首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The combined effects of desiccation and irradiance on the physiologyof the sand dune moss Tortula ruraliformis (Besch.) Grout andthe minerotrophic flush moss Dicranella palustris (Dicks.) Crundw.ex. E. F. Warb (D. squarrosa (Starke) Schp.) were studied. Damageas a result of desiccation in the dark, measured by loss ofprotein and the relative accumulation of thiobarbituric acid(TBA) reactive products (which gives an estimation of lipidperoxidation), was greater in D. palustris. Desiccation alonehad no effect on the total concentrations of chlorophyll andcarotenoids in either species. Water loss resulted in the cessationof measurable photosynthetic oxygen evolution in both species.Respiration was less sensitive to desiccation than was photosynthesis.A combination of irradiance and water stress prevented any recoveryof photosynthesis during subsequent rehydration in D. palustris,but suppressed recovery only marginally (at the highest irradiance)in T. ruraliformis. The loss of protein, chlorophyll, and carotenoids,and lipid peroxidation were all substantially increased in D.palustris desiccated in the light, but these same conditionsresulted in only minimal damage of T. ruraliformis. Continuousexposure to high irradiance was less deleterious to desiccatedthan hydrated T. ruraliformis. The data are discussed in relationto the habitat preferences of the two species, and also in relationto possible causal factors in the initiation of damage. Key words: Desiccation, mosses, oxidative damage, photo-oxidation  相似文献   

2.
BATES  J. W. 《Annals of botany》1997,79(3):299-309
The mossesBrachythecium rutabulum (Hedw.) B., S. & G. andPseudoscleropodiumpurum (Hedw.) Fleisch. were cultivated for more than 50 d ina growth cabinet with or without weekly drying interludes of24 h. Some plants also received applications of a dilute NPKnutrient solution at weekly intervals. The continuously hydratedplants showed appreciably more biomass production than thosereceiving intermittent desiccation. Desiccation led to somebleaching of the green tissues inB. rutabulum but not inP. purumwhich appeared more desiccation-tolerant. NPK addition causeda further significant growth stimulation in continuously hydratedplants, but not in intermittently desiccatedB. rutabulum. Pseudoscleropodiumpurum showed NPK-induced growth stimulation even when intermittentlydesiccated. Net uptake of N was similar in desiccated and hydratedplants in both species. Considerable net uptake of P and K+occurredin continuously wetB. rutabulum , but uptake was much reducedin intermittently desiccated plants. Net uptake of P and K+byP.purum was similar in desiccated and hydrated samples. IntracellularK+, leaked from the cells during the desiccation treatment,was retained by cation exchange on the negatively charged cellwalls in both species. Levels of intracellular K+and Mg2+inthe new growth were maintained at the expense of the pool ofexchangeable cations. The growth stimulation and the net uptakeof nutrients under intermittent desiccation was greatest whenthe NPK application was made at the start of rehydration, possiblybecause of accentuated uptake in the early stages of recovery.The results support the hypothesis thatP. purum has a lowernutrient requirement thanB. rutabulum and highlight the importanceof continuous hydration for the latter's more productive plantlife strategy. The data also show that considerable new growthof bryophyte tissues is possible without additional nutrientabsorption. Brachythecium rutabulum ; Pseudoscleropodium purum ; mineral nutrition; desiccation; solute leakage; plant life strategies  相似文献   

3.
Three moss species [ Tortula ruraliformis (Besch.) Grout. Bryum pseudotriquetrum (Hedw.) Schaegr and Dicranella palustris (Dicks.) Crund. ex. E. F. Warb. ( D. squarrosa (Starke) Schp.] collected from a range of habitats differing in water availability were desiccated in controlled conditions. All species became photosynthetically inactive when dried below a water content of 100–200% dry weight. Only Tortula ruraliformis , a moss from arid sand dunes. was able to recover fully to pre-desiccated rates of photosynthetic electron transport during subsequent rehydration. The rate of recovery was influenced by irradiance during desiccation. Mosses from hydric habitats showed some resumption of photosynthetic electron transport (following rehydration) if dried in the dark. but did not do so if dried even in low light. In these circumstances the mosses showed evidence of lasting photoinhibition of photosynthesis after rehydration. The desiccation-tolerant T. ruraliformis became significantly photoinhibited only when continually exposed to high irradiance (1200 μmol m−2 s−1) in the hydrated state. If allowed to desiccate whilst exposed to high irradiance this species showed less evidence of photoinhibition after rehydration, and was not at all affected by desiccation in low irradiance. Photon flux absorption in dry moss was 50–60% less than that in hydrated moss as a result of leaf curling. However, the reduction in absorption of photosynthetically active radiation cannot account for the total loss of photosynthetic oxygen evolution and variable chlorophyll fluorescence observed in the desiccated mosses.  相似文献   

4.
Plants of Halimione portulacoides were grown in nutrient solutionscontaining NaCl at concentrations ranging from 0–2.0 MNaCl. They survived in this environment at least for 20 days.Malate dehydrogenase (MDH), catalase, peroxidase and superoxidedismutase (SOD) were extracted from the leaves of such plantsand enzyme activity was assayed in the absence of salt. Sodium chloride at low concentration (0–0.5 M) stimulatedthe activities of MDH and catalase but inhibited them at concentrationshigher than 0.5 M. Peroxidase and SOD were hardly affected byexposure to salinity in vivo. Salinity in vivo also affectedthe Km and the Vmax of the enzymes. The possibility that thethree enzymes (catalase, peroxidase and SOD) have a role inprotecting the leaf cells against oxygen toxicity caused byfree radicals, that may be formed in cells when growing undersaline and extreme climatic conditions, is discussed. Halimione portulacoides (L.) Aellen, salinity, catalase, peroxidase, superoxide dismutase  相似文献   

5.
Total peroxidase activities and peroxidase isozymes were comparedamong 10 bush- and vine-squash cultivars of Cucurbita maximaDuch. and C. pepo (L.) Several qualitative variations of isozymeswere detected between C. maxima and C. pepo, and some differenceswere evident among varieties of C. pepo. There were no qualitativedifferences between genetically similar bush and vine strains.Quantitative differences were difficult to resolve, althoughit did appear that in varieties of C. maxima exhibiting lowlevels of peroxidase activity, isozymes C3, C4, and C6 wereless intense. Depending upon the cultivars compared, total peroxidase activityin bush forms was either higher or lower than, or the same astheir vine counterparts. Since the major bush genes in the varietiesstudied are believed to be allelic, the results indicate thatthe over-all genotype of squash varieties can influence therelative expression of peroxidase activity between bush andvine forms.  相似文献   

6.
Ramonda sp. (Gesneriaceae) is an endemic and relic plant ina very small group of poikilohydric angiosperms that are ableto survive in an almost completely dehydrated state. Senescence-and drought-related changes in the activity of peroxidase (POD;EC 1.11.1.7 [EC] ), ascorbate peroxidase (EC 1.11.1.11 [EC] ), and superoxidedismutase (SOD; EC 1.15.1.1 [EC] ) were determined in leaves of differentage and relative water content. The results indicate that differentPOD isoforms were stimulated during senescence and dehydration.Two of the soluble POD isoforms were anionic with pI 4.5, andtwo were cationic with pI 9.3 and 9.0. The activity of ascorbateperoxidase remained unchanged either by drought or senescence.For the first time, SOD isoforms have now been determined inthis resurrection plant. Several SOD isoforms, all of the Mntype, were found to be anionic with pI 4 and a few others hadpI from 5 to 6, while one band of FeSOD with a lower molecularweight was neutral. Rehydration brought about a remarkable decreaseover the first hour in the activity of all the antioxidant enzymesexamined but activity recovered 1 d after rehydration. The resultsconfirmed that dehydration and senescence caused disturbancein the redox homeostasis of Ramonda leaves, while inducing differentPOD isoforms. A physiological role of peroxidase reaction withhydroxycinnamic acids in conservation and protection of cellularconstituents of desiccated Ramonda leaves is suggested. Key words: Desiccation, peroxidase, Ramonda, senescence, superoxide dismutase  相似文献   

7.
Distribution of iron-containing oxidases in aging nodal rootsof rice and wheat was studied. Activities of cytochrome c oxidase(1.9.3.1 [EC] , cytochrome c : O2 oxidoreductase), catalase (1.11.1.6 [EC] ,H2O2: H2O2 oxidoreductase) and peroxidase (1.11.1.7 [EC] , donor:H2O2 oxidoreductase) in wheat roots were comparatively higherthan were those in rice roots at corresponding stages. Cytochromec oxidase in roots remained active throughout the lives of therice and wheat crops. In rice roots, catalase seemed to playa distinct role around the panicle formation stage. Decay ofcatalase activity took place earlier than did that of peroxidaseand cytochrome c oxidase activities. In wheat roots similarenzyme activity changes were not observed. Data may suggestthat the high activity of iron containing oxidases at the panicleformation stage (I) may be chiefly due to catalase activityin rice roots. 1Paper presented at the 14th Annual Meeting of the Society ofthe Science of Soil and Manure, Japan (1968). (Received November 21, 1968; )  相似文献   

8.
The moisture content/probit viability relationship for storedseeds of Zizania palustris L. and Spartina anglica C. E. Hubbardwas linear and independent of the rate of embryo drying. Theseresults provide firm evidence of recalcitrant storage physiologyin these taxa. Preliminary tests strongly suggest that freshseeds of Porteresia coarctata (Roxb.) Tateoka are also intolerantof desiccation In Z. palustris apparent differences in desiccation tolerancebetween individuals can be partly explained by wide variationin individual embryo moisture contents during desiccation. Long-termstorage experiments in solutions of polyethylene glycol 6000(PEG) suggest that the actual variation in desiccation toleranceis confined to a narrow range of embryo water potentials inthe range –2 to –3 MPa. Despite the presence of prolonged dormancy in seeds of Z. palustrisand S. anglica there is no evidence of a significant effectof dormancy or storage period (up to the point of visible germination)on the limits of desiccation tolerance Aquatic grasses, seeds, storage, desiccation intolerance  相似文献   

9.
Cell wall-associated peroxidases (EC 1.11.1.7 [EC] ) were extractedfrom the current year's needles of Norway spruce trees (Piceaabies L.) in two fractions, namely soluble apoplastic peroxidasesand covalently wall-bound peroxidases. Peroxidase activitieswere determined with two substrates: coniferyl alcohol, whichis important for lignification, and NADH, which is necessaryfor the production of H2O2. Coniferyl alcohol peroxidase activitywas detected in both the soluble apoplastic fraction and thewall-bound fraction, whereas NADH oxidase activity was foundonly in the soluble apoplastic fraction. Net oxidation of coniferylalcohol and NADH was inhibited by ascorbate, which reduced theoxidized intermediates of the peroxidase- and oxidase-catalyzedreactions. Since ascorbate itself was oxidized in these reactions,the inhibition was not persistent and it was released once theascorbate present in the assay mixture had been oxidized. Ascorbatedelayed the oxidation of NADH 10-fold more efficiently thanthe oxidation of coniferyl alcohol. Although the level and theredox state of apoplastic ascorbate were lower in lignifyingneedles than in mature needles, the concentration, which was1.17 mM in apoplastic washing fluids, was sufficiently highto inhibit peroxidase activity in vitro. These results suggestthat peroxidases can catalyze lignification only if local differencesexist in the concentration of reduced ascorbate between lignifyingand non-lignifying tissues. (Received April 21, 1994; Accepted September 26, 1994)  相似文献   

10.
Activities of Hydrogen Peroxide-Scavenging Enzymes in Germinating Wheat Seeds   总被引:39,自引:4,他引:35  
During imbibition and germination of wheat (Triticum aestivum)in the dark over 72 h, activities of the enzymes of the ascorbate(AsA)-dependent H2O2-scavenging pathway, AsA peroxidase, monodehydroascorbate(MDAsA) reductase, dehydroascorbate (DHAsA) reductase and glutathione(GSSG) reductase as well as superoxide dismutase (SOD), catalaseand guaiacol peroxidase were determined both in whole grainsand in isolated embryos and endosperm. With the exception of DHAsA reductase, activities of the otherenzymes assayed increased in germinating seeds, especially duringradicle emergence (between 24–48 h of imbibition). Theseincreases, particularly for AsA peroxidase, were much higherin the embryo than in the endosperm. Within 72 h of imbibition,activities per seed increased 116-fold for AsA peroxidase, 19-foldfor guaiacol peroxidase, 5-fold for catalase and only 1·4-foldfor SOD. In contrast to the decreases in DHAsA reductase, theother AsA recycling enzyme, MDAsA reductase, increased 5-foldwithin 72 h. The results indicate that, in wheat seeds, imbibition and germinationis associated with enhanced cellular capacity to detoxify H2O2.For this detoxification the operation of AsA peroxidase togetherwith the AsA-regenerating enzymes appears to be of particularimportance. Key words: Ascorbate peroxidase, germination, hydrogen peroxide detoxification, inhibition, wheat  相似文献   

11.
It has been hypothesized that nitrogen-replete diatoms, butnot flagellates, may release NO2, NH4+ or dissolved organicnitrogen (DON) following rapid increases in irradiance (andconsequently an increase in cellular electron energy), as mightbe expected to occur in a vertically well mixed estuarine system.Just as the increase in irradiance leads to an increase in cellularenergy, so too would a decrease in temperature, due to the temperaturedependency of biosynthetic enzymes. This hypothesis was testedby comparing the response of nitrogen-replete diatoms (Skeletomenacostatum, Thalassiosira weissflogii and Chaetoceros sp.) andflagellates (Dunaliella tertiolecta, Pavlova lutheri and Prorocentrumminimum) to rapid increases in irradiance and decreases in temperature.Short-term (<3 h) changes in extracellular NO2 andNH4+ concentrations were measured in cultures following theseexperimental shifts, as well as in cultures retained at thegrowth irradiance. Net rates of NO2 and NH4+ releasewere calculated from the time course of extracellular nitrogenconcentrations. As a fraction of NO3 uptake, NO2release rates under the increased irradiance increased marginallyrelative to NO2 release rates under the growth irradiance.Release rates of NH4+ under the increased irradiance increasednearly fivefold over release rates at the growth irradiance,and accounted for 84% of the NO3 uptake rate. In directcontrast to the diatom species, the flagellate species releasedNO2 under the higher experimental irradiance at ratesone half those of the release rates under the growth irradiance,and continued to take up NH4+ under both irradiance conditions.Within the experimental boundaries, these findings have importantphysiological and ecological implications. The magnitude ofthe observed nitrogen release represents a significant physiologicalsink for electrons and, in fact, calculations suggest that upto 62% of the total electrons harvested could be consumed. Froman ecological perspective, these findings add to the body ofliterature which suggests that a significant fraction of thenitrogen that is taken up is ultimately released in dissolvedform. More importantly, these data suggest that DON is not theonly compound that phytoplankton may release in the aquaticenvironment.  相似文献   

12.
Chlorophyll-fluorescence parameters of three mosses, Rhytidiadelphusloreus (Hedw.) Warnst.,Anomodon viticulosus (Hedw.) Hook &Tayl. and Grimmia pulvinata (Hedw.) Sm. were measured duringdrying, and following remoistening after a period of desiccation.Most changed little with drying until the full-turgor pointwas approached, when rapid changes accompanied loss of cellwater. In R. loreus all parameters decreased together down toa water content of about 30% d.wt (RWC approx. 0.15). At lowwater contents (5–16% d.wt; RWC approx. 0.02–0.08)saturating pulses tended to suppress rather than stimulate fluorescence.In A. viticulosus Fv/Fm, qPand  相似文献   

13.
Selaginella tamariscina, one of the most primitive vascularplants, can remain alive in a desiccated state and resurrectwhen water becomes available. To evaluate the nature of desiccationtolerance in this plant, we compared the composition of solublesugars and saturation ratios of phospholipids (PLs) betweenhydrated and desiccated tissues of S. tamariscina using gaschromatography. In this study, differences in gene expressionand ABA contents were also analyzed during dehydration. Theresults revealed that trehalose (at >130 mg g–1 DW)was the major soluble sugar, and low saturated fatty acid contentin PLs (0.31) was maintained in both hydrated and desiccatedtissues. In addition, the ABA content of S. tamariscina increased3-fold, and genes involved in ABA signaling and cellular protectionwere up-regulated while photosystem-related genes were down-regulatedduring dehydration. The biochemical and molecular findings suggestthat both constitutive and inducible protective molecules contributeto desiccation tolerance of S. tamariscina.  相似文献   

14.
The aim of the present study is to detect the monodehydroascorbicacid (MDA) radical in broad bean (Vicia faba L.) leaves whichwere treated by vacuum-infiltration in Na2SO3 solution and subsequentcentrifugation (sulfite-treated leaves). When sulfite-treatedleaves were illuminated with white light, the electron spinresonance (ESR) signal of MDA radical was observed. The levelof the MDA radical depended on the concentration of sulfitethat was used for vacuum-infiltration and on the light intensityof illumination. The formation of the MDA radical in sulfite-treatedleaves was inhibited by DCMU or by replacement of air with N2.Glycolaldehyde also inhibited the formation of MDA radical insulfite-treated leaves. Catalase activity was decreased by thesulfite treatment without affecting significantly the activitiesof ascorbate peroxidase (AA-POX) and of peroxidase which preferentiallyoxidizes phenolics (PhOH-POX). From these results, we concludethat the formation of the MDA radical in sulfite-treated leavesis catalyzed by peroxidases using the H2O2 which is generatedby photorespiration and the Mehler reaction. 1On leave from the Center for Multidisciplinary Studies, Universityof Belgrade, Yugoslavia.  相似文献   

15.
The stomatal response of seedlings grown in 360 or 720 µmolmol–1 to irradiance and leaf-to-air vapour pressure deficit(VPD) at both 360 and 720 µmol mol–1 to CO2 wasmeasured to determine how environmental factors interact withCO2 enrichment to affect stomatal conductance. Seedlings offour species with different conductances and life histories,Cercis canadensis (L.), Quercus rubra (L.), Populus deltoides(Bartr. ex Marsh.) P. nigra (L.), and Pinus taeda (L.), weremeasured in hopes of identifying general responses. Conductanceof seedlings grown at 360 and 720 µmol mol–1 CO2were similar and responded in the same manner to measurementCO2 concentration, irradiance and VPD. Conductance was lowerfor all species when measured at 720 than when measured at 360µmol mol–1 CO2 at both VPDs ({small tilde}1.5 and{small tilde}2.5 kPa) and all measured irradiances greater thanzero (100, 300, 600,>1600 µmol m–2 S–2)The average decrease in conductance due to measurement in elevatedCO2 concentration was 32% for Cercis, 29% for Quercus, 26% forPopulus, and 11% for Pinus. For alt species, the absolute decreasein conductance due to measurement in CO2 enrichment decreasedas irradiance decreased or VPD increased. The proportional decreasedue to measurement in CO2 enrichment decreased in three of eightcases: from 0.46 to 0.10 in Populus and from 0.18 to 0.07 inPinus as irradiance decreased from>1600 to 100 µmolm–2 s–1 and from 0.35 to 0.24 in Cercis as VPD increasedfrom 1.3 to 2.6 kPa. Key words: Stomatal conductance, CO2 enrichment, irradiance, vapour pressure deficit  相似文献   

16.
Inactivation of Ascorbate Peroxidase by Thiols Requires Hydrogen Peroxide   总被引:2,自引:0,他引:2  
The hydrogen peroxide-dependent oxidation of ascorbate by ascorbateperoxidase from tea leaves was inhibited by thiols, such asdithiothreitol, glutathione, mercaptoethanol and cysteine. Thesethiols themselves did not inactivate the enzyme. However, theyinactivated the enzyme when hydrogen peroxide was produced bythe metal-catalyzed oxidation of thiols or when exogenous hydrogenperoxide was added. Thiols were oxidized by ascorbate peroxidaseand hydrogen peroxide to thiyl radicals, as detected by theESR spectra of the thiyl radical-5,5'-dimethyll- pyrroline-N-oxidieadducts. Inactivation of ascorbate peroxidase by thiols andhydrogen peroxide is caused by the interaction of the enzymewith the thiyl radicals produced at its reaction center. (Received September 10, 1991; Accepted December 9, 1991)  相似文献   

17.
The protein complexes of pea (Pisum sativum L.) etioplasts,etio-chloroplasts and chloroplasts were examined using 2D BlueNative/SDS–PAGE. The most prominent protein complexesin etioplasts were the ATPase and the Clp and FtsH proteasecomplexes which probably have a crucial role in the biogenesisof etioplasts and chloroplasts. Also the cytochrome b6f (Cytb6f) complex was assembled in the etioplast membrane, as wellas Rubisco, at least partially, in the stroma. These complexesare composed of proteins encoded by both the plastid and nucleargenomes, indicating that a functional cross-talk exists betweenpea etioplasts and the nucleus. In contrast, the proteins andprotein complexes that bind chlorophyll, with the PetD subunitand the entire Cyt b6f complex as an exception, did not accumulatein etioplasts. Nevertheless, some PSII core components suchas PsbE and the luminal oxygen-evolvong complex (OEC) proteinsPsbO and PsbP accumulated efficiently in etioplasts. After 6h de-etiolation, a complete PSII core complex appeared with40% of the maximal photochemical efficiency, but a fully functionalPSII was recorded only after 24 h illumination. Similarly, thecore complex of PSI was assembled after 6 h illumination, whereasthe PSI–light-harvesting complex I was stably assembledonly in chloroplasts illuminated for 24 h. Moreover, a batteryof proteins responsible for defense against oxidative stressaccumulated particularly in etioplasts, including the stromaland thylakoidal forms of ascorbate peroxidase, glutathione reductaseand PsbS.  相似文献   

18.
The in vitro conversion of [3H]tryptophan by a plasma membraneenriched fraction from Arabidopsis thaliana (L.) Heynh. seedlings,grown in liquid culture, revealed indole-3-acetaldoxime (IAOX)as the only detectable reaction product. The pH optimum of thereaction was at pH 8, the Km value for tryptophan 12 µM.The formation of IAOX was stimulated about 10-fold by H2O2 Incubationexperiments with solubilized proteins and membrane vesiclesshowed that the investigated enzyme(s) were bound covalent tothe plasma membrane. Tryptophan oxidizing enzyme (TrpOxE) andperoxidase activity were not only found in the plasma membrane,but also in the culture medium. Specific IAOX forming activitywas 74-fold and 6-fold higher compared to the crude extractand the plasma membrane fraction, respectively. After isoelectricfocusing of solubilized plasma membrane and precipitated mediumproteins, TrpOxE activity co-migrated with two prominent highpI peroxidase bands stained with benzidine-guaiacol. The zonesof the IEF gel with peroxidase and TrpOxE activity were analyzedby SDS PAGE and revealed in all fractions a main protein bandof ca. 55 kDa. TrpOxE activity and peroxidase activity wereboth inhibited by antisera directed against tobacco and horseradishperoxidase. TrpOxE activity and peroxidase activity were determinedduring plant development. TrpOxE activity peaked after 8 and42 days, whereas peroxidase activity was consistently presentduring the whole life cycle. The inhibitory effects of indolederivatives, especially indole-3-glyoxylic acid, on (i) seedlingdevelopment and (ii) on TrpOxE and peroxidase activity werealso compared. (Received November 1, 1991; Accepted September 2, 1992)  相似文献   

19.
Investigations were made of the variation in copper toleranceamong homokaryons and dikaryons originating from one dikaryoticisolate of Polyporus palustris, as shown by their growth onnutrient agar containing copper sulphate, usually at 0.32 Mconcentration (c. 8 per cent of CuSO4.5H2O). Homokaryons obtainedby monobasidiospore isolation were crossed and further homokaryonsobtained in the same way. Selection for copper tolerance gavean increase in the second generation, but no further increasein the third; whilst selection for copper sensitivity gave substantialincreases in both second and third generations. It is concludedthat copper tolerance in this fungus is controlled by a numberof genes. It was found that, in this fungus, the copper toleranceof a dikaryon was substantially greater than that of eitherof its constituent homokaryons. It was also found that differentisolates of P. palustris varied very widely in copper tolerance.  相似文献   

20.
The response of the germination of seeds of Barbarea vema (Mill.)Aschers, Brassica chinensis L., Brassica juncea (L.) Czern.& Coss., Brassica oleracea L. var. gongylodes L., Camelinasaliva (L.) Crantz, Eruca saliva Mill., Lepidium sativum L.,Nasturtium officinale R. Br., and Rorippa palustris (L.) Besserto white fluorescent light of different photon flux densitiesapplied for different daily durations in a diurnal alternatingtemperature regime of 20 °C/30 °C (16 h/8 h) was quantifiedby linear relations between probit percentage germination andthe logarithm of photon dose, the product of photon flux densityand duration. The low energy reaction, in which increasing dosepromotes germination, was detected in all the seed populationsbut in Barbarea vema and Brassica Juncea the lowest photon doseapplied (10–5–2 and 10–5 7 mol m–2 d–1,respectively) was sufficient to saturate the response. Comparisons,where possible, between photoperiods demonstrated reciprocity,i.e. germination was proportional to photon dose irrespectiveof photoperiod, for the low energy reaction in Brassica oleracea(1 min d–1 to 1 h d–1), Camelina saliva (1 min d–1to 8 h d–1), Eruca saliva (1 min d–1 to 24 h d–1),Lepidium sativum (I min d–1 to 8 h d–1) and Rorippapalustris (1 min d–1 to 8 h d–1), but not in Brassicachinensis and Nasturtium officinale. The high irradiance reaction,in which increasing dose inhibits germination, was detectedin Barbarea vema, Brassica chinensis, Brassica juncea, Brassicaoleracea, and Camelina saliva. The minimum dose at which inhibitionwas detected was lO–0–3 mol m–2 d–1.These results are discussed in the context of devising optimallight regimes for laboratory tests intended to maximize germination The response of germination to photon dose was also quantifiedwith 3 x 10–4 M GA2, co-applied (Brassica chinensis, Camelinasaliva, and Lepidium sativum) and with 2 x 10–2 M potassiumnitrate co-applied (Brassica chinensis). In the latter casepotassium nitrate had no effect in the dark and inhibited germinationin the light, but GA2, promoted germination substantially inall three species. Variation amongst seeds in the minimum photondose required to stimulate germination was not affected by co-applicationof GA2, in Brassica chinensis and Camelina saliva, whereas seedsof Lepidium salivum showed a narrower distribution of sensitivitiesto the low energy reaction in the presence of GA2 Barbarea vema (Mill.) Aschers, Brassica chinensis L., Brassica juncea (L.) Czern. & Coss., Brassica oleracea L. var. gongylodes L., Camelina saliva (L.) Crantz, Eruca saliva Mill., Lepidium satiaum L., Nasturtium officinale R. Br., Rorippa palustris (L.) Besser, Cruciferae, light, gibberellic acid, seed germination, seed dormancy  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号