首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2010年10月26日-2011年4月18日在川西亚高山地区季节性冻融期间,选择典型的红桦-岷江冷杉林,采用凋落物分解袋法调查了不同网孔(0.02、0.125、1和3 mm)凋落物分解袋内的凋落物质量损失,分析微型、中型和大型土壤动物对红桦凋落叶分解的贡献.结果表明:在季节性冻融期间,0.02、0.125、1和3 mm分解袋内的红桦凋落叶质量损失率分别为11.8%、13.2%、15.4%和19.5%,不同体径土壤动物对红桦凋落叶质量损失的贡献率为39.5%;不同孔径凋落物袋内土壤动物的类群和个体相对密度与凋落叶的质量损失率的变化趋势相对一致.在季节性冻融的初期、深冻期和融化期,不同土壤动物对红桦凋落叶质量损失的贡献率为大型土壤动物(22.7%)>中型土壤动物(11.9%)>微型土壤动物(7.9%).季节性冻融期间土壤动物活动是影响川西亚高山森林凋落物分解的重要因素之一.  相似文献   

2.
Biodiversity is a major driver of numerous ecosystem functions. However, consequences of changes in forest biodiversity remain difficult to predict because of limited knowledge about how tree diversity influences ecosystem functions. Litter decomposition is a key process affecting nutrient cycling, productivity, and carbon storage and can be influenced by plant biodiversity. Leaf litter species composition, environmental conditions, and the detritivore community are main components of the decomposition process, but their complex interactions are poorly understood. In this study, we tested the effect of tree functional diversity (FD) on litter decomposition in a field experiment manipulating tree diversity and partitioned the effects of litter physiochemical diversity and the detritivore community. We used litterbags with different mesh sizes to separate the effects of microorganisms and microfauna, mesofauna, and macrofauna and monitored soil fauna using pitfall traps and earthworm extractions. We hypothesized that higher tree litter FD accelerates litter decomposition due to the availability of complementary food components and higher activity of detritivores. Although we did not find direct effects of tree FD on litter decomposition, we identified key litter traits and macrodetritivores that explained part of the process. Litter mass loss was found to decrease with an increase in leaf litter carbon:nitrogen ratio. Moreover, litter mass loss increased with an increasing density of epigeic earthworms, with most pronounced effects in litterbags with a smaller mesh size, indicating indirect effects. Higher litter FD and litter nutrient content were found to increase the density of surface‐dwelling macrofauna and epigeic earthworm biomass. Based on structural equation modeling, we conclude that tree FD has a weak positive effect on soil surface litter decomposition by increasing the density of epigeic earthworms and that litter nitrogen‐related traits play a central role in tree composition effects on soil fauna and decomposition.  相似文献   

3.
桉-桤不同混合比例凋落物分解过程中 土壤动物群落动态   总被引:2,自引:1,他引:2  
采用凋落物分解袋法研究了10:0(TⅠ)、7:3(TⅡ)5:5(TⅢ)、3:7(TⅣ)和0:10(TV)巨桉(Eucalyptus grandis)和台湾桤木(Alnus formosana)混合凋落物分解过程中的土壤动物群落特征.从5种类型、3种规格的810只凋落袋中共收集土壤动物75651只,隶属2门10纲20目,其中弹尾目(Collembola)和蜱螨目(Acarina)为优势类群.土壤动物个体数最高是7-8月,大型土壤动物个体数最高是7月,中小型土壤动物个体数最高是7-8月.大型、中小型土壤动物类群数各月间均波动较小.与30目和6目相比,260目网袋中弹尾目和蜱螨目等中小型土壤动物数量更高.相对台湾桤木(TV)而言,巨桉(TⅠ)凋落物中弹尾目数量更多.啮虫目(Psocoptera)在台湾桤木(TV)凋落物中的数量远远高于其它凋落物,后孔寡毛目(Opisthopora)在混合凋落物中数量较高.不同比例的凋落物混合可改变凋落物中土壤动物的数量和组成.桤木、混合凋落物中大型土壤动物的个体数高于巨桉凋落物,而且上述凋落物的分解速率亦明显快于巨桉凋落物,这意味着大型土壤动物的活动可加速凋落物的分解.因此,在巨桉人工纯林中混栽台湾桤木,可显著提高大型土壤动物的数量,促进凋落物的分解.  相似文献   

4.
Several impacts arising from anthropogenic activities hinder ecosystem properties, but the effects of habitat area size on ecosystem functioning remain little known. We aimed to evaluate the effects of area size, and the associated abundance and species richness of collembola, oribatid mites and other arthropods on litter decomposition, phosphorus and nitrogen release within tropical forests. We designed a natural mesocosm experiment with plots varying in area size (0.16 – 3.24 m2), with both a control and a faunal limitation treatment (naphthalene addition). After 240 days we found lower litter decomposition and higher phosphorus release (both about 30%) in litterbags from the faunal limitation treatment. However, variations on these ecosystem properties were not related to area size, arthropod richness or abundance in this treatment, likely because of the loss of key species. Conversely, plots without faunal limitation showed a positive linear effect of area size on decomposition, and interactive effects among area size and collembolan richness, abundance and other arthropod richness. The larger the area, the smaller the positive role of collembola and other arthropod richness on decomposition, while the opposite pattern occurred for collembolan abundance. The indirect effects of arthropods on decomposition have a more significant role within smaller areas, which have a restricted microbial community with a lower array of fungal enzymes and foraging strategies available. As far as we know, this is the first evidence that the role of arthropods in decomposition may be mediated by area size, but only when arthropod biodiversity has not been reduced. We highlight the need for further assessments of these relationships in larger scales, while also measuring microbial communities, as the impact of biodiversity loss on ecosystem functioning may be even greater when coupled with habitat loss.  相似文献   

5.
The potential impacts of changes in precipitation patterns associated with global climate change on the relationship between soil community diversity and litter decomposition were investigated. For a period of ca. 5 months, two decomposer communities in litterbags (1000 and 45 μm mesh size) containing spruce litter were subjected to two irrigation treatments: constant and fluctuating (drying/rewetting) moisture conditions. The latter were expected to induce moisture stress on the decomposer communities. The two mesh sizes were used to exclude different faunal components from the decomposer communities. The 1000 μm mesh excluded only the macrofauna, whereas the 45 μm mesh excluded both the macro- and mesofauna. In the short-term perspective of the present study, mesofauna abundance showed no response to imposed fluctuating moisture conditions. Irrespective of the presence of mesofauna, mass loss, microbial biomass and the control mechanisms, regulating carbon mineralization appeared unaffected by fluctuating moisture conditions. The reduction in the functional/structural diversity of the decomposer communities in the 45 μm litterbags resulted in strongly increased Nematoda abundance but it did not alter the response of Nematoda to fluctuating moisture conditions. Processes in the nitrogen (N)-cycle and mass loss were sensitive indicators of changes in the structural and functional complexity of decomposer communities. However, a negative effect of fluctuating moisture conditions on extractable N was coupled to the presence of mesofauna. Extremes in rainfall patterns, generated by climate change, may have a negative impact on the availability of nutrients, particularly N, for plants. This effect could be amplified by an additional impoverishment in the structural and functional complexity of the respective decomposer communities.  相似文献   

6.
《农业工程》2014,34(5):290-293
The litterbags with different mesh sizes (0.125, 1.000 and 3.000 mm) were placed on the forest floor in October 2010, and collected after each of the three stages in the freeze-thaw season (OF: the onset of freezing stage; DF: the deeply frozen stage; and TS: the thawing stage). Over the whole freeze-thaw period, 14.01% ± 1.26, 20.64% ± 1.61 and 30.89% ± 0.70 of N released from fir litter in the litterbags with 0.125, 1.000 and 3.000 mm, respectively. The contributions of meso- and macro-fauna to N releases were 21.45% ± 3.80 and 33.18% ± 5.39, respectively. Macro-fauna contributed more to N releases than meso-fauna regardless of decomposition stages in the freeze-thaw period. Compared with other stages in the freeze-thaw period, higher contributions of both macro- and meso-fauna were observed at DF stage, and the lower contributions at TS stage. The results suggested that soil fauna have a great contribution to N releases during litter decomposition in the freeze-thaw period, but the contribution was significantly affected by temperature dynamics and the body size of soil fauna.  相似文献   

7.
土壤动物是凋落物分解、养分转化过程的重要调节者,全球变化驱动的氮沉降与降雨变化通过改变其分解环境和土壤动物群落结构,进而影响凋落物分解进程。为了探究中小型土壤动物对凋落物分解的贡献受氮沉降和降雨变化的影响,本研究利用不同网孔(2 mm和0.01 mm)的凋落物分解网袋法,以建群种短花针茅为研究对象进行野外分解试验。试验采用裂区设计,主区为自然降雨(CK)、增雨30%(W)和减雨30%(R)3个水分处理,副区为0(N0)、30(N30)、50(N50)和100(N100) kg·hm-2·a-1 4个氮素处理。结果表明: 1)降雨变化显著影响了凋落物的分解速率,增雨处理中凋落物的分解速率加快,且随着氮添加浓度的升高,凋落物重量残留率逐渐降低,100 kg·hm-2·a-1时分解速度最快;在减雨处理与对自然降雨处理中凋落物的分解速率则呈先降低后升高的趋势,在50 kg·hm-2·a-1时分解速度最快。氮沉降和降雨变化对凋落物分解无显著的交互作用。2)在整个分解过程中,共捕获中小型土壤动物1577只,隶属于1门3纲13目(含亚目)49科,优势类群为蜱螨目、鞘翅目幼虫和弹尾目;增雨施氮提升了中小型土壤动物群落的类群数和个体数。3)凋落物重量残留率与中小型土壤动物类群数、个体数均呈极显著负相关,增雨处理整体提高了中小型土壤动物对凋落物分解的贡献率。综上,荒漠草原上中小型土壤动物对凋落物的分解具有积极作用,且水分和氮素输入的增加提高了中小型土壤动物的类群数及个体数,增加了其对凋落物分解的贡献;在水分不足时,过量的氮素会抑制中小型土壤动物群落的发展,导致中小型土壤动物对凋落物分解的贡献降低。  相似文献   

8.
To what extent microbial community composition can explain variability in ecosystem processes remains an open question in ecology. Microbial decomposer communities can change during litter decomposition due to biotic interactions and shifting substrate availability. Though relative abundance of decomposers may change due to mixing leaf litter, linking these shifts to the non-additive patterns often recorded in mixed species litter decomposition rates has been elusive, and links community composition to ecosystem function. We extracted phospholipid fatty acids (PLFAs) from single species and mixed species leaf litterbags after 10 and 27 months of decomposition in a mixed conifer forest. Total PLFA concentrations were 70% higher on litter mixtures than single litter types after 10 months, but were only 20% higher after 27 months. Similarly, fungal-to-bacterial ratios differed between mixed and single litter types after 10 months of decomposition, but equalized over time. Microbial community composition, as indicated by principal components analyses, differed due to both litter mixing and stage of litter decomposition. PLFA biomarkers a15∶0 and cy17∶0, which indicate gram-positive and gram-negative bacteria respectively, in particular drove these shifts. Total PLFA correlated significantly with single litter mass loss early in decomposition but not at later stages. We conclude that litter mixing alters microbial community development, which can contribute to synergisms in litter decomposition. These findings advance our understanding of how changing forest biodiversity can alter microbial communities and the ecosystem processes they mediate.  相似文献   

9.
不同坡位下巨桉人工林土壤动物群落特征   总被引:1,自引:0,他引:1  
赵瑜  钟宇  张健  杨万勤 《应用生态学报》2010,21(9):2367-2374
为了解坡位对巨桉人工林土壤动物群落结构的影响,2009年1-10月,调查了四川盆地低山丘陵区不同坡位巨桉人工林的土壤动物群落.从3个巨桉人工林共获取土壤动物34741只,鉴定出146个类群,隶属于7门16纲31目;巨桉人工林下土壤动物的群落组成、营养类群、多样性及其季节动态基本都存在坡位变化,大型和中小型干生土壤动物的个体数、大型土壤动物的腐食性类群和中小型干生土壤动物的杂食性类群数量表现出随坡位的下降而逐渐增多的趋势,说明土壤动物响应了坡位引起的土壤生态因子的变化.其中大型土壤动物的腐食性类群和中小型湿生土壤动物的多样性显示出显著的坡位差异,表明这两个指标能指示巨桉人工林不同坡位生境的异质性.总的看来,巨桉人工林坡位因子对土壤动物群落的分布及结构特征具有一定影响,但作用尚不显著.  相似文献   

10.
Litter quality and diversity are major factors structuring decomposer communities. However, little is known on the relationship between litter quality and the community structure of soil protists in tropical forests. We analyzed the diversity, density, and community structure of a major group of soil protists of tropical montane rainforests, that is, testate amoebae. Litterbags containing pure and mixed litter of two abundant tree species at the study sites (Graffenrieda emarginata and Purdiaea nutans) differing in nitrogen concentrations were exposed in the field for 12?months. The density and diversity of testate amoebae were higher in the nitrogen-rich Graffenrieda litter suggesting that nitrogen functions as an important driving factor for soil protist communities. No additive effects of litter mixing were found, rather density of testate amoebae was reduced in litter mixtures as compared to litterbags with Graffenrieda litter only. However, adding of high-quality litter to low-quality litter markedly improved habitat quality, as evaluated by the increase in diversity and density of testate amoebae. The results suggest that local factors, such as litter quality, function as major forces shaping the structure and density of decomposer microfauna that likely feed back to decomposition processes.  相似文献   

11.
《农业工程》2014,34(2):110-115
In most terrestrial ecosystems, the majority of aboveground net primary productivity enters the decomposition system as plant litter. The decomposition of plant litter plays a critical role in regulating build up of the forest soil organic matter, releasing of nutrients for plant growth, and influencing the carbon cycling. Soil fauna are considered to be an important factor in the acceleration litter decomposition and nutrient transformations. Mechanisms of soil faunal contribution to litter decomposition include digestion of substrates, increase of surface area through fragmentation and acceleration of microbial inoculation into litter. The Pinus koraiensis mixed broad-leaved forest is one of the typical forest vegetation types in Changbai Mountain. Previously, major studies carried here were focused on climate, soil and vegetation; however, on litter decomposition and the role of soil fauna in this forest ecosystem were limited. In this paper, we conducted a litter decomposition experiment using litterbag method to explore the contribution of soil fauna on litter decomposition and provide a scientific basis for maintaining a balanced in P. koraiensis mixed broad-leaved forest in Changbai Mountains. During 2009 and 2010, we used litterbags with different mesh sizes to examine the decomposition of two dominant tree species (P. koraiensis, Fraxinus mandshurica) in studied site. The results showed that the process of litter decomposition can be separated into two apparent stages. The initial decomposition process at former six months was slow, while accelerated the final six months. The former six months (from October 2009 to April 2010) was winter and spring. There was low temperature and almost no activity of soil fauna and microbes. The final six months (from June to October 2010), decomposition rates increased. In summer and autumn, both temperature and moisture increases, abundance of soil fauna was much than before and was most active. The remaining mass of P. koraiensis was higher than that of F. mandshurica in two mesh size litterbags after 1 year decomposition, meanwhile litter in 2 mm mesh size litterbag had higher decomposition rate than that of 0.01 mm for two species litter. The Collembola, Acari, Enchytraeidae Lithobiomorpha and Diptera larvae were mainly fauna groups in the litterbags. The composition of soil fauna community was difference between P. koraiensis and F. mandshurica during litter decomposition. 24 different soil fauna groups and 1431 individual were obtained in P. koraiensis litterbags; Isotomidae, Tomoceridae and Oribatida were dominant groups; while 31 different soil fauna groups and 1255 individual were obtained in F. mandshurica litterbags; Isotomidae, Hypogastruridae Oribatida and Mesostigmata were dominant groups. The rate of litter decomposition was positively correlated with the individual and group density of soil fauna. Contribution rate to litter decomposition was 1.70% for P. koraiensis and 4.83% for F. mandshurica. Repeated measures ANOVA showed that litter species, time and soil fauna had a significant impact on the rate of litter decomposition (P < 0.05). Our results suggested that soil fauna could accelerate litter decomposition and, consequently, nutrient cycling in P. koraiensis mixed broad-leaved forest, Changbai Mountains.  相似文献   

12.
中小型土壤动物是生态系统的重要组成部分。为了查明高寒草甸生态系统的中小型土壤动物群落特征及其变化动态,2008至2009年间,利用定位观测方法对青藏东缘若尔盖高寒草甸的中小型土壤动物进行了5次调查。结果为:(1)捕获中小型土壤动物9318只,隶属于3门7纲88类;平均密度为39941.67 个/m2;大类群中,线虫纲(Nematoda)的个体数占总个体数的91.50%,蛛形纲(Arachnida)(主要为蜱螨目)、弹尾纲(Collembola)、寡毛纲(Oligochaeta)和昆虫纲(Insecta)分别占3.73%、2.55%、1.12%和1.07%;(2)土壤动物的群落密度、类群数、密度-类群指数、Shannon指数、Simpson指数和Pielou指数均有显著的季节差异(P<0.01或P<0.05),表明高寒草甸生态系统的中小型土壤动物群落多样性对季节变化具有高度敏感性;(3)线虫纲、蛛形纲、弹尾纲、寡毛纲和昆虫纲的密度变化趋势基本一致,并均有显著的季节差异(P<0.05);(4)各季节间的Sorensen群落相似性系数低于Morisita-Horn相似性系数,表明季节变化对群落物种组成的影响相对较强,对优势类群个体密度的影响相对较弱;(5)中小型土壤动物群落的类群数和密度,以及弹尾纲、寡毛纲和昆虫纲的密度均与温度有显著的负相关(P<0.01或P<0.05),线虫和蛛形纲的密度与温度和降水均有不显著的负相关(P>0.05)。研究结果表明若尔盖高寒草甸的中小型土壤动物群落组成和多样性具有明显的季节特征,而温度是影响其季节变化的最主要气候因素;另外,从温度、降水及其年间变化对中小型土壤动物的影响可知全球气候变暖在短期内将会对高寒草甸土壤动物群落产生不利的影响。  相似文献   

13.
受全球变化的影响生物多样性的丧失日益严重,及时了解凋落物物种多样性及其组成如何直接或者通过调节微生物群落来间接影响凋落物分解已经成为生态学领域的热点问题之一。在呼伦贝尔典型草原区,羊草(Leymus chinensis)为原生群落建群种,茵陈蒿(Artemisia capillaris)、麻花头(Serratula centauroides)、二裂委陵菜(Potentilla bifurca)在退化及恢复群落中的多度均较大,本研究以此4种植物的凋落物为研究对象,在两倍于当前大气CO2浓度(800 μmol/mol)条件下,通过嵌套实验设计来研究凋落物多样性(凋落物组成)对凋落物质量、C、N残余率和残余C/N的影响,并深入分析凋落物初始性质以及土壤革兰氏阳性菌(G+)、革兰氏阴性菌(G-)、细菌(B)、真菌(F)及土壤总微生物磷脂脂肪酸(Phospholipid Fatty Acid,PLFA)含量和F/B对凋落物分解的影响。结果表明:(1)凋落物多样性及组成对凋落物质量、C、N残余率以及残余C/N均具有显著影响;凋落物组成对G+ PLFAs含量具有显著影响;(2)冗余分析(Redundancy Analysis,RDA)结果表明凋落物组成对凋落物分解和土壤微生物群落相关指标的影响高于凋落物多样性;(3)结构方程模型(Structural Equation Model,SEM)结果表明凋落物初始木质素含量和初始C/N均对凋落物分解具有显著影响,其中凋落物初始木质素含量起主导作用,其还可通过对土壤真菌PLFAs含量的影响来间接影响凋落物N残余率和残余C/N。所得结果可为大气CO2浓度升高条件下退化草原生态系统的物质循环特征的预测乃至草原生态系统功能的合理评估提供数据支持。  相似文献   

14.
We studied the contribution of oribatid mites in the dynamics of litter decomposition in an experiment using litterbags of three different mesh sizes (20 microns, 250 microns, and 1 cm). The experiment was carried out at a primary forest (FLO), a secondary forest (SEC), and at two polyculture systems (POA and POC). We compared the weight loss of the leaves of Vismia guianensis and the changes of the oribatid mite species community. We processed the samples after 26, 58, 111, 174, 278, and 350 days from the beginning of the experiment by using the Berlese-Tullgren to extract the animals. We hypothesized that: 1. the abundance and diversity of oribatid mites would exert an influence in the decomposition process; 2. there would be a successional changing of the species during decomposition; and 3. there would be differences in the colonization of species in relation to the mesh size of the litterbags. A total of 95 species of oribatid mites was found. The biomass data was the first registered for the Amazon region. The great dominance of oribatid mites did not exert an influence in the decomposition process. There was not a successional changing of the species during the course of the decomposition process, unlike those shown by results obtained in the temperate forest, because we found neither early colonizers nor species that prefer advanced decomposition stages. The oribatid mite community, which developed in the litterbags under tropical conditions, was atypical of the normal stages of leaf litter breakdown and decomposition. There were differences in the colonization of species in relation to the mesh size of the litterbags. These differences were very closely related to the specific habits and habitat of the dominant species.  相似文献   

15.
Lemons A  Clay K  Rudgers JA 《Oecologia》2005,145(4):595-604
Mutualisms can strongly affect the structure of communities, but their influence on ecosystem processes is not well resolved. Here we show that a plant–microbial mutualism affects the rate of leaf litter decomposition using the widespread interaction between tall fescue grass (Lolium arundinaceum) and the fungal endophyte Neotyphodium coenophialum. In grasses, fungal endophytes live symbiotically in the aboveground tissues, where the fungi gain protection and nutrients from their host and often protect host plants from biotic and abiotic stress. In a field experiment, decomposition rate depended on a complex interaction between the litter source (collected from endophyte-infected or endophyte-free plots), the decomposition microenvironment (endophyte-infected or endophyte-free plots), and the presence of mesoinvertebrates (manipulated by the mesh size of litter bags). Over all treatments, decomposition was slower for endophyte-infected fescue litter than for endophyte-free litter. When mesoinvertebrates were excluded using fine mesh and litter was placed in a microenvironment with the endophyte, the difference between endophyte-infected and endophyte-free litter was strongest. In the presence of mesoinvertebrates, endophyte-infected litter decomposed faster in microenvironments with the endophyte than in microenvironments lacking the endophyte, suggesting that plots differ in the detritivore assemblage. Indeed, the presence of the endophyte in plots shifted the composition of Collembola, with more Hypogastruridae in the presence of the endophyte and more Isotomidae in endophyte-free plots. In a separate outdoor pot experiment, we did not find strong effects of the litter source or the soil microbial/microinvertebrate community on decomposition, which may reflect differences between pot and field conditions or other differences in methodology. Our work is among the first to demonstrate an effect of plant–endophyte mutualisms on ecosystem processes under field conditions.  相似文献   

16.
 该文通过野外试验和室内模拟相结合,系统研究了西双版纳热带雨林生态系统混合凋落叶分解过程中的酶活性动态。野外试验采用网袋法(1 mm和100μm网眼)限制土壤动物的出入,室内模拟试验采用灭菌-接种法控制生物组成,从而研究不同生物组成或食物链结构条件下,凋落叶分解过程中的酶活性变化,以及酶活性与分解进程之间的动态响应。研究结果表明,转化酶和淀粉酶在有机残体的最初分解阶段发挥重要作用,参与易分解成分的转化和分解,这些酶与凋落叶分解进程之间存在显著的负相关性,且参与分解的生物组成越简单(缩短食物链),这些酶活性越高,是微生物在分解初期对底物加以利用的关键酶类; Cx酶、 β-葡萄糖苷酶、木聚糖酶活性均在分解中期达到高峰,多酚氧化酶在分解后期迅速上升,对凋落叶中、后期木质素的分解起到关键性的作用,这些酶与凋落叶分解进程之间存在显著的正相关性,且参与分解的生物组成越复杂(延长食物链),这些酶活性越高,是微生物在分解后期对底物进一步利用的关键酶类;与C循环有关的酶类都可以作为有机物质分解进程的重要指标,与分解进程之间存在一定的动态响应,有机残体的分解过程实质上是一个酶解过程。  相似文献   

17.
Grazing can modify vegetation structure and species composition through selective consumption, modifying plant litter quality and hence decomposability. In most grasslands, moderate stocking rates maintain a mosaic of high‐quality patches, preferentially used by herbivores (‘grazing lawns’), and low‐quality tall patches, which are avoided. In grazing lawns decomposition rates can be accelerated because of the higher litter quality of its component species and, besides, through the indirect effect of increased nutrient availability in soil. We aimed at testing this indirect effect using standard materials, comparing their decomposition in grazing lawns, open and closed tall tussock grasslands. We selected 10 patches of each type and sampled floristic composition, soil variables and cattle dung deposition. Standard materials were filter paper and Poa stuckertii litter. We prepared litterbags of 0.3 mm (thin mesh) and 1 mm mesh size (coarse mesh). Samples were incubated for 65 days in two ways: above‐ground (thin and coarse mesh) and below‐ground (only thin mesh), aiming at analysing the conditions for decomposition for surface litter and buried litter or dead roots, respectively. Physical and chemical soil variables did not differ among patch types, despite the differences in species composition. Closed tussock grasslands showed the lowest dung deposition, confirming the less intense use of these patches. Soil nitrogen availability (N‐NO3 and N‐NH4+) was not significantly different among patch types. Each standard material followed a different decomposition pattern across patch types. For above‐ground incubated samples, Poa litter decomposed significantly faster in lawns, and slower in open tussock grasslands. Filter paper decomposed significantly faster in closed tussock grasslands than in the other two patch types. Decomposition of below‐ground incubated samples did not significantly differ among patch types, in line with results for soil variables. Above‐ground differences in decomposition may be associated with differences in microclimatic conditions resulting from differences in vegetation structure.  相似文献   

18.
Tierra del Fuego, Argentina (55°S), receives increased solar ultraviolet‐B radiation (UV‐B) as a result of Antarctic stratospheric ozone depletion. We conducted a field study to examine direct and indirect effects of solar UV‐B radiation on decomposition of Gunnera magellanica, a native perennial herb, and on the native community of decomposer organisms. In general, indirect effects of UV‐B mostly occur due to changes in the chemical composition of litter, whereas direct effects during decomposition result from changes in decomposer organisms and/or differences in the photochemical breakdown of litter. We designed a full‐factorial experiment using senescent leaves that had received either near‐ambient or attenuated UV‐B during growth. The leaves were distributed in litterbags and allowed to decompose under near‐ambient or reduced solar UV‐B during the growing season. We evaluated initial litter quality, mass loss, and nutrient release of decomposing litter, and microbial colonization of both initial litter and decomposed litter. We found that litter that decomposed under near‐ambient UV‐B had significantly less mass loss than litter that decomposed under reduced UV‐B. The UV‐B conditions received by plants during growth, which did not affect mass loss and nutrient composition of litter, affected fungal species composition but in different ways throughout the decomposition period. Before the decomposition trial, Beauveria bassiana and Penicillium frequentans were higher under reduced UV‐B, whereas Cladosporium herbarum and pigmented bacteria were more common under the near‐ambient compared to the reduced UV‐B treatment. After the decomposition period, leaves that had grown under reduced UV‐B showed higher frequency of Penicillium thomii and lower frequency of Trichoderma polysporum than leaves that had grown under near‐ambient conditions. The UV‐B condition received during decomposition also affected fungal colonization, with Penicillium chrysogenum being more frequent in leaves that had decomposed under reduced UV‐B, while the other species were not affected. Our results demonstrate that, in this ecosystem, the effects of UV‐B radiation on decomposition apparently occurred mostly through changes in the fungal community, while changes in photochemical breakdown appeared to be less important.  相似文献   

19.
熊燕  刘强  陈欢  彭少麟 《生态学杂志》2005,24(10):1120-1126
2001年12月~2002年12月,采用不同孔径分解凋落叶样袋法,对鼎湖山季风常绿阔叶林3类凋落叶的分解进行了研究,并对落叶分解过程中凋落叶袋内和袋下土样中的土壤动物群落和多样性进行了调查。结果表明,3种孔径袋内凋落叶的分解速率为大孔>中孔>微孔;混合凋落叶的分解速率大于单种凋落叶;蜱螨目在凋落叶分解的整个过程中相对数量都较高,弹尾目在凋落叶的分解过程中在凋落叶袋和土壤间移动,数量变化较大。凋落叶袋内大、中型土壤动物的个体数量在分解前期较多,中、小型土壤动物在分解的中期数量剧增;凋落叶袋内土壤动物的个体数量、密度以及多样性指数都随着落叶的分解而增加,9月最高;土壤样内则在分解的前期较高,以后逐渐降低。凋落叶的分解和土壤动物群落动态及多样性受凋落叶基质质量以及样地温度、降雨量等综合因素的影响。  相似文献   

20.
Decomposition of litter is greatly influenced not only by its chemical composition but also by activities of soil decomposers. By using leaf litter from 15 plant species collected from semi-natural and improved grasslands, we examined (1) how interspecific differences in the chemical composition of litter influence the abundance and composition of soil bacterial and fungal communities and (2) how such changes in microbial communities are related to the processes of decomposition. The litter from each species was incubated in soil of a standard composition for 60 days under controlled conditions. After incubation, the structure of bacterial and fungal communities in the soil was examined using phospholipid fatty-acid analysis and denaturing gradient gel electrophoresis. Species from improved grasslands had significantly higher rates of nitrogen mineralization and decomposition than those from semi-natural grasslands because the former were richer in nitrogen. Litter from improved grasslands was also richer in Gram-positive bacteria, whereas that from semi-natural grasslands was richer in actinomycetes and fungi. Nitrogen content of litter also influenced the composition of the fungal community. Changes in the composition of both bacterial and fungal communities were closely related to the rate of litter decomposition. These results suggest that plant species greatly influence litter decomposition not only through influencing the quality of substrate but also through changing the composition of soil microbial communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号