首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Solubilization of phospholipids by detergents. Structural and kinetic aspects   总被引:17,自引:0,他引:17  
Most amphiphiles in biological membranes including phospholipids, steroids, and membrane proteins are insoluble amphiphiles and would form liquid crystals or insoluble precipitates alone in aqueous media. Detergents are soluble amphiphiles and above a critical concentration and temperature form micelles of various sizes and shapes. Much of the recent progress in studying the insoluble amphiphiles is due to the formation of thermodynamically stable isotropic solutions of these compounds in the presence of detergents. This process, which is commonly denoted as "solubilization,' involves transformation of lamellar structures into mixed micelles. The information available to date on the solubilization of phospholipids, which constitute the lipid skeleton of biomembranes, by the common detergents is discussed in this review, both with respect to the kinetics of this process and the structure of the various phospholipid-detergent mixed micelles formed. It is hoped that this discussion will lead to somewhat more useful, although still necessarily fairly empirical, approaches to the solubilization of phospholipids by detergents.  相似文献   

3.
ATP, GTP, CoA, Mg2+, and Mn2+ did not inhibit biosynthesis of steryl glycoside and acylated steryl glycoside when added singly to enzyme preparations from spinach leaves. The combination of ATP (but not GTP), CoA, and Mg2+ or Mn2+ caused marked inhibition, especially of steryl glycoside biosynthesis, when reaction mixture concentrations of the additions were 0.2 millimolar. Inhibition was attributed to acyl-CoA and could be reproduced by palmitoyl-CoA. The inhibition could be partially prevented by bovine serum albumin. The effects of palmitoyl-CoA were distinct at 10 micromolar, and 50% inhibition of biosynthesis was observed at 40 micromolar.  相似文献   

4.
A soluble enzyme which catalyzes the formation of dolichyl β-d-mannosyl phosphate has been prepared from encysting cultures of Acanthamoeba castellanii. The enzyme is relatively specific for GDP-d-mannose in that GDP-d-glucose and various uridine nucleotides do not serve as substrates. Uridine diphosphate d-glucose is not an inhibitor at 100-fold molar excess concentration, but GDP-d-glucose, GDP, and GMP do inhibit the reaction at relatively high concentrations. The apparent Km for GDP-d-mannose is approximately 0.25 μm and that for dolichyl phosphate is approximately 3.3 μm. The enzyme has a pH optimum of 7.0, a temperature optimum of 27 °C, and requires a divalent cation. Magnesium, cobalt, and manganese salts will serve as cofactors but maximum activity is produced by Mn2+. No loss of activity is evident after storage for 2 weeks at ?70 °C, but half the activity was lost within 3 days at 0 °C, and a third of the activity was lost within 2 weeks at ?20 °C.  相似文献   

5.
Fatty acids C12-C22 are components of acylated steryl glucosides in Calendula officinalis. Various particulate fractions from 14-day-old seedlings catalyze the esterification of the steryl glucosides with utilization of endogenous acyl donors. The activity seems to be associated mainly with the membranous structures being fragments of Golgi complex, as it has previously been suggested for UDPG: sterol glucosyltransferase. Succesive treatment of the particulate enzyme fraction with Triton X-100 and acetone affords a soluble acyltransferase preparation partly depleted of endogenous lipids. As a source of acyl groups for the synthesis of steryl acylglucosides this preparation utilizes various phospholipids obtained from the same plant in the following sequence: phosphatidylinositol greater than phosphatidylethanolamine greater than phosphatidylcholine. It does not utilize triacylglycerols and monogalactosyldiacylglycerols.  相似文献   

6.
Solubilization of N-glucuronyl transferase   总被引:3,自引:0,他引:3  
  相似文献   

7.
From peeled fruits of Musa paradisiaca (banana, vegetable variety), two new acyl steryl glycosides, sitoindoside-III and sitoindoside-IV, and two new steryl glycosides, sitosterol gentiobioside and sitosterol myo-inosityl-β-D-glucoside, have been isolated by gradient solvent extraction and extensive chromatography (CC, prep. TLC, GC and HPLC). The compounds have been characterized by comprehensive spectroscopic analyses (IR, 1H NMR, GC, mass spectra, [α]D) and crucial chemical transformation. Additionally, seasonal variations of the total sterols, free sterols, steryl esters, steryl glycosides and acyl steryl glycosides in the active samples of banana have been analysed. The results provide a basis for the observed fluctuations in the anti-ulcerogenic activity of the extracts, in different seasons, and the importance of appropriate formulation of the pure principles to optimize the activity.  相似文献   

8.
Xue L  Jahng WJ  Gollapalli D  Rando RR 《Biochemistry》2006,45(35):10710-10718
Lecithin retinol acyl transferase (LRAT) has the essential role of catalyzing the transfer of an acyl group from the sn-1 position of lecithin to vitamin A to generate all-trans-retinyl esters (tREs). In vitro studies had shown previously that LRAT also can exchange palmitoyl groups between RPE65, a tRE binding protein essential for vision, and tREs. This exchange is likely to be of regulatory significance in the operation of the visual cycle. In the current study, the substrate specificity of LRAT is explored with palmitoylated amino acids and dipeptides as RPE65 surrogates. Both O- and S-substituted palmitoylated analogues are excellent substrates for tLRAT, a readily expressed and readily purified form of LRAT. Using vitamin A as the palmitoyl acceptor, tREs are readily formed. The cognate of these reactions occurs in crude retinal pigment epithelial (RPE) membranes as well. RPE membranes containing LRAT transfer palmitoyl groups from radiolabeled [1-(14)C]-l-alpha-dipalmitoyl diphosphatidylcholine (DPPC) to RPE65. Palmitoyl transfer is abolished by preincubation with a specific LRAT antagonist both in membranes and with purified tLRAT. These experiments are consistent with an expanded role for LRAT function as a protein palmitoyl transferase.  相似文献   

9.
10.
The non-ionic detergent octyl glucoside solubilizes a substantial amount of Streptococcus faecalis membrane protein without loss of the monitored enzyme activities. A secondary detergent, dioctanoyl phophatidycholine, appears to increase the yield of solubilized material. In addition, the effect of ionic strength indicates that it may be possible to selectively extract groups of membrane proteins by their characteristic solubility at different ionic strengths. The solubilized membrane-associated enzymes, ATPase and NADH dehydrogenase, enter polyacrylamide gels as distict species. Electrophoretic studies suggest that there are two membrane-associated ATPase in the Streptococcus faecalis, one which dissociates from the membrane in the absence of Mg-2+ ions and the other which remains particulate until solubilized by detergents. Octyl glucoside can be easily removed from a solution containing solubilized proteins and lipid by dialysis.  相似文献   

11.

Background

Biodiesels produced from transesterification of vegetable oils have a major quality problem due to the presence of precipitates, which need to be removed to avoid clogging of filters and engine failures. These precipitates have been reported to be mostly composed of steryl glucosides (SGs), but so far industrial cost-effective methods to remove these compounds are not available. Here we describe a novel method for the efficient removal of SGs from biodiesel, based on the hydrolytic activity of a thermostable β-glycosidase obtained from Thermococcus litoralis.

Results

A steryl glucosidase (SGase) enzyme from T. litoralis was produced and purified from Escherichia coli cultures expressing a synthetic gene, and used to treat soybean-derived biodiesel. Several optimization steps allowed for the selection of optimal reaction conditions to finally provide a simple and efficient process for the removal of SGs from crude biodiesel. The resulting biodiesel displayed filterability properties similar to distilled biodiesel according to the total contamination (TC), the cold soak filtration test (CSFT), filter blocking tendency (FBT), and cold soak filter blocking tendency (CSFBT) tests. The process was successfully scaled up to a 20 ton reactor, confirming its adaptability to industrial settings.

Conclusions

The results presented in this work provide a novel path for the removal of steryl glucosides from biodiesel using a cost-effective, environmentally friendly and scalable enzymatic process, contributing to the adoption of this renewable fuel.
  相似文献   

12.
Lecithin: Cholesterol Acyltransferase (LCAT) esterified relatively small amounts of cholesterol from very low density lipoproteins (VLDL), low density lipoproteins (LDL) or high density lipoproteins (HDL) in the presence of 5% human serum albumin (HSA). On the other hand, in the presence of very high density (>1.225 g/ml) plasma fraction (F-4), the enzyme esterified cholesterol from VLDL at considerably higher rates than from LDL or HDL. VLDL together with some component present in the very high density plasma fraction (F-4) may thus provide a highly efficient complex resulting in a favorable configuration of substrate lipids for the enzyme.  相似文献   

13.
An acyl CoA transferase has been purified to electrophoretic homogeneity from the soluble compartment of Ascaris suum muscle mitochondria. From SDS-PAGE, isoelectric focusing and molecular exclusion chromatography, homogeneity was confirmed and the enzyme appears to be composed of two similar or identical subunits of apparent mol. wts of 50,000 resulting in an apparent mol. wt of 100,000 for the holoenzyme. The apparent isoelectric point was 5.6 +/- 0.1 by both chromatofocusing columns and slab gel isoelectric focusing. The transferase was relatively specific for the short, straight-chain acyl CoA donors as well as the CoA acceptors, being active on acetyl CoA, propionyl CoA, butyryl CoA, valeryl CoA and hexanoyl CoA as donors to acetate and propionate. Neither succinyl CoA nor succinate were appreciably active as CoA donor or acceptor, respectively. This enzyme cannot serve physiologically to activate succinate for decarboxylation to propionate, but may serve to ensure a supply of propionyl CoA which appears to be required in catalytic amounts for the decarboxylation of succinate.  相似文献   

14.
To explore possible mechanisms of the arachidonic acid deficiency of the red blood cell membrane in alcoholics, we compared the effect of ethanol and its oxidized products, acetaldehyde and peracetic acid, with other peroxides on the accumulation of [14C]arachidonate into RBC membrane lipids in vitro. Incubation of erythrocytes with 50 mM ethanol or 3 mM acetaldehyde had no effect on arachidonate incorporation. Pretreatment of erythrocytes with 10 mM hydrogen peroxide, 0.1 mM cumene hydroperoxide or 0.1 mM t-butyl hydroperoxide had little effect on [14C]arachidonate incorporation in the absence of azide. However, pretreatment of cells with N-ethylmaleimide, 0.1 mM peracetic acid or performic acid, with or without azide, inhibited arachidonate incorporation into phospholipids but not neutral lipids. In chase experiments, peracetate also inhibited transfer of arachidonate from neutral lipids to phospholipids. To investigate a possible site of this inhibition of arachidonate transfer into phospholipids by percarboxylic acids, we assayed a repair enzyme, arachidonoyl CoA: 1-palmitoyl-sn-glycero-3-phosphocholine acyl transferase (EC 2.3.1.23). As in intact cells, phospholipid biosynthesis was inhibited more by N-ethylmalemide and peracetic acid than by hydrogen peroxide, cumene hydroperoxide, and t-butyl hydroperoxide. Peracetic acid was the only active inhibitor among ethanol and its oxidized products studied and may deserve further examination in ethanol toxicity.  相似文献   

15.
In 3- and 14-day-old seedlings and in the leaves of Calendula officinalis the following sterols were identified: cholestanol, campestanol, stigmastanol, cholest-7-en-3-β-ol, 24-methylcholest-7-en-3β-ol, stigmast-7-en-3β-ol, cholesterol, campesterol, sitosterol, 24-methylcholesta-5,22-dien-3β-ol, 24-methylenecholesterol, stigmasterol and clerosterol. Sitosterol was predominant in young and stigmasterol in old tissues. Young tissues contained relatively more campesterol but in old tissues a C28Δ5,22 diene was present suggesting transformation of campesterol to its Δ5,22 analog, similar to that of sitosterol to stigmasterol. All the identified sterols were present as free compounds and also in the steryl esters, glucosides, acylated glucosides and water-soluble complexes. The variations in the amounts of these fractions in the embryo axes and cotyledons of 3- and 14-day-old seedlings and the distribution of individual sterols among the fractions are discussed.  相似文献   

16.
Remodeling of rat hepatocyte phospholipids by selective acyl turnover   总被引:2,自引:0,他引:2  
Acyl turnover of rat hepatocyte phospholipids and triacylglycerols was assessed by incubating the cells in media containing 40% H2(18)O and measuring the time-dependent incorporation of 18O into ester carbonyls by gas chromatography-mass spectrometry of hydrogenated methyl esters. Incorporation of 18O into 22-carbon acyl groups was low in phosphatidylcholine, phosphatidylinositol, and phosphatidylserine, whereas in phosphatidylethanolamine, it was about the same as in the other acyl groups. Incorporation of 18O into individual molecular species of phosphatidylcholine and phosphatidylethanolamine was determined after phospholipase C hydrolysis, derivatization to dinitrobenzoates, and separation by high-performance liquid chromatography. In most molecular species, acyl groups at the sn-1 and sn-2 positions became 18O-labeled at drastically different rates, indicating remodeling through deacylation-reacylation. Molecular species expected to arise de novo from acylation of glycerophosphate exhibited similar rates of 18O incorporation at the sn-1 and sn-2 positions. The data suggest that hepatocyte phospholipids are continually synthesized, remodeled by deacylation-reacylation at specific turnover rates up to 10-15%/h, and degraded. This acyl turnover probably does not involve the majority of intracellular unesterified fatty acids whose 18O incorporation was found to be very low. In contrast, the oxygens of extracellular unesterified fatty acids were readily exchanged with the media. This exchange was enzyme-catalyzed, possibly by lipases released into the media from damaged cells. Incorporation of 18O into exogenously added fatty acids was also rapid and resulted in enhanced uptake of 18O-labeled fatty acids into cellular lipids, primarily triacylglycerols and phosphatidylcholine, without drastic change of the intracellular free fatty acid pool.  相似文献   

17.
Biodiesels are mostly produced from lipid transesterification of vegetable oils, including those from soybean, jatropha, palm, rapeseed, sunflower, and others. Unfortunately, transesterification of oil produces various unwanted side products, including steryl glucosides (SG), which precipitate and need to be removed to avoid clogging of filters and engine failures. So far, efficient and cost-effective methods to remove SGs from biodiesel are not available. Here we describe for the first time the identification, characterization and heterologous production of an enzyme capable of hydrolyzing SGs. A synthetic codon-optimized version of the lacS gene from Sulfolobus solfataricus was efficiently expressed and purified from Escherichia coli, and used to treat soybean derived biodiesel containing 100 ppm of SGs. After optimizing different variables, we found that at pH 5.5 and 87 °C, and in the presence of 0.9 % of the emulsifier polyglycerol polyricinoleate, 81 % of the total amount of SGs present in biodiesel were hydrolyzed by the enzyme. This remarkable reduction in SGs suggests a path for the removal of these contaminants from biodiesel on industrial scale using an environmentally friendly enzymatic process.  相似文献   

18.
The lecithin-cholesterol acyl transferase (LCAT) activity in rat mesenteric lymph was examined as a possible source of chylomicron cholesteryl ester. Lymph activity was only 2-3% of rat serum activity. Removal of d less than 1.006 lipoproteins increased lymph LCAT activity, but only to 6-8% of that of serum. Relative to total cholesterol in the d greater than 1.08 g/ml fractions, lymph LCAT activity in lymph from fasting rats was less than serum, but in lymph from nonfasting rats the ratio LCAT/HDL-cholesterol reached levels greater than serum, suggesting a contribution of enzyme from the gut. Both LCAT activity and HDL concentration in mesenteric lymph increased during feeding. Subfractions of lymph that inhibited serum LCAT were: chylomicrons, VLDL, chylomicron lipid, VLDL apoprotein, and HDL apoprotein. In the rat, the low LCAT activity of mesenteric lymph was in part due to the low enzyme concentration present, and the activity was apparently lowered further by lipid-rich lipoproteins that inhibited the reaction. Enzyme inhibition due to the apoprotein fractions of lipoproteins is probably minor in the rat in vivo.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号