首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of Euglena gracilis cytochrome c-552 (cytochrome f) with the nonphysiological reactants potassium ferrocyanide, potassium ferricyanide, sodium ascorbate, sodium dithionite, and Chromatium vinosum high potential nonheme iron protein was studied by stopped-flow and temperature-jump kinetic methods. The reaction of the purified, water-soluble protein with the reactants was investigated as a function of ionic strength, pH, and temperature. The results demonstrated that reduction and oxidation takes place at a negatively charged site on the cytochrome c-552 surface. Participation of specific amino acid residues in electron transfer is implicated from the pH results. The results obtained for the nonphysiological reactions of cytochrome c-552 are compared with available data for horse heart cytochrome c and Rhodospirillum rubrum cytochrome c2. The results strongly suggest that Euglena gracilis cytochrome c-552 undergoes nonphysiological oxidation and reduction by a mechanism different from that found for cytochrome c or cytochrome c2.  相似文献   

2.
In the succinate-cytochrome c reductase, the reduction of cytochrome b has been found to be triphasic: an initial rapid partial reduction was followed first by a rapid oxidation and then finally by a slow reduction. The initial reduction of cytochrome b was faster than that of cytochrome c1 and the final slow reduction of cytochrome b began when cytochrome c1 reduction was approaching completion. In presence of the inhibitors antimycin A or HQNO the reduction of cytochrome b became monophasic. Hysteresis or a kinetic cooperative effect of a factor controlling cytochrome b oxidation has been suggested as a possible explanation for the triphasic reduction of cytochrome b.  相似文献   

3.
R. Boelens  R. Wever 《BBA》1979,547(2):296-310
Under continuous illumination the CO binding curve of reduced carboxy-cytochrome c oxidase maintains the shape of the binding curve in the dark. The apparent dissociation constant calculated from the binding curves at various light intensities is a linear function of the light intensity.Marked differences are observed between the light-induced difference spectra of the fully reduced carboxy-cytochrome c oxidase and the mixed-valence carboxy-cytochrome c oxidase. These differences are enhanced in the presence of ferricyanide as an electron acceptor and are explained by partial oxidation of cytochrome a3 in the mixed-valence enzyme after photodissociation.Upon addition of CO to partially reduced formate cytochrome c oxidase (a2+a3+3 · HCOOH) the cytochrome a2+3 · CO compound is formed completely with a concomitant oxidation of cytochrome a and the Cu associated with cytochrome a. During photodissociation of the CO compound the formate rebinds to cytochrome a3 and cytochrome a and its associated Cu are simultaneously reduced. These electron transfer processes are fully reversible since in the dark the a3+3 · HCOOH compound is dissociated slowly with a concomitant formation of the a2+3 · CO compound and oxidation of cytochrome a.When these experiments are carried out in the presence of cytochrome c, both cytochrome c and cytochrome a are reduced upon illumination of the mixed-valence carboxy-cytochrome c oxidase. In the dark both cytochrome c and cytochrome a are reoxidized when formate dissociates from cytochrome a3 and the a2+3 · CO compound is formed back. Thus, in this system we are able to reverse and to modulate the redox state of the different components of the final part of the respiratory chain by light.  相似文献   

4.
Ethanol oxidation activity has been reconstituted in a system composed of NADPH-cytochrome c reductase, synthetic dilauroylglycerol-3-phosphorylcholine and cytochrome P-450 purified from liver microsomes of phenobarbital-treated rats. This system is free of alcohol dehydrogenase and catalase activities. Furthermore, sodium azide (1 mm), a catalase inhibitor, is without effect on ethanol metabolism. There is a requirement for both NADPH-cytochrome c reductase and cytochrome P-450 and a partial requirement for phospholipid for ethanol oxidation by the reconstituted system. In addition, both NADPH and O2 are required for catalysis. Under optimal reaction conditions, the rate of acetaldehyde formation if 25 to 50 nmol/min/nmol of cytochrome P-450. Cytochrome P-450 from other sources, including the homogeneous P-450LM2 from phenobarbital-treated rabbits, have also been found to catalyze ethanol oxidation in reconstituted systems. Antibody prepared against cytochrome P-450 inhibits ethanol metabolism in the reconstituted system consistent with a cytochrome P-450-mediated reaction. Furthermore, cumene hydroperoxide can replace both NADPH and NADPH-cytochrome c reductase in ethanol oxidation and catalysis can be demonstrated in a system composed of only cytochrome P-450, lipid, ethanol, and cumene hydroperoxide. These data implicate cytochrome P-450 in the direct oxidation of ethanol by this system.  相似文献   

5.
Peter Nicholls 《BBA》1976,430(1):30-45
1. Beef heart mitochondria have a cytochrome c1 : c : aa3 ratio of 0.65 : 1.0 : 1.0 as isolated; Keilin-Hartree submitochondrial particles have a ratio of 0.65 : 0.4 : 1.0. More than 50% of the submitochondrial particle membrane is in the ‘inverted’ configuration, shielding the catalytically active cytochrome c. The ‘endogenous’ cytochrome c of particles turns over at a maximal rate between 450 and 550 s?1 during the oxidation of succinate or ascorbate plus TMPD; the maximal turnover rate for cytochrome c in mitochondria is 300–400 s?1, at 28° – 30°C, pH 7.4.2. Ascorbate plus N,N,N′,N′-tetramethyl-p-phenylene diamine added to antimycin-treated particles induces anomalous absorption increases between 555 and 565 nm during the aerobic steady state, which disappear upon anaerobiosis; succinate addition abolishes this cycle and permits the partial resolution of cytochrome c1 and cytochrome c steady states at 552.5–547 nm and 550–556.5 nm, respectively.3. Cytochrome c1 is rather more reduced than cytochrome c during the oxidation of succinate and of ascorbate+N,N,N′,N′-tetramethyl-p-phenylene diamine in both mitochondria and submitochondrial particles; a near equilibrium condition exists between cytochromes c1 and c in the aerobic steady state, with a rate constant for the c1c reduction step greater than 103 s?1.4. The greater apparent response of the caa3 electron transfer step to salts, the hyperbolic inhibition of succinate oxidation by azide and cyanide, and the kinetic behaviour of the succinate-cytochrome c reductase system, are all explicable in terms of a near-equilibrium condition prevailing at the c1c step. Endogenous cytochrome c of mitochondria and submitochondrial particles is apparently largely bound to cytochrome aa3 units in situ. Cytochrome c1 can either reduce the cytochrome c-cytochrome aa3 complex directly, or requires only a small extra amount of cytochrome c to carry the full electron transfer flux.  相似文献   

6.
A comparative study of the interaction of various cytochromes c with phospholipid vesicles and with mitochondrial membranes was undertaken. Both mammalian and yeast types of cytochrome c bind preferentially in the oxidized form as evidenced by the midpoint redox potential (Em 7.0) becoming more negative upon binding. Cytochrome c which is reincorporated into cytochrome c-depleted mitochondria is kinetically comparable with the native cytochrome c component; rate of cytochrome b oxidation is maximally restored at ratios of c1:c:a of 1:1:1. Comparison between the electron paramagnetic spectrum of cytochrome c labeled at methionine 65 or cysteine 103 reveals that upon binding to the mitochondrial membrane, the former is immobilized and not the latter. This result suggests that cytochrome c binds to the membrane at the side at which methionine 65 is located.  相似文献   

7.
The hydrogen peroxide (H2O2) and cytochrome c-dependent oxidation of o-phenylenediamine (o-PD) was investigated by spectrophotometry and electrochemistry. The results indicated that o-PD underwent facile catalytic oxidation in the presence of cytochrome c, and that the degradation of cytochrome c by hydrogen peroxide can also be partly prevented in the presence of o-PD. The hydroxyl radical scavengers (mannitol and sodium benzoate) and oxo-heme species scavenger (uric acid) do not inhibit the oxidation, which implies that the hydroxylation of o-PD may not be involved in its oxidation. Combining with the results of the mass spectrum, elemental analysis, nuclear magnetic resonance and Fourier transform infrared spectrum of the isolated product, a conceivable structure of the product was suggested.  相似文献   

8.
Cytochrome c2 was removed by washing from heavy chromatophores prepared from Rhodopseudomonas capsulata cells. The easy removal of the cytochrome could indicate that it was attached on the outside of the membrane. Therefore, the membrane was probably oriented inside out in relation to the membrane of regular chromatophores, from which cytochrome c2 could not be removed. Washing of the heavy chromatophores caused loss of photphosphorylation activity. The activity was restored to the resolved heavy chromatophores by the supernatant obtained during the washing or by the native cytochrome c2, which was found to be the active component in this supernatant. The activity could not be restored by other c-type cytochromes. Ascorbate, which enhanced photophosphorylation activity in the heavy chromatophores at the optimal concentration of 8 mm, restored this activity to the washed heavy chromatophores, but at an optimum concentration of 50 mm. Cytochrome c2 and dichlorophenol indophenol reduced the optimum of the ascorbate concentration to 7 mm. This might indicate that the effect of ascorbate is mediated through cytochrome c2. Washing the heavy chromatophores caused 70% loss of the light-induced electron transport from ascorbate and from ascorbate-reduced dichlorophenol indophenol to O2. However, this effect was only observed with the lower concentrations of ascorbate and the dye. The activity was restored either by the supernatant obtained from the washing or by various c-type cytochromes, reduced by ascorbate. Washing the heavy chromatophores did not affect succinate oxidation in the dark. It is suggested that cytochrome c2 is one of the cytochromes catalyzing the photosynthetic cyclic electron transport, as has been seen from its high specificity in the reconstitution experiments. Light can induce oxidation of various c-type cytochromes and other redox reagents. However, reduction was specific for cytochrome c2 from Rps. capuslata, since it was the only one which could be both reduced and oxidized as required from a component which is part of a cyclic electron transport chain. It is also suggested that cytochrome c2 was not part of the succinate oxidase system.  相似文献   

9.
10.
Transfer of electron from quinol to cytochrome c is an integral part of catalytic cycle of cytochrome bc1. It is a multi-step reaction involving: i) electron transfer from quinol bound at the catalytic Qo site to the Rieske iron-sulfur ([2Fe-2S]) cluster, ii) large-scale movement of a domain containing [2Fe-2S] cluster (ISP-HD) towards cytochrome c1, iii) reduction of cytochrome c1 by reduced [2Fe-2S] cluster, iv) reduction of cytochrome c by cytochrome c1.In this work, to examine this multi-step reaction we introduced various types of barriers for electron transfer within the chain of [2Fe-2S] cluster, cytochrome c1 and cytochrome c. The barriers included: impediment in the motion of ISP-HD, uphill electron transfer from [2Fe-2S] cluster to heme c1 of cytochrome c1, and impediment in the catalytic quinol oxidation. The barriers were introduced separately or in various combinations and their effects on enzymatic activity of cytochrome bc1 were compared. This analysis revealed significant degree of functional flexibility allowing the cofactor chains to accommodate certain structural and/or redox potential changes without losing overall electron and proton transfers capabilities. In some cases inhibitory effects compensated one another to improve/restore the function. The results support an equilibrium model in which a random oscillation of ISP-HD between the Qo site and cytochrome c1 helps maintaining redox equilibrium between all cofactors of the chain. We propose a new concept in which independence of the dynamics of the Qo site substrate and the motion of ISP-HD is one of the elements supporting this equilibrium and also is a potential factor limiting the overall catalytic rate.  相似文献   

11.
Reaction kinetics of the reduction of O2 by cytochrome oxidase follow essentially the same rate equation as that proposed for the oxidation of cytochrome c. However, the apparent second order rate constant varies with the oxidase concentration. The redox level of cytochrome c at the steady state was found to be essentially temperature-independent. Currently recognized pathways (or mechanisms) of electron transport from cytochrome c to O2 do not predict, and cannot account for the occurrence of these phenomena.  相似文献   

12.
Methanotrophs play a prominent role in the global carbon cycle, by oxidizing the potent greenhouse gas methane to CO2. Methane is first converted into methanol by methane monooxygenase. This methanol is subsequently oxidized by either a calcium-dependent MxaF-type or a lanthanide-dependent XoxF-type methanol dehydrogenase (MDH). Electrons from methanol oxidation are shuttled to a cytochrome redox partner, termed cytochrome cL. Here, the cytochrome cL homolog from the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV was characterized. SolV cytochrome cGJ is a fusion of a XoxG cytochrome and a periplasmic binding protein XoxJ. Here we show that XoxGJ functions as the direct electron acceptor of its corresponding XoxF-type MDH and can sustain methanol turnover, when a secondary cytochrome is present as final electron acceptor. SolV cytochrome cGJ (XoxGJ) further displays a unique, red-shifted absorbance spectrum, with a Soret and Q bands at 440, 553 and 595 nm in the reduced state, respectively. VTVH-MCD spectroscopy revealed the presence of a low spin iron heme and the data further shows that the heme group exhibits minimal ruffling. The midpoint potential Em,pH7 of +240 mV is similar to other cytochrome cL type proteins but remarkably, the midpoint potential of cytochrome cGJ was not influenced by lowering the pH. Cytochrome cGJ represents the first example of a cytochrome from a strictly lanthanide-dependent methylotrophic microorganism.  相似文献   

13.
Peter Jurtshuk  T.J. Mueller  T.Y. Wong 《BBA》1981,637(2):374-382
A membrane-bound cytochrome oxidase from Azobacter vinelandii was purified 20-fold using a detergent-solubilization procedure. Activity was monitored using an ascorbate-TMPD oxidation assay. The oxidase was ‘solubilized’ from a sonic-type electron-transport particle (R3 fraction) using Triton X-100 and deoxycholate. Low detergent concentrations first solubilized the flavoprotein oxidoreductases, then higher concentrations of Triton X-100 and KCl solubilized the oxidase, which was precipitated at 27–70% (NH4)2SO4. The highly purified cytochrome oxidase has a V of 60–78 μgatom O consumed/min per mg protein. TMPD oxidation by the purified enzyme was inhibited by CO, KCN, NaN3 and NH2OH; NaNO2 (but not NaNO3) also had a potent inhibitory effect. Spectral analyses revealed two major hemoproteins, the c-type cytochrome c4 and cytochrome o; cytochromes a1 and d were not detected. The Azotobacter cytochrome oxidase is an integrated cytochrome c4?o complex, TMPD-dependent cytochrome oxidase activity being highest in preparations having a high c-type cytochrome content. This TMPD-dependent cytochrome oxidase serves as a major oxygen-activation site for the A. vinelandii respiratory chain. It appears functionally analogous to cytochrome a+a3 oxidase of mammalian mitochondria.  相似文献   

14.
Except for its redox properties, cytochrome c is an inert protein. However, dissociation of the bond between methionine-80 and the heme iron converts the cytochrome into a peroxidase. Dissociation is accomplished by subjecting the cytochrome to various conditions, including proteolysis and hydrogen peroxide (H2O2)-mediated oxidation. In affected cells of various neurological diseases, including Parkinson's disease, cytochrome c is released from the mitochondrial membrane and enters the cytosol. In the cytosol cytochrome c is exposed to cellular proteases and to H2O2 produced by dysfunctional mitochondria and activated microglial cells. These could promote the formation of the peroxidase form of cytochrome c. In this study we investigated the catalytic and cytolytic properties of the peroxidase form of cytochrome c. These properties are qualitatively similar to those of other heme-containing peroxidases. Dopamine as well as sulfhydryl group-containing metabolites, including reduced glutathione and coenzyme A, are readily oxidized in the presence of H2O2. This peroxidase also has cytolytic properties similar to myeloperoxidase, lactoperoxidase, and horseradish peroxidase. Cytolysis is inhibited by various reducing agents, including dopamine. Our data show that the peroxidase form of cytochrome c has catalytic and cytolytic properties that could account for at least some of the damage that leads to neuronal death in the parkinsonian brain.  相似文献   

15.
Arsenite oxidation by the facultative chemolithoautotroph NT-26 involves a periplasmic arsenite oxidase. This enzyme is the first component of an electron transport chain which leads to reduction of oxygen to water and the generation of ATP. Involved in this pathway is a periplasmic c-type cytochrome that can act as an electron acceptor to the arsenite oxidase. We identified the gene that encodes this protein downstream of the arsenite oxidase genes (aroBA). This protein, a cytochrome c552, is similar to a number of c-type cytochromes from the α-Proteobacteria and mitochondria. It was therefore not surprising that horse heart cytochrome c could also serve, in vitro, as an alternative electron acceptor for the arsenite oxidase. Purification and characterisation of the c552 revealed the presence of a single heme per protein and that the heme redox potential is similar to that of mitochondrial c-type cytochromes. Expression studies revealed that synthesis of the cytochrome c gene was not dependent on arsenite as was found to be the case for expression of aroBA.  相似文献   

16.
Allantoin in the presence of calcium ions has been implicated as a potential toxic agent in Reye's syndrome. An investigation of possible alternative sources of allantoin in humans, which lack the enzyme uricase, has been initiated. Urate is a strong reducing agent which can reduce cytochrome c nonenzymatically, with the concomitant production of CO2 and H+. The stoichiometries measured for the various reactants and products were 1 urate:2 cytochrome c:1 H+:1 CO2. The initial reaction rate depended on the concentrations of both urate and cytochrome c, with reaction kinetics that were first order with respect to urate and second order with respect to cytochrome c. The participation of molecular oxygen in this reaction could not be detected. The pH and ionic strength optima for this reaction were determined to be 9.5–10.5 and 10−5m, respectively. Based on the results reported here, the following balanced equation can be written: urate−2 + 2 cytochrome c+3 + 2 H2O → allantoin + 2 cytochrome c+2 + H+ + HCO3. We propose that allantoin can be generated from the oxidation of urate by cytochrome c+3, and that this is a potential source of allantoin in human tissues.  相似文献   

17.
A kinetic study on ubiquinol-cytochrome f reductase (EC 1.10.2.2) has been undertaken either in situ in KCN-inhibited mitochondria and submitochondrial particles, or in the isolated cytochrome b-c1 complex using ubiquinol-1 and exogenous cytochrome c as substrates. The steady-state two-substrate kinetics of the reductase appears to follow a general sequential mechanism, allowing calculation of a Km for ubiquinol-1 of 13.4 μM in mitochondria and of 24.6 μM in the isolated cytochrome b-c1 complex. At low concentrations of cytochrome c, however, the titrations as a function of quinol concentration appear biphasic both in mitochondria and in submitochondrial particles containing trapped cytochrome c inside the vesicle space, fitting two apparent Km values for ubiquinol-1. Relatively high antimycin-sensitive rates of ubiquinol-1-cytochrome c reductase have been found in submitochondrial particles: both the Vmax and the Km for ubiquinol-1 are, however, affected by the overall orientation of the particle preparation, i.e., by the reactivity of cytochrome c with its proper site. The turnover numbers corrected for particle orientation with respect to cytochrome c interaction are at least 2-fold higher in submitochondrial particles than in mitochondria. This is particularly evident using inside-out particles containing trapped cytochrome c in the vesicle space (and therefore reacting with its physiological site). A diffusion step for the quinol substrate appears to be rate limiting in mitochondria and can be removed by addition of deoxycholate, suggesting that the oxidation site of ubiquinol may be more exposed to the matrix side of the inner mitochondrial membrane.  相似文献   

18.
The midpoint redox potential of cytochrome c and the electron paramagnetic resonance spectra of nitroxide labeled cytochromes c were measured as a function of binding to purified cytochrome c oxidase, cytochrome c peroxidase, cytochrome b5 and succinate—cytochrome c reductase. The midpoint redox potential of horse heart cytochrome c is lowered in the presence of cytochrome c oxidase and succinate-cytochrome c reductase, but is unchanged in the presence of cytochrome c peroxidase or cytochrome b5. Further evidence of binding is afforded by an increase in correlation time, Tc, of the spin-labeled cytochrome c at methionine 65 upon binding to cytochrome c peroxidase, cytochrome c oxidase and succinate—cytochrome c reductase. The changes in midpoint redox potential and electron paramagnetic resonance spectrum of the spin-labeled derivative upon binding can either be the consequence of specific interaction leading to formation of ES complexes, or it can be due to nonspecific electrostatic interaction between positively charged groups on cytochrome c and negatively charged groups on the isolated cytochrome preparations.  相似文献   

19.
Saccharomyces cerevisiae flavocytochrome b 2 couples the oxidation of L-lactate to the reduction of cytochrome c. The second-order rate constant for cytochrome c reduction by flavocytochrome b 2 depends on the rate of complex formation and is sensitive to ionic strength. Mutations in the heme domain of flavocytochrome b 2 (Glu63→Lys, Asp72→Lys and the double mutation Glu63→Lys:Asp72→Lys) have significant effects on the reaction with cytochrome c, implicating these residues in complex formation. This kinetic information has been used to guide molecular modelling studies, which are consistent with there being no one single best-configuration. Rather, there is a set of possible complexes in which the docking-face of cytochrome c can approach flavocytochrome b 2 in a variety of orientations. Four cytochromes c can be accommodated on the flavocytochrome b 2 tetramer, with each cytochrome c forming interactions with only one flavocytochrome b 2 subunit. All the models involve residues 72 and 63 on flavocytochrome b 2 but in addition predict that Glu237 may also be important for complex formation. These acidic residues interact with the basic residues 13, 27 and 79 on cytochrome c. Through this triangle of interactions runs a possible σ-tunnelling pathway for electron transfer. This pathway starts with the imidazole ring of His66 (a ligand to the heme-iron of flavocytochrome b 2) and ends with the ring of Pro68, which is in van der Waals contact with the cytochrome c heme. In total, the edge-to-edge "through space" distance from the imidazole ring of His66 to the C3C pyrrole ring of cytochrome c is 13.1?Å.  相似文献   

20.
1. The kinetics of cytochrome b reduction and oxidation in the ubiquinone-cytochrome b/c2 oxidoreductase of chromatophores from Rhodopseudomonas sphaeroides Ga have been measured both in the presence and absence of anti-mycin, after subtraction of contributions due to absorption changes from cytochrome c2, the oxidized bacteriochlorophyll dimer of the reaction center, and a red shift of the antenna bacteriochlorophyll.2. A small red shift of the antenna bacteriochlorophyll band centered at 589 nm has been identified and found to be kinetically similar to the carotenoid bandshift.3. Antimycin inhibits the oxidation of ferrocytochrome b under all conditions; it also stimulates the amount of single flash activated cytochrome b reduction 3- to 4-fold under certain if not all conditions.4. A maximum of approximately 0.6 cytochrome b-560 (Em(7) = 50 mV, n = 1, previously cytochrome b50) hemes per reaction center are reduced following activating flashes. This ratio suggests that there is one cytochrome b-560 heme functional per ubiquinone-cytochrome b/c2 oxidoreductase.5. Under the experimental conditions used here, only cytochrome b-560 is observed functional in cyclic electron transfer.6. We describe the existence of three distinct states of reduction of the ubiquinone-cytochrome b/c2 oxidoreductase which can be established before activation, and result in markedly different reaction sequences involving cytochrome b after the flash activation. Poising such that the special ubiquinone (Qz) is reduced and cytochrome b-560 is oxidized yields the conditions for optimal flash activated electron transfer rates through the ubiquinone-cytochrome b/c2 oxidoreductase. However when the ambient redox state is lowered to reduce cytochrome b-560 or raised to oxidize Qz, single turnover flash induced electron transfer through the ubiquinone-cytochrome b/c2 oxidoreductase appears impeded; the points of the impediment are tentatively identified with the electron transfer step from the reduced secondary quinone (QII) of the reaction center to ferricytochrome b-560 and from the ferrocytochrome b-560 to oxidized Qz, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号