASA 10 min). In the scratched skin, AA-induced PGE2 and PGI2 of ASA 6 h were significantly higher than those of ASA 10 min. The skin PGD2 and PGF(2 alpha) of ASA 10 min were almost same to those of ASA 6 h. In the normal skin of COX-1-deficient mice, skin PGD2 level was lower than that of wild-type mice, although PGE2, PGI2 and PGF(2 alpha) levels were almost equal to those of wild type. In the scratched skin of COX-1-deficient mice, PGD2, PGE2, PGI2 and PGF(2 alpha) levels were lower than those of wild-type mice. These results suggested that cutaneous PGD2 could be mainly produced by COX-1, and PGE2 and PGI2 could be produced by COX-1 and COX-2, respectively, in mice.  相似文献   

7.
Highly purified preparations of small and large bovine luteal cells were utilized to examine the effects of prostaglandins F2 alpha (PGF2 alpha), E2 (PGE2) and I2 (PGI2) analog on progesterone production. Corpora lutea were obtained from Holstein heifers between days 10 and 12 of the estrous cycle. Purified small and large cells were obtained by unit gravity sedimentation and flow cytometry. Progesterone accumulation was determined in 1 x 10(5) small and 5 x 10(3) large cells after 2 and 4 h incubations respectively. Progesterone synthesis was increased (p less than 0.05) in the small cells by the increasing levels of PGF2 alpha, PGE2, carba-PGI2 and LH. PGF2 alpha, but not PGE2 or carba-PGI2 increased (p less than 0.05) LH-stimulated progesterone production. There was no interaction of various combinations of prostaglandins on progesterone production in the small cells. In the large cells, PGF2 alpha had no effect on basal progesterone production. However, it inhibited LH-stimulated progesterone synthesis. In contrast, PGE2 and carba-PGI2 stimulated (p less than 0.05) basal progesterone production in the large cells. In the presence of LH, high levels of carba-PGI2 inhibited (p less than 0.05) progesterone synthesis. The PGE2 and PGI2-stimulated progesterone production in the large luteal cells was also inhibited in the presence of PGF2 alpha. These data suggest all of the prostaglandins used exert a luteotropic action in the small cells. In the large cells only PGE2 and carba-PGI2 are luteotropic, while PGF2 alpha exerts a luteolytic action. The effects of the prostaglandins in the small and large luteal cells suggest that their receptors are present in both cell types.  相似文献   

8.
Bovine luteal functions are regulated by gonadotropins and eicosanoids. The specific binding sites that presumably mediate the actions of these regulatory agents have previously been characterized in bovine luteal tissue. However, the cellular distribution and/or the cycle phase dependency of these binding sites have never been investigated. In the present study, we investigated these parameters by using quantitative light microscope autoradiography. The results showed that both small and large luteal cells contained binding sites for LH/hCG, prostaglandin (PG)E2, PGF2 alpha, PGI2, and leukotriene (LT)C4. In addition, luteal blood vessels contained LH/hCG and LTC4 binding sites and luteal fibroblasts contained PGE2 binding sites. On a per cell basis, there were more binding sites for all ligands in large luteal cells as compared to small or nonluteal cells. After correction for the cellular area differences, small luteal cells contained more LH/hCG, PGE2, PGI2, and LTC4 binding sites, while large luteal cells contained more PGF2 alpha binding sites. The small and large luteal cell binding of hCG, PGE2, PGI2, and LTC4 increased from early to mid luteal phase, followed by a decline in the late luteal phase. PGF2 alpha binding, on the other hand, increased from early to late luteal phase. In contrast to luteal cells, binding of hCG and LTC4 to luteal blood vessels and binding of PGE2 to luteal fibroblasts did not change during the cycle. These results suggest that LH/hCG and eicosanoid regulation of luteal function is more complex than previously envisioned and it involves both small and large luteal cells and, in some cases, also nonluteal cells.  相似文献   

9.
Two experiments were conducted to determine the effects of nitric oxide (NO) donors, endothelin-(ET-1), and NO synthase (NOS) inhibitors on bovine luteal function in vitro. In experiment 1, estrus in Brahman cows was synchronized with Synchro-Mate-B (SMB) and day-13-14 corpora luteal slices were weighed, diced and incubated in vitro. Treatments (100 ng/ml) were: vehicle, N[see symbol in text]-nitro-L-arginine-L-methyl ester (L-NAME), N(G)-monomethyl-L-arginine acetate (L-NMMA), diethylenetriamine (DETA), DETA-NONOate, sodium nitroprusside (SNP), or ET-1. In experiment 2, estrus was synchronized with Lutalyse, a Controlled Intravaginal Progesterone Releasing Device (CIDR), or cows were not synchronized. Corpora lutea were collected, weighed, and luteal slices were weighed, diced and incubated in vitro with treatments. Treatments (100ng/ml) were: vehicle, L- NAME, L-NMMA, DETA, DETA-NONOate, sodium nitroprusside, S-nitroso-N-acetylpenicillamine (SNAP) or endothelin-1. Tissues were incubated in M- 199 for 1 h without treatments and for 4 and 8 h in both experiments with treatments in both experiments. Media were analyzed for progesterone, prostaglandins E2 and F2alpha (PGE2, PGF2alpha) by radioimmunoassay (RIA). Hormone data in experiments 1 and 2 were analyzed by 2 x 7 and 3 x 2 x 8 factorial design for analysis of variance (ANOVA), respectively. Luteal weights in experiment 2 were analyzed by a one-way ANOVA. Concentrations of progesterone in media were similar (P > or = 0.05) among treatments within experiments. Concentrations of PGE2 in media in experiment 1 were undetectable in 90 and 57% of the samples at 4 and 8 h, respectively. PGF2alpha increased (P < or = 0.05) with time, but did not differ (P > or = 0.05) among treatments. Secretion of PGF2alpha was not affected by treatments (P > or = 0.05). In experiment 2, luteal weights of the induced estrous cycle were decreased (P < or = 0.05) by Lutalyse. Concentrations of PGE2 and PGF2alpha increased (P < or = 0.05) with time in control of all three synchronization regimens. DETA-NONOate, SNAP, sodium nitroprusside (NO donors) and ET-1 increased (P < or = 0.05) PGE2 except in the CIDR synchronized group (P > or = 0.05). No treatment increased (P > or = 0.05) PGF2alpha in any synchronization regimen. It is concluded that either SMB containing norgestomet or a CIDR containing progesterone alters luteal secretion of PGE2, Lutalyse lowers luteal weights in the induced estrous cycle, and NO or ET-1 given alone are not luteolytic agents. It is suggested that NO and ET-1 could have indirect antiluteolytic/luteotropic effects via increasing PGE2 secretion by luteal tissue rather than being luteolytic.  相似文献   

10.
Prostaglandin (PG) F2alpha that is released from the uterus is essential for spontaneous luteolysis in cattle. Although PGF2alpha and its analogues are extensively used to synchronize the estrous cycle by inducing luteolysis, corpora lutea (CL) at the early stage of the estrous cycle are resistant to the luteolytic effect of PGF2alpha. We examined the sensitivity of bovine CL to PGF2alpha treatment in vitro and determined whether the changes in the response of CL to PGF2alpha are dependent on progesterone (P4), oxytocin (OT), and PGs produced locally. Bovine luteal cells from early (Days 4-5 of the estrous cycle) and mid-cycle CL (Days 8-12 of the estrous cycle) were preexposed for 12 h to a P4 antagonist (onapristone: OP; 10(-4) M), an OT antagonist (atosiban: AT; 10(-6) M), or indomethacin (INDO; 10(-4) M) before stimulation with PGF2alpha. Although OP reduced P4 secretion (p < 0.001) only in early CL, it reduced OT secretion in the cells of both phases examined (p < 0.001). OP also reduced PGF2alpha and PGE2 secretion (p < 0.01) from early CL. However, it stimulated PGF2alpha secretion in mid-cycle luteal cells (p < 0.001). AT reduced P4 secretion in early and mid-cycle CL (p < 0.05). Moreover, PGF2alpha secretion was inhibited (p < 0.05) by AT in early CL. The OT secretion and the intracellular level of free Ca2+ ([Ca2+]i) were measured as indicators of CL sensitivity to PGF2alpha. PGF2alpha had no influence on OT secretion, although [Ca2+]i increased (p < 0.05) in the early CL. However, the effect of PGF2alpha was augmented (p < 0.01) in cells after pretreatment with OP, AT, and INDO in comparison with the controls. In mid-cycle luteal cells, PGF2alpha induced 2-fold increases in OT secretion and [Ca2+]i. However, in contrast to results in early CL, these increases were magnified only by preexposure of the cells to AT (p < 0.05). These results indicate that luteal P4, OT, and PGs are components of an autocrine/paracrine positive feedback cascade in bovine early to mid-cycle CL and may be responsible for the resistance of the early bovine CL to the exogenous PGF2alpha action.  相似文献   

11.
Luteal cells were obtained by digestion of luteal tissue of cyclic (day 12) and early pregnant (days 12, 20 and 30) pigs. Suspensions of the dispersed luteal cells (5 x 10(4) cells ml-1) were incubated for 2 h in minimum essential medium (MEM) alone (control) and MEM with different concentrations of prostaglandin F2 alpha (PGF2 alpha) and PGE2 (0.01, 0.1, 1, 10, 100 and 1000 ng ml-1) and luteinizing hormone (LH) 100 and 1000 ng ml-1, or with combinations of LH + PGF2 alpha and LH + PGE2. Net progesterone production was measured in the incubation media by direct radioimmunoassay. The overall response pattern of the luteal cells to exogenous hormones on day 12 of the oestrous cycle and pregnancy differed (P < 0.05) from treatment on day 20 and 30 of pregnancy. In general progesterone production was higher (P < 0.05) and the response to PGF2 alpha and PGE2 treatment was most obvious on day 12 of the oestrous cycle and pregnancy. Overall, PGF2 alpha stimulated progesterone production in a dose-dependent manner (P < 0.05). The response to PGE2 was of a quadratic nature (P < 0.05) in which the lowest and the highest doses of PGE2 were associated with a greater production of progesterone than were the intermediate doses. Treatment of luteal cells with PGF2 alpha + LH or PGE2 + LH caused overall inhibition (P < 0.05) of progesterone production compared with treatment with each hormone alone. This interaction was not affected by the dose of LH used. These findings indicate that PGF2 alpha and PGE2 are involved in the autocrine control of corpus luteum function.  相似文献   

12.
Prostaglandins (PG) are produced by the corpus luteum (CL) of the rhesus monkey and may be involved in luteal regulation. Intracellular calcium has also been implicated as a mediator of luteolysis in domestic and laboratory species; however, its role in primate luteal function has not been investigated. The objectives of this study were to characterize temporal changes in basal and stimulated luteal PG production by CL of rhesus monkeys, and to examine the effects of calcium ionophore (CaI) on basal and gonadotropin-stimulated progesterone (P) production by the CL. CL were collected at various times after the estimated day of the luteinizing hormone (LH) surge: 5 days (early luteal phase, n = 4), 8-10 days (mid-luteal phase, n = 8), and 12-14 days (late luteal phase, n = 5). Dispersed luteal cells were incubated in the absence and presence of CaI, or with human chorionic gonadotropin (hCG) plus CaI at 37 degrees C for 8 h. PG and P concentrations in the medium were measured by radioimmunoassay. PGE2 and 6-keto-PGF1 alpha production decreased (p less than 0.05) from early luteal phase to mid-luteal phase and remained lower (p less than 0.05) during late luteal phase for all treatment groups. PGF2 alpha production decreased (p less than 0.05) from early to mid-luteal phase and rebounded in late luteal phase to the same level (p greater than 0.05) found in early luteal phase. CaI stimulated (p less than 0.05) basal PG production. The degree of stimulation was similar throughout the luteal phase (p greater than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
To determine the influence of prostaglandins on cAMP metabolism in renal papillary collecting tubule (RPCT) cells, intracellular cAMP levels were measured after incubating cells with prostaglandins (PGs) alone or in combination with arginine vasopressin (AVP). PGE1, PGE2 and PGI2, but not PGD2 or PGF2 alpha, increased intracellular cAMP concentrations. At maximal concentrations (10(-5) M) the effects of PGE2 plus PGI2 (or PGE1), but not of PGI2 plus PGE1, were additive suggesting that at least two different PG receptors may be present in RPCT cell populations. Bradykinin treatment of RPCT cells caused an accumulation of intracellular cAMP which was blocked by aspirin and was quantitatively similar to that observed with 10(-5) M PGE2. PGs, when tested at concentrations (e.g. 10(-9) M) which had no independent effect on intracellular cAMP levels, did not inhibit the AVP-induced accumulation of intracellular cAMP in RPCT cells. These results indicate that PGs do not block AVP-induced accumulation of intracellular cAMP in RPCT cells at concentrations of PGs which have been shown to inhibit the hydroosmotic effect of AVP on perfused collecting tubule segments. However, at higher concentrations of PGs (e.g. 10(-5) M), the effects of AVP plus PGE1, PGE2, PGI2 or bradykinin on intracellular cAMP levels were not additive. Thus, under certain conditions, there is an interaction between PGs and AVP at the level of cAMP metabolism in RPCT cells.  相似文献   

14.
We have developed a method for measuring prostaglandins (PGs) in rat gastric mucosa by high-performance liquid chromatography (HPLC). The levels of PGD2 and 6-keto-PGF1 alpha, a degradation product of PGI2, were five times higher than those of PGE2 and PGF2 alpha. Oral administration of indomethacin (6 mg/kg body weight) completely abolished the synthesis of all detectable PGs uniformly. These results suggest that endogenous PGs, especially PGD2 and I2, play some roles in the function of the gastric mucosa.  相似文献   

15.
The effects of PGE2, PGF2alpha, trilostane, RU-486, PA, INDO, MER-25, PGE2, or PGF2alpha + PA on secretion of progesterone, PGE2, or PGF2alpha by bovine corpora lutea (CL) of mid-pregnancy in vitro for 4 and 8 hr was examined. Secretion of PGE2 and PGF2alpha increased with time in culture (P < or = 0.05). PGE2 and PGE2 + PA increased (P < or = 0.05) secretion of progesterone at 4 and 8 h, progesterone secretion was increased (P < or = 0.05) at 4 h; but not at 8 h (P > or = 0.05) by trilostane, mifepristone, PGF2alpha and PGF2alpha + PA, and was decreased at 8 h by PGF2alpha and PGF2alpha + PA. Indomethacin decreased (P < or = 0.05) secretion of PGE2, PGF2alpha, and progesterone at 4 and 8 h. Trilostane, PA, PGF2alpha, RU-486 and PGF2alpha + PA increased (P < or = 0.05) PGE2 at 4 h only. Palmitic acid decreased (P < or = 0.05) PGF2alpha at 4 h, while trilostane, RU-486, or MER-25 did not affect (P < or = 0.05) PGE2 of PGF2alpha secretion. It is concluded that PGE2 of luteal tissue origin is the luteotropin at mid-pregnancy in cows. Also, it is suggested that PA may alter progesterone secretion by affecting the inter conversion of PGE2 and PGF2alpha.  相似文献   

16.
Two experiments were performed to determine whether arginine vasotocin (AVT) stimulates synthesis of prostaglandins (PGs) in reptilian oviducts. Homogenized oviducal tissue from female Sceloporus jarrovi in early and late pregnancy were cultured with radiolabeled (14C) prostaglandin precursor, arachidonic acid (AA). In late pregnancy, oviducts exposed to AVT exhibited a greater conversion of AA to PGF2 alpha than did controls, whereas in early pregnancy there was no difference. The conversion of AA to other prostaglandins (PGA2, PGD2, PGE2, PGI2) was not influenced by AVT. The second experiment examined whether endogenous in vitro synthesis of PGF and PGE2 from intact, pregnant oviducts was stimulated by AVT (50 ng/ml; 100 ng/ml). Both doses of AVT induced a similar, significant rise in PGF concentrations within 30 min whereas no significant increase was noted in PGE2 concentrations until 90 min after treatment. Indomethacin pretreatment blocked synthesis of both PGF and PGE2 for 30 min following AVT treatment. These data indicate that AVT induces a highly specific rise in the synthesis of PGF from the oviduct of female S. jarrovi in late pregnancy. Furthermore, the prostaglandin-stimulating effect of AVT in reptiles appears homologous with the effect of oxytocin in mammals and AVT in birds. We hypothesize that this interaction is an evolutionarily conserved relationship found in all amniote vertebrates.  相似文献   

17.
Testicular interstitial cells were utilized to study the effects of prostaglandins (PG) on in vitro testosterone production and to examine the role of cyclic adenosine-3',5'-monophosphate (cAMP) in this process. Testosterone production was assessed after 3 hour incubations while cAMP accumulation was examined after a 0.5 hour incubation period. Testosterone and cAMP were measured by radioimmunoassay. None of the PGs tested (PGA, PGA2, PGB1, PGE1, PGE2, PGF1alpha PGF2alpha) altered basal testosterone production when present in incubates at concentrations of 1.3 X 10(-8) M to 1.3 X 10(-4). However, at concentrations of 1.3 X 10(-4) M all of these PGs were capable of decreasing Luteinizing Hormone (LH; 100ng)-induced testosterone production. The inhibition of LH-induced testosterone production by the B, E and F series PGs was less pronounced than that for the A series. PGA1 and PGA2 exhibited 80% and 95% inhibition, respectively, at 1.3 X 10(4) M. The inhibitory action of 4 X 10(5) M PGA1 or PGA2 was evident within 30 minutes. Preincubation of interstitial cells with indomethacin (10(-5) or 10(-6) M) for 30 minutes did not alter subsequent basal or LH (100ng)-induced testosterone production. Accumulation of cAMP was stimulated by LH (10 microgram) or by PGs (1.3 X 10(-4) M PGA1, PGA2, PGB1, PGE1 or PGF2alpha). The PG-induced cAMP accumulation thus occurred at concentrations where LH-stimulated testosterone production was inhibited. Furthermore, PGA1 and PGA2 (1.3 X 10(-4) M) inhibited testosterone production induced by either 3-isobutyl-1-methyl xanthine (MIX; 10(-4) M or 10(-3) M) or dibutyryl cAMP (dbcAMP; 10(-4) M or 10(-3) M). These results indicate that PGs can block testosterone production by a direct effect on testicular interstitial cells and suggest that PGs exert their inhibitory action distal to stimulation of cAMP formation. PGs do not appear to play a role in the mechanism of LH action.  相似文献   

18.
Secretion of prostaglandins (PGs) by the regressing corpus luteum (CL) was investigated in the cow. Six cows were implanted with microcapillary dialysis membranes of a microdialysis system (MDS) into the CL during Days 8-9 (Day 0 = estrus), and a prostaglandin (PG) F2alpha analogue (Estrumate) was injected intramuscularly (i.m.) to induce luteolysis. Acute increases in intraluteal release of PGF2alpha and PGE2 were observed during the first 4 h, followed by decreases over the next 8 h. Intraluteal release of both PGs gradually increased again during the period 48-72 h. Concentrations of PGF2alpha in ovarian venous plasma (OVP) were 4-13 times higher than those of jugular venous plasma (JVP) (P < 0.001) during the period of the experiment, and increased from 24 h after treatment with Estrumate (P < 0.05). Cyclooxygenase (COX)-2 mRNA expression increased (P < 0.05) at 2 and 24 h after treatment with Estrumate. The results indicated that local release of PGF2alpha and PGE2, and COX-2 mRNA expression were increased by Estrumate in the regressing CL at the later stages of luteolysis. Thus, luteal secretion of PGs may be involved in the local mechanism for structural rather than functional luteolysis.  相似文献   

19.
20.
Treatment with PGF2alpha plus estradiol-17beta aborts 90-day pregnant ewes, whereas PGF2alpha or estradiol-17beta alone does not abort ewes. The objective of this experiment was to evaluate whether tamoxifen, an estrogen receptor antagonist, estradiol-17beta, prostaglandin F2alpha (PGF2alpha), indomethacin, or some of their interactions affected ovine uterine/placental secretion of PGF2alpha, estradiol-17beta or prostaglandins E (PGE), because a single treatment with PGF2alpha and estradiol-17beta given every 6 h aborts 90-day pregnant ewes. Concentrations of PGF2alpha in uterine venous blood were increased (P < or = 0.05) by estradiol-17beta, PGF2alpha + estradiol-17beta, and PGF2alpha + tamoxifen, and decreased (P < or = 0.05) by indomethacin or PGF2alpha + indomethacin at 72 h when compared to the 0 h samples. Concentrations of PGE in uterine venous blood were decreased (P < or = 0.05) by indomethacin and PGF2alpha + indomethacin and increased (P < or = 0.05) by PGF2alpha + estradiol-17beta at 72 h when compared to the 0 h samples. Concentrations of PGF2alpha in inferior vena cava blood at 6 h were increased (P < or = 0.05) by PGF2alpha either alone or in combination with indomethacin, tamoxifen, or estradiol-17beta, which is due to the PGF2alpha injected. Concentrations of PGF2alpha in inferior vena cava blood in PGF2alpha + estradiol-17beta-treated 88- to 90-day pregnant ewes increased (P < or = 0.05) linearly over the 72-h sampling period and averaged 4.0 + 0.4 ng/ml. Concentrations of PGF2alpha in inferior vena cava blood of control, PGF2alpha, tamoxifen, PGF2alpha + indomethacin, PGF2alpha + tamoxifen, and estradiol-17beta-treated ewes did not differ (P > or = 0.05) and averaged 0.4 + 0.04 ng/ml. Profiles of PGE in inferior vena cava blood of 88- to 90-day pregnant ewes treated with vehicle, PGF2alpha, estradiol-17beta, tamoxifen, tamoxifen + PGF2alpha, or estradiol-17beta + PGF2alpha did not differ (P > or = 0.05). Concentrations of PGE in inferior vena cava blood of 88- to 90-day pregnant ewes treated with indomethacin or PGF2alpha + indomethacin were lower (P < or = 0.05) than in control ewes. Concentrations of estradiol-17beta in jugular venous plasma of PGF2alpha + estradiol-17beta-treated 88- to 90-day pregnant ewes increased linearly and differed (P < or = 0.05) from controls. Profiles of estradiol-17beta in jugular venous plasma of PGF2alpha, indomethacin, tamoxifen, and PGF2alpha + tamoxifen and PGF2alpha + indomethacin, estradiol-17beta, and controls did not differ (P > or = 0.05). It is concluded that treatment with a single injection of PGF2alpha and estradiol-17beta given every 6 h causes a linear increase in PGF2alpha and estradiol-17beta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号