首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
sRNAs that act by base pairing were first discovered in plasmids, phages and transposons, where they control replication, maintenance and transposition. Since 2001, however, computational searches were applied that led to the discovery of a plethora of sRNAs in bacterial chromosomes. Whereas the majority of these chromsome-encoded sRNAs have been investigated in Escherichia coli, Salmonella and other Gram-negative bacteria, only a few well-studied examples are known from Gram-positive bacteria. Here, the author summarizes our current knowledge on plasmid- and chromosome-encoded sRNAs from Gram-positive species, thereby focusing on regulatory mechanisms used by these RNAs and their biological role in complex networks. Furthermore, regulatory factors that control the expression of these RNAs will be discussed and differences between sRNAs from Gram-positive and Gram-negative bacteria highlighted. The main emphasis of this review is on sRNAs that act by base pairing (i.e., by an antisense mechanism). Thereby, both plasmid-encoded and chromosome-encoded sRNAs will be considered.  相似文献   

2.
How to find small non-coding RNAs in bacteria   总被引:11,自引:0,他引:11  
Vogel J  Sharma CM 《Biological chemistry》2005,386(12):1219-1238
  相似文献   

3.
Tuberculosis (TB) is a major global health problem, infecting millions of people each year. The causative agent of TB, Mycobacterium tuberculosis, is one of the world’s most ancient and successful pathogens. However, until recently, no work on small regulatory RNAs had been performed in this organism. Regulatory RNAs are found in all three domains of life, and have already been shown to regulate virulence in well-known pathogens, such as Staphylococcus aureus and Vibrio cholera. Here we report the discovery of 34 novel small RNAs (sRNAs) in the TB-complex M. bovis BCG, using a combination of experimental and computational approaches. Putative homologues of many of these sRNAs were also identified in M. tuberculosis and/or M. smegmatis. Those sRNAs that are also expressed in the non-pathogenic M. smegmatis could be functioning to regulate conserved cellular functions. In contrast, those sRNAs identified specifically in M. tuberculosis could be functioning in mediation of virulence, thus rendering them potential targets for novel antimycobacterials. Various features and regulatory aspects of some of these sRNAs are discussed.  相似文献   

4.
5.
6.
The explosion in genomic sequence available in public databases has resulted in an unprecedented opportunity for computational whole genome analyses. A number of promising comparative-based approaches have been developed for gene finding, regulatory element discovery and other purposes, and it is clear that these tools will play a fundamental role in analysing the enormous amount of new data that is currently being generated. The synthesis of computationally intensive comparative computational approaches with the requirement for whole genome analysis represents both an unprecedented challenge and opportunity for computational scientists. We focus on a few of these challenges, using by way of example the problems of alignment, gene finding and regulatory element discovery, and discuss the issues that have arisen in attempts to solve these problems in the context of whole genome analysis pipelines.  相似文献   

7.
Small regulatory RNAs (sRNAs) have recently been shown to be the main controllers of several regulatory pathways. The function of sRNAs depends in many cases on the RNA-binding protein Hfq, especially for sRNAs with an antisense function. In this study, the genome of Borrelia burgdorferi was subjected to different searches for sRNAs, including direct homology and comparative genomics searches and ortholog- and annotation-based search strategies. Two new sRNAs were found, one of which showed complementarity to the rpoS region, which it possibly controls by an antisense mechanism. The role of the other sRNA is unknown, although observed complementarities against particular mRNA sequences suggest an antisense mechanism. We suggest that the low level of sRNAs observed in B. burgdorferi is at least partly due to the presumed lack of both functional Hfq protein and RNase E activity.  相似文献   

8.
9.
10.
Work in recent years has led to the recognition of the importance of small regulatory RNAs (sRNAs) in bacterial regulation networks. New high-throughput sequencing technologies are paving the way to the exploration of an expanding sRNA world in nonmodel bacteria. In the Vibrio genus, compared to the enterobacteriaceae, still a limited number of sRNAs have been characterized, mostly in Vibrio cholerae, where they have been shown to be important for virulence, as well as in Vibrio harveyi. In addition, genome-wide approaches in V. cholerae have led to the discovery of hundreds of potential new sRNAs. Vibrio splendidus is an oyster pathogen that has been recently associated with massive mortality episodes in the French oyster growing industry. Here, we report the first RNA-seq study in a Vibrio outside of the V. cholerae species. We have uncovered hundreds of candidate regulatory RNAs, be it cis-regulatory elements, antisense RNAs, and trans-encoded sRNAs. Conservation studies showed the majority of them to be specific to V. splendidus. However, several novel sRNAs, previously unidentified, are also present in V. cholerae. Finally, we identified 28 trans sRNAs that are conserved in all the Vibrio genus species for which a complete genome sequence is available, possibly forming a Vibrio “sRNA core.”  相似文献   

11.
12.
金黄色葡萄球菌(Staphylococcus aureus,S.aureus)是困扰全球公共卫生及人类健康的重要病原菌,其引起的各种临床感染与该菌表达的多种毒力因子密切相关,而这些毒力因子表达受到调节性因子的精确调控,在细菌致病机制中发挥着核心作用。非编码小RNA(Small non-coding RNA,s RNA)是基因表达的一类重要调节因子,可使细菌对环境因素做出反应,调节其应激适应性及毒力因子表达。但到目前为止,仅少数金黄色葡萄球菌s RNA的生物学功能得到阐述。本文将针对这些调节性s RNA的研究进展作一综述。  相似文献   

13.
14.
15.
16.
Small, non-coding bacterial RNAs (sRNAs) have been shown to regulate a plethora of biological processes. Up until recently, most sRNAs had been identified and characterized in E. coli. However, in the past few years, dozens of sRNAs have been discovered in a wide variety of bacterial species. Whereas numerous sRNAs have been isolated or detected through experimental approaches, most have been identified in predictive bioinformatic searches. Recently developed computational tools have greatly facilitated the efficient prediction of sRNAs in diverse species. Although the number of known sRNAs has dramatically increased in recent years, many challenges in the identification and characterization of sRNAs lie ahead.  相似文献   

17.
18.
Identifying Hfq-binding small RNA targets in Escherichia coli   总被引:3,自引:0,他引:3  
The Hfq-binding small RNAs (sRNAs) have recently drawn much attention as regulators of translation in Escherichia coli. We attempt to identify the targets of this class of sRNAs in genome scale and gain further insight into the complexity of translational regulation induced by Hfq-binding sRNAs. Using a new alignment algorithm, most known negatively regulated targets of Hfq-binding sRNAs were identified. The results also show several interesting aspects of the regulatory function of Hfq-binding sRNAs.  相似文献   

19.
20.
Regulatory small RNAs (sRNAs) have crucial roles in the adaptive responses of bacteria to changes in the environment. Thus far, potential regulatory RNAs have been studied mainly in marine picocyanobacteria in genetically intractable Prochlorococcus, rendering their molecular analysis difficult. Synechococcus sp. WH7803 is a model cyanobacterium, representative of the picocyanobacteria from the mesotrophic areas of the ocean. Similar to the closely related Prochlorococcus it possesses a relatively streamlined genome and a small number of genes, but is genetically tractable. Here, a comparative genome analysis was performed for this and four additional marine Synechococcus to identify the suite of possible sRNAs and other RNA elements. Based on the prediction and on complementary microarray profiling, we have identified several known as well as 32 novel sRNAs. Some sRNAs overlap adjacent coding regions, for instance for the central photosynthetic gene psbA. Several of these novel sRNAs responded specifically to environmentally relevant stress conditions. Among them are six sRNAs changing their accumulation level under cold stress, six responding to high light and two to iron limitation. Target predictions suggested genes encoding components of the light-harvesting apparatus as targets of sRNAs originating from genomic islands and that one of the iron-regulated sRNAs might be a functional homolog of RyhB. These data suggest that marine Synechococcus mount adaptive responses to these different stresses involving regulatory sRNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号