首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adaptor complexes AP-1 and AP-3 are localized to endosomes and/or the trans Golgi network (TGN). Because of limitations in analysing intracellular adaptor function directly, their site of function is a matter of ongoing uncertainty. To overcome this problem and to analyse adaptor sorting at the TGN, we reconstituted vesicle formation from Golgi/TGN-enriched membranes in a novel in vitro budding assay. Melanocytes were metabolically labelled followed by a 19°C temperature block to accumulate newly synthesized proteins in Golgi membranes, which were then enriched by subcellular fractionation and used as donor membranes for vesicle formation in vitro . The incorporation of the melanosomal proteins tyrosinase and tyrosinase-related protein 1 (TRP-1) as well as Lamp-1 and 46 kDa mannose-6-phosphate receptor (MPR46) into Golgi/TGN-derived vesicles was temperature, nucleotide, cytosol, ADP ribosylation factor 1 and adaptor dependent. We show that sorting of TRP-1 and MPR46 was AP-1 dependent, while budding of tyrosinase and Lamp-1 required AP-3. Depletion of clathrin inhibited sorting of all four cargo proteins, suggesting that AP-1 and AP-3 are involved in the formation of distinct types of clathrin-coated vesicles, each of which is characterized by the incorporation of specific cargo membrane proteins.  相似文献   

2.
The human immunodeficiency virus 1 (HIV-1) Nef protein is a pathogenicity factor required for effective progression to AIDS, which modulates host cell signaling pathways and T-cell receptor internalization. We have determined the crystal structure of Nef, allele SF2, in complex with an engineered SH3 domain of human Hck showing unnaturally tight binding and inhibitory potential toward Nef. This complex provides the most complete Nef structure described today, and explains the structural basis of the high affinity of this interaction. Intriguingly, the 33-residue C-terminal flexible loop is resolved in the structure by its interactions with a highly conserved hydrophobic groove on the core domain of an adjacent Nef molecule. The loop mediates the interaction of Nef with the cellular adaptor protein machinery for the stimulated internalization of surface receptors. The endocytic dileucine-based sorting motif is exposed at the tip of the acidic loop, giving the myristoylated Nef protein a distinctly dipolar character. The intermolecular domain assembly of Nef provides insights into a possible regulation mechanism for cargo trafficking.  相似文献   

3.
AP-1A and AP-3A lysosomal sorting functions   总被引:3,自引:0,他引:3  
Heterotetrameric adaptor-protein complexes AP-1A and AP-3A mediate protein sorting in post-Golgi vesicular transport. AP-1A and AP-3A have been localized to the trans -Golgi network, indicating a function in protein sorting at this compartment. AP-3A appears to mediate trans -Golgi network-to-lysosome and also endosome-to-lysosome protein sorting. AP-1A is thought to be required for both trans -Golgi network-to-endosome transport and endosome-to- trans -Golgi network transport. However, the recent discovery of a role for monomeric GGA (Golgi localized γ-ear containing, ARF binding protein) adaptor proteins in trans -Golgi network to endosome protein transport has brought into question the long-discussed trans -Golgi network-to-endosome sorting function of AP-1A. Murine cytomegalovirus gp48 contains an unusual di-leucine-based lysosome sorting signal motif and mediates lysosomal sorting of gp48/major histocompatibility complex class I receptor complexes, preventing exposure of major histocompatibility complex class I at the plasma membrane. We analyzed lysosomal sorting of gp48/major histocompatibility complex class I receptor complexes in cell lines deficient for AP-1A, AP-3A and both, to determine their sorting functions. We find that AP1-A and AP3-A mediate distinct and sequential steps in the lysosomal sorting. Both sorting functions are required to prevent MHC class I exposure at the plasma membrane at steady-state.  相似文献   

4.
The Nef protein of HIV-1 removes the immune costimulatory proteins CD80 and CD86 from the cell surface by a unique clathrin- and dynamin-independent, actin-based endocytic pathway that deploys coupled activation of c-src and Rac. In this study, we show that, similar to major histocompatibility complex class I (MHCI), Nef subsequently reroutes CD80 and CD86 to the Golgi region. However, not only are CD80/CD86 internalized by a different mechanism from MHCI but also the vesicular pathway of Golgi delivery for CD80/CD86 is distinct from that employed for MHCI. While MHCI passes through early endosomal and sorting compartments marked by Rab5/early embryonic antigen 1 and ADP ribosylation factor 6, respectively, CD80 and CD86 enter endocytic vesicles that do not acquire conventional early endosomal markers but remain accessible to fluid probes. Rather than being delivered to preexisting Rab11-positive recycling compartments, these vesicles recruit Rab11 de novo. Rab11 activity is also necessary for the delivery of CD80/CD86 in these transitional vesicles to the Golgi region. These data reveal an unusual pathway of endocytic vesicular traffic to the Golgi and its recruitment in a viral immune evasion strategy.  相似文献   

5.
The HIV-1 Nef protein perturbs the trafficking of membrane proteins such as CD4 by interacting with clathrin-adaptor complexes. We previously reported that Nef alters early/recycling endosomes, but its role at the plasma membrane is poorly documented. Here, we used total internal reflection fluorescence microscopy, which restricts the analysis to a approximately 100 nm region of the adherent surface of the cells, to focus on the dynamic of Nef at the plasma membrane relative to that of clathrin. Nef colocalized both with clathrin spots (CS) that remained static at the cell surface, corresponding to clathrin-coated pits (CCPs), and with approximately 50% of CS that disappeared from the cell surface, corresponding to forming clathrin-coated vesicles (CCVs). The colocalization of Nef with clathrin required the di-leucine motif essential for Nef binding to AP complexes and was independent of CD4 expression. Furthermore, analysis of Nef mutants showed that the capacity of Nef to induce internalization and downregulation of CD4 in T lymphocytes correlated with its localization into CCPs. In conclusion, this analysis shows that Nef is recruited into CCPs and into forming CCVs at the plasma membrane, in agreement with a model in which Nef uses the clathrin-mediated endocytic pathway to induce internalization of some membrane proteins from the surface of HIV-1-infected T cells.  相似文献   

6.
During receptor-mediated endocytosis, AP2 complexes act as a bridge between the cargo membrane proteins and the clathrin coat by binding to sorting signals via the mu 2 subunit and to clathrin via the beta subunit. Here we show that binding of AP2 to sorting signals in vitro is regulated by phosphorylation of the mu 2 subunit of AP2. Phosphorylation of mu 2 enhances the binding affinity of AP2 for sorting motifs as much as 25-fold compared with dephosphorylated AP2. The recognition of sorting signals was not affected by the phosphorylation status of the alpha or beta 2 subunit, suggesting that phosphorylation of mu 2 is critical for regulation of AP2 binding to sorting signals. Phosphorylation of mu 2 occurs at a single threonine residue (Thr-156) and is mediated by the newly discovered adaptor-associated kinase, AAK1, which copurifies with AP2. We propose that phosphorylation of the AP2 mu 2 subunit by AAK1 ensures high affinity binding of AP2 to sorting signals of cargo membrane proteins during the initial steps of receptor-mediated endocytosis.  相似文献   

7.
It has long been known that the maintenance of fast communication between neurons requires that presynaptic terminals recycle the small vesicles from which neurotransmitter is released. But the mechanisms that retrieve vesicles from the cell surface are still not understood. Although we have a wealth of information about the molecular details of endocytosis in non‐neuronal cells, it is clear that endocytosis at the synapse is faster and regulated in distinct ways. A satisfying understanding of these processes will require molecular events to be manipulated while observing endocytosis in living synapses. Here, we review recent work that seeks to bridge the gap between physiology and molecules to unravel the endocytic machinery operating at the synaptic terminal.  相似文献   

8.
The adaptor proteins AP-2 and AP-1/GGAs are essential components of clathrin coats at the plasma membrane and trans-Golgi network, respectively. The adaptors recruit accessory proteins to clathrin-coated pits, which is dependent on the adaptor ear domains engaging short peptide motifs in the accessory proteins. Here, we perform an extensive mutational analysis of a novel WXXF-based motif that functions to mediate the binding of an array of accessory proteins to the alpha-adaptin ear domain of AP-2. Using nuclear magnetic resonance and mutational studies, we identified WXXF-based motifs as major ligands for a site on the alpha-ear previously shown to bind the DPW-bearing proteins epsin 1/2. We also defined the determinants that allow for specific binding of the alpha-ear motif to AP-2 as compared to those that allow a highly related WXXF-based motif to bind to the ear domains of AP-1/GGAs. Intriguingly, placement of acidic residues around the WXXF cores is critical for binding specificity. These studies provide a structural basis for the specific recruitment of accessory proteins to appropriate sites of clathrin-coated vesicle formation.  相似文献   

9.
Cell types that generate unique lysosome-related organelles (LROs), such as melanosomes in melanocytes, populate nascent LROs with cargoes that are diverted from endosomes. Cargo sorting toward melanosomes correlates with binding via cytoplasmically exposed sorting signals to either heterotetrameric adaptor AP-1 or AP-3. Some cargoes bind both adaptors, but the relative contribution of each adaptor to cargo recognition and their functional interactions with other effectors during transport to melanosomes are not clear. Here we exploit targeted mutagenesis of the acidic dileucine-based sorting signal in the pigment cell-specific protein OCA2 to dissect the relative roles of AP-1 and AP-3 in transport to melanosomes. We show that binding to AP-1 or AP-3 depends on the primary sequence of the signal and not its position within the cytoplasmic domain. Mutants that preferentially bound either AP-1 or AP-3 each trafficked toward melanosomes and functionally complemented OCA2 deficiency, but AP-3 binding was necessary for steady-state melanosome localization. Unlike tyrosinase, which also engages AP-3 for optimal melanosomal delivery, both AP-1- and AP-3-favoring OCA2 variants required BLOC-1 for melanosomal transport. These data provide evidence for distinct roles of AP-1 and AP-3 in OCA2 transport to melanosomes and indicate that BLOC-1 can cooperate with either adaptor during cargo sorting to LROs.  相似文献   

10.
The adaptor protein (AP) 3 adaptor complex has been implicated in the transport of lysosomal membrane proteins, but its precise site of action has remained controversial. Here, we show by immuno-electron microscopy that AP-3 is associated with budding profiles evolving from a tubular endosomal compartment that also exhibits budding profiles positive for AP-1. AP-3 colocalizes with clathrin, but to a lesser extent than does AP-1. The AP-3- and AP-1-bearing tubular compartments contain endocytosed transferrin, transferrin receptor, asialoglycoprotein receptor, and low amounts of the cation-independent mannose 6-phosphate receptor and the lysosome-associated membrane proteins (LAMPs) 1 and 2. Quantitative analysis revealed that of these distinct cargo proteins, only LAMP-1 and LAMP-2 are concentrated in the AP-3-positive membrane domains. Moreover, recycling of endocytosed LAMP-1 and CD63 back to the cell surface is greatly increased in AP-3-deficient cells. Based on these data, we propose that AP-3 defines a novel pathway by which lysosomal membrane proteins are transported from tubular sorting endosomes to lysosomes.  相似文献   

11.
HIV-1 Nef protein down-regulates several important immunoreceptors through interactions with components of the intracellular sorting machinery. Nef expression is also known to induce modifications of the endocytic pathway. Here, we analyzed the effects of Nef on retrograde transport, from the plasma membrane to the endoplasmic reticulum using Shiga toxin B-subunit (STxB). Nef expression inhibited access of STxB to the endoplasmic reticulum, but did not modify the surface expression level of STxB receptor, Gb3, nor its internalization rate as measured with a newly developed assay. Mutation of the myristoylation site or of a di-leucine motif of Nef involved in the interaction with the clathrin adaptor complexes AP1 and AP2 abolished the inhibition of retrograde transport. In contrast, mutations of Nef motifs known to interact with PACS-1, βCOP or a subunit of the v-ATPase did not modify the inhibitory activity of Nef on retrograde transport. Ultrastructural analysis revealed that Nef was present in clusters located on endosomal or Golgi membranes together with internalized STxB. Furthermore, in strongly Nef-expressing cells, STxB accumulated in endosomal structures that labeled with AP1. Our observations show that Nef perturbs retrograde transport between the early endosome and the endoplasmic reticulum. The potential transport steps targeted by Nef are discussed .  相似文献   

12.
Disruption of latent TGF-beta binding protein (LTBP)-4 expression in the mouse leads to abnormal lung development and colorectal cancer. Lung fibroblasts from these mice produced decreased amounts of active TGF-beta, whereas secretion of latent TGF-beta was significantly increased. Expression and secretion of TGF-beta2 and -beta3 increased considerably. These results suggested that TGF-beta activation but not secretion would be severely impaired in LTBP-4 -/- fibroblasts. Microarrays revealed increased expression of bone morphogenic protein (BMP)-4 and decreased expression of its inhibitor gremlin. This finding was accompanied by enhanced expression of BMP-4 target genes, inhibitors of differentiation 1 and 2, and increased deposition of fibronectin-rich extracellular matrix. Accordingly, increased expression of BMP-4 and decreased expression of gremlin were observed in mouse lung. Transfection of LTBP-4 rescued the -/- fibroblast phenotype, while LTBP-1 was inefficient. Treatment with active TGF-beta1 rescued BMP-4 and gremlin expression to wild-type levels. Our results indicate that the lack of LTBP-4-mediated targeting and activation of TGF-beta1 leads to enhanced BMP-4 signaling in mouse lung.  相似文献   

13.
The glycosylphosphatidylinositol (GPI)-anchored cellular prion protein (PrPc) has a fundamental role in prion diseases. Intracellular trafficking of PrPc is important in the generation of protease resistant PrP species but little is known of how endocytosis affects PrPc function. Here, we discuss recent experiments that have illuminated how PrPc is internalized and what are the possible destinations taken by the protein. Contrary to what would be expected for a GPI-anchored protein there is increasing evidence that clathrin-mediated endocytosis and classical endocytic organelles participate in PrPc trafficking. Moreover, the N-terminal domain of PrPc may be involved in sorting events that can direct the protein during its intracellular journey. Indeed, the concept that the GPI-anchor determines PrPc trafficking has been challenged. Cellular signaling can be triggered or be regulated by PrPc and we suggest that endocytosis of PrPc may influence signaling in several ways. Definition of the processes that participate in PrPc endocytosis and intracellular trafficking can have a major impact on our understanding of the mechanisms involved in PrPc function and conversion to protease resistant conformations.  相似文献   

14.
To avoid immune recognition by cytotoxic T lymphocytes (CTLs), human immunodeficiency virus (HIV)-1 Nef disrupts the transport of major histocompatibility complex class I molecules (MHC-I) to the cell surface in HIV-infected T cells. However, the mechanism by which Nef does this is unknown. We report that Nef disrupts MHC-I trafficking by rerouting newly synthesized MHC-I from the trans-Golgi network (TGN) to lysosomal compartments for degradation. The ability of Nef to target MHC-I from the TGN to lysosomes is dependent on expression of the mu1 subunit of adaptor protein (AP) AP-1A, a cellular protein complex implicated in TGN to endolysosomal pathways. We demonstrate that in HIV-infected primary T cells, Nef promotes a physical interaction between endogenous AP-1 and MHC-I. Moreover, we present data that this interaction uses a novel AP-1 binding site that requires amino acids in the MHC-I cytoplasmic tail. In sum, our evidence suggests that binding of AP-1 to the Nef-MHC-I complex is an important step required for inhibition of antigen presentation by HIV.  相似文献   

15.
The adaptor protein complex-1 (AP-1) sorts and packages membrane proteins into clathrin-coated vesicles (CCVs) at the TGN and endosomes. Here we show that this process is highly regulated by phosphorylation of AP-1 subunits. Cell fractionation studies revealed that membrane-associated AP-1 differs from cytosolic AP-1 in the phosphorylation status of its beta1 and mu1 subunits. AP-1 recruitment onto the membrane is associated with protein phosphatase 2A (PP2A)-mediated dephosphorylation of its beta1 subunit, which enables clathrin assembly. This Golgi-associated isoform of PP2A exhibits specificity for phosphorylated beta1 compared with phosphorylated mu1. Once on the membrane, the mu1 subunit undergoes phosphorylation, which results in a conformation change, as revealed by increased sensitivity to trypsin. This conformational change is associated with increased binding to sorting signals on the cytoplasmic tails of cargo molecules. Dephosphorylation of mu1 (and mu2) by another PP2A-like phosphatase reversed the effect and resulted in adaptor release from CCVs. Immunodepletion and okadaic acid inhibition studies demonstrate that PP2A is the cytosolic cofactor for Hsc-70-mediated adaptor uncoating. A model is proposed where cyclical phosphorylation/dephosphorylation of the subunits of AP-1 regulate its function from membrane recruitment until its release into cytosol.  相似文献   

16.
Calcyon is a neural enriched, single transmembrane protein that interacts with clathrin light chain and stimulates clathrin assembly and clathrin‐mediated endocytosis. A similar property is shared by the heterotetrameric adaptor protein (AP) complexes AP‐1, AP‐2, and AP‐3 which recruit cargoes for insertion into clathrin coated transport vesicles. Here we report that AP medium (μ) subunits interact with a YXXØ‐type tyrosine motif located at residues 133–136 in the cytoplasmic domain of calcyon. Site specific mutagenesis of the critical tyrosine and bulky hydrophobic residues tyrosine 133 and methionine 136 preferentially abrogated binding of the ubiquitous and neuronal isoforms of μ3, and also impacted μ1 and μ2 binding to a lesser degree. The relevance of these interactions was explored in vivo using mice harboring null alleles of calcyon. As seen in the mutagenesis studies, calcyon deletion in mice preferentially altered the subcellular distribution of AP‐3 suggesting that calcyon could regulate membrane‐bound pools of AP‐3 and AP‐3 function. To test this hypothesis, we focused on the hilar region of hippocampus, where levels of calcyon, AP‐3, and AP‐3 cargoes are abundant. We analyzed brain cryosections from control and calcyon null mice for zinc transporter 3 (ZnT3), and phosphatidylinositol‐4‐kinase type II alpha (PI4KIIα), two well‐defined AP‐3 cargoes. Confocal microscopy indicated that ZnT3 and PI4KIIα are significantly reduced in the hippocampal mossy fibers of calcyon knock‐out brain, a phenotype previously described in AP‐3 deficiencies. Altogether, our data suggest that calcyon directly interacts with μ3A and μ3B, and regulates the subcellular distribution of AP‐3 and the targeting of AP‐3 cargoes.  相似文献   

17.
Overexpression of phosphatidylinositol phosphate 5-kinase (PIP5KI) isoforms alpha, beta, or gamma in CV-1 cells increased phosphatidylinositol 4,5-bisphosphate (PIP2) levels by 35, 180, and 0%, respectively. Endocytosis of transferrin receptors, association of AP-2 proteins with membranes, and the number of clathrin-coated pits at the plasma membrane increased when PIP2 increased. When expression of PIP5KIbeta was inhibited with small interference RNA in HeLa cells, expression of PIP5KIalpha was also reduced slightly, but PIP5KIgamma expression was increased. PIP2 levels and internalization of transferrin receptors dropped 50% in these cells; thus, PIP5KIgamma could not compensate for loss of PIP5KIbeta. When expression of PIP5KIalpha was reduced, expression of both PIP5KIbeta and PIP5KIgamma increased and PIP2 levels did not change. A similar increase of PIP5KIalpha and PIP5KIbeta occurred when PIP5KIgamma was inhibited. These results indicate that constitutive endocytosis in CV-1 and HeLa cells requires (and may be regulated by) PIP2 produced primarily by PIP5KIbeta.  相似文献   

18.
The Golgi-localized, gamma-ear-containing, ADP ribosylation factor-binding family of monomeric clathrin adaptors (GGAs) is known to bind cargo molecules through short C-terminal peptide motifs conforming to the sequence DXXLL (X = any amino acid), while the heterotetrameric adaptors AP-1 and AP-2 utilize a similar but discrete sorting motif of the sequence [D,E]XXXL[L,I]. While it has been established that a single cargo molecule may contain either or both types of these acidic cluster-dileucine (AC-LL) sorting signals, there are no examples of cargo with overlapping GGA and AP-1/AP-2-binding motifs. In this study, we report that the cytosolic tail of low-density lipoprotein receptor-related protein (LRP)9 contains a bifunctional GGA and AP-1/AP-2-binding motif at its carboxy-terminus (EDEPLL). We further demonstrate that the internal EDEVLL sequence of LRP9 also binds to GGAs in addition to AP-2. Either AC-LL motif of LRP9 is functional in endocytosis. These findings represent the first study characterizing the trafficking of LRP9 and also have implications for the identification of additional GGA cargo molecules.  相似文献   

19.
Domains of the TGN: coats, tethers and G proteins   总被引:5,自引:1,他引:5  
The trans-Golgi network is the major sorting compartment of the secretory pathway for protein, lipid and membrane traffic. There is a constant flow of membrane and cargo to and from this compartment. Evidence is emerging that the trans-Golgi network has multiple biochemically and functionally distinct subdomains, each of which contributes to the combined sorting and transport requirements of this dynamic compartment. The recruitment of distinct arrays of protein complexes to trans-Golgi network membranes is likely to produce the diversity of structure and biochemistry observed amongst subdomains that serve to generate different carriers or maintain resident trans-Golgi network components. This review discusses how these subdomains may be formed and examines the molecular players involved, including G proteins, clathrin adaptors and golgin tethers. Diversity within these protein families is highlighted and shown to be critical for the functionality of the trans-Golgi network, as a mediator of protein sorting and membrane transport, and for the maintenance of Golgi structure.  相似文献   

20.
Dendritic cells (DCs) are essential components of the early events of HIV infection. Here, we characterized the trafficking pathways that HIV-1 follows during its capture by DCs and its subsequent presentation to CD4(+) T cells via an infectious synapse. Immunofluorescence microscopy indicates that the virus-containing compartment in mature DCs (mDCs) co-labels for the tetraspanins CD81, CD82, and CD9 but contains little CD63 or LAMP-1. Using ratio imaging of pH-reporting fluorescent virions in live DCs, we show that HIV-1 is internalized in an intracellular endocytic compartment with a pH of 6.2. Significantly, we demonstrate that the infectivity of cell-free virus is more stable at mildly acidic pH than at neutral pH. Using electron microscopy, we confirm that HIV-1 accumulates in intracellular vacuoles that contain CD81 positive internal membranes but overlaps only partially with CD63. When allowed to contact T cells, HIV-1-loaded DCs redistribute CD81, and CD9, as well as internalized HIV-1, but not the immunological synapse markers MHC-II and T-cell receptor to the infectious synapse. Together, our results indicate that HIV-1 is internalized into a non-conventional, non-lysosomal, endocytic compartment in mDCs and further suggest that HIV-1 is able to selectively subvert components of the intracellular trafficking machinery required for formation of the DC-T-cell immunological synapse to facilitate its own cell-to-cell transfer and propagation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号