共查询到20条相似文献,搜索用时 15 毫秒
1.
Seiji Koide Hiroshi Onishi Masafumi Katayama Toshihiro Kai Sakae Yamagami 《Neurochemical research》1995,20(9):1115-1118
We previously reported a deficit of methionine enkephalin-like immunoreactivity (ME-LI), in the cerebral cortex, septal area, hippocampus, and striatum and the abnormal metabolism of opioid peptides in the hippocampus and striatum of seizure-susceptible El mice, which are involved in the pathogenesis of seizures. However, these findings suggest that the ME-LI does not necessarily reflect the bioactive methionine enkephalin (ME). Herein, we measured the biologically active peptide, ME excluding cross-reactive substances by using HPLC coupled with radioimmunoassay to clarify the abnormal function of enkephalinergic neurons in the El mouse brain. The ME content in 25-day-old El mice that had no seizures was significantly decreased in the hippocampus and septal area, as compared with corresponding regions in ddY mice (seizure-nonsusceptible; the mother strain of El). At the age of 50 days when El mice displayed abortive seizures, this content in both stimulated El[s] and nonstimulated El[ns] was significantly reduced in the septal area and cerebral cortex. At the age of 150 days when El mice exhibit tonic-clonic seizures, this content in both El[s] and El[ns] was significantly reduced in the septal area, cerebral cortex and striatum. These findings were generally compatible with our previous findings. This study further supports our hypothesis that a deficit of anticonvulsant endogenous ME, in the cerebral cortex, septal area, and hippocampus of seizuresusceptible El mice play an important role in the pathogenesis of seizures. 相似文献
2.
Endogenous methionine enkephalin may play an anticonvulsant role in the seizure-susceptible El mouse
Seiji Koide Hiroshi Onishi Masafumi Katayama Sakae Yamagami 《Neurochemical research》1993,18(12):1259-1262
After the intracisternal injection of three protease inhibitors which prevent the degradation of methionine enkephalin (amastatin, Des-Pro2-bradykinin, and phosphoramidon) and a mixture of these protease inhibitors, we investigated the effect on convulsive seizures in the seizure-susceptible El mouse. We also measured the cerebral methionine enkephalin content by high-performance liquid chromatography coupled with radioimmunoassay. Protease inhibitors significantly decreased both the incidence of seizures and the seizure score in El mice in a dose-dependent manner. This anticonvulsant effect was reversed by naloxone (2 mg/kg, sc). The cerebral methionine enkephalin content increased significantly after the administration of protease inhibitors in comparison with saline injection. These findings suggest that it was not protease inhibitors but instead increase of endogenous methionine enkephalin that reduced the incidence of seizures and the seizure score in El mice. Together with our previous data, the present findings support our hypothesis that a deficit in anticonvulsant endogenous methionine enkephalin is involved in the pathogenesis of seizures in the El mouse. 相似文献
3.
Opioid agonists were used to investigate the modulation of seizures in the seizure-susceptible El mouse. Morphine andd-Ala2-d-Leu5-enkephalin (DADLE) were injected subcutaneously or intracisternally as prototypic agonists for and opioid receptors. Systemic or intracisternal injection of both morphine and DADLE decreased the incidence of seizures and the seizure score in El mice in a dose-dependent manner. The anticonvulsant effects of morphine and DADLE were reversed by naloxone (2 mg/kg, s.c.). This implies that opioid agonists have anticonvulsant properties which are mediated by and opioid receptors. In conclusion, a deficit in endogenous opioid peptides, which act as anticonvulsants may play a significant role in the etiology or pathophysiology of seizures in the El mouse. 相似文献
4.
Distribution and characterization of synenkephalin immunoreactivity in the bovine brain and pituitary 总被引:3,自引:0,他引:3
The distribution of synenkephalin, the N-terminal fragment of proenkephalin, was studied in various parts of the bovine brain (globus pallidus, caudate nucleus, hypothalamus) and in the posterior pituitary by the use of a radioimmunoassay. The distribution of synenkephalin-immunoreactivity (IR) was compared to the distribution of Met-enkephalin-IR. Gel exclusion chromatography was used to examine the molecular forms of the immunoreactivities present in the tissues. The distribution of synenkephalin-IR was similar to the distribution of Met-enkephalin-IR, with a molar ratio of Met-enkephalin/synenkephalin ranging between 2.7 and 5.9. In all regions tested except the hypothalamus the synenkephalin-IR was present as a single species. However, in the hypothalamus a small amount of IR material (3% of the total synenkephalin-IR) was detected in fractions where larger Met-enkephalin-containing peptides eluted. Based on the concordance between the molar ratio of Met-enkephalin to synenkephalin found in the tissues and the molar ratio present in the sequence of adrenal proenkephalin, it is concluded that the brain and adrenal glands utilize a similar precursor for enkephalin biosynthesis. 相似文献
5.
Ultrastructural relation between cortical efferents and terminals containing enkephalin-like immunoreactivity in rat neostriatum 总被引:1,自引:0,他引:1
The interrelationships between cortical efferents and terminals containing enkephalin-like immunoreactivity (ELI) were examined by combining anterograde degeneration with electron microscopic immunocytochemistry in the adult rat neostriatum. Two days following unilateral removal of the cerebral cortex, the brains were fixed by aortic arch perfusion, then sectioned and processed for the immunocytochemical localization of an antiserum directed against methionine (Met5)-enkephalin. The observed relationships between the degenerating cortical efferents and immunocytochemically labeled terminals were of two types. In the first, the degenerating and ELI containing terminals converged on the same unlabeled dendrite or dendritic spine. In the second, terminal and preterminal axons of the ELI containing neurons had one surface directly apposed to the plasma membrane of a degenerating axon terminal. These findings support the concept that neurons containing opioid peptides and cortical efferents modulate the output of common recipient neurons and may also directly interact with each other through presynaptic axonal mechanisms in the rat neostriatum. 相似文献
6.
7.
Jackob Moskovitz Vineet K Singh Jesus Requena Brian J Wilkinson Radheshyam K Jayaswal Earl R Stadtman 《Biochemical and biophysical research communications》2002,290(1):62-65
Many organisms have been shown to possess a methionine sulfoxide reductase (MsrA), exhibiting high specificity for reduction the S form of free and protein-bound methionine sulfoxide to methionine. Recently, a different form of the reductase (referred to as MsrB) has been detected in several organisms. We show here that MsrB is a selenoprotein that exhibits high specificity for reduction of the R forms of free and protein-bound methionine sulfoxide. The enzyme was partially purified from mouse liver and a derivative of the mouse MsrB gene, in which the codon specifying selenocystein incorporation was replaced by the cystein codon, was prepared, cloned, and overexpressed in Escherichia coli. The properties of the modified MsrB protein were compared directly with those of MsrA. Also, we have shown that in Staphylococcus aureus there are two MsrA and one nonselenoprotein MsrB, which demonstrates the same substrate stereospecificity as the mouse MsrB. 相似文献
8.
9.
Immunoreactive (IR)-gamma 3-melanotropin (MSH), -adrenocorticotropin (ACTH) and -beta-endorphin in various areas of bovine brain were measured with their respective radioimmunoassays (RIA). The concentrations of IR-gamma 3-MSH were almost the same as those of IR-ACTH in most areas. Furthermore, in all brain regions, the concentrations of both peptides were lower than those of IR-beta-endorphin. The highest concentration of IR-gamma 3-MSH was found in hypothalamus, followed by thalamus, midbrain and striatum. Gel permeation chromatographic studies showed that the main gamma 3-MSH-like peptide in the hypothalamus, striatum and midbrain was a small form, whose molecular weight is about 4500. These brain gamma 3-MSH-like peptides were also found to be glycosylated. 相似文献
10.
Sylvie Magdelaine Claude-Roland Marchand Bernadette Griffond 《Biology of the cell / under the auspices of the European Cell Biology Organization》1990,68(3):245-250
Summary— An ultrastructural and immunocytological study was carried out on the collar cells of the optic tentacle of Helix aspersa. These cells are supposed to be the source of a reproduction controlling hormone. The immunocytological study was performed using an anti-methionine enkephalin antibody obtained from rabbits in our laboratory. The collar cells are characterized by an enlarged rough endoplasmic reticulum, numerous mitochondria and Golgi bodies surrounded by secretory vesicles, suggesting an intense synthesizing activity. Their principal feature consists of numerous various-sized granules where methionine enkephalin immunoreactivity is localized. No classical neurosecretory granules are observed while synapse-like structures are often encountered. The cells should not be regarded as neurosecretory cells but rather as glandular cells which could ensure different functions, one in relation to reproduction, and another in relation to perception processes, particularly as they contain methionine enkephalin-like material. 相似文献
11.
12.
In an attempt to elucidate the relationship between endogenous methionine-enkephalin (ME) and vasoactive intestinal polypeptide (VIP) with generalized seizures, we determined regional brain levels of ME-like and VIP-like immunoreactivity (ME-LI and VIP-LI) in El mice during and after seizures induced by repeated tossing stimulation. The levels of ME-LI in the striatum and hippocampus of seizure-naive El mice (El–) were lower than those of the control ddY mice, the mother strain of El mice. Conversely, the level of VIP-LI in the medulla oblongata and pons of El– was higher than that of ddY mice. The level of ME-LI in the striatum of seizure-experienced El mice (El+) killed 96 hours after three consecutive seizures was high, while levels of VIP-LI in the striatum and hypothalamus were low, in comparison to those of El– mice. A detailed time-course study revealed that seizures in El mice caused (1) significant decreases in levels of ME-LI in the striatum and hippocampus during seizures, (2) a significant decrease of VIP-LI content in the striatum 3 hours after seizures, and (3) a significant increase in hypothalamic VIP-LI 9 hours after seizures. These observations suggest that ME and VIP may play some role in El mouse seizures. 相似文献
13.
Mary J. Wilson Nina V. Myasishcheva Gary D. Stoner Lionel A. Poirier 《In vitro cellular & developmental biology. Plant》1983,19(2):134-140
Summary The enzymeN 5-methyltetrahydrofolate: homocysteine methyltransferase (methionine synthetase) catalyzes the synthesis of methionine from homocysteine. Methylcobalamin is a cofactor for the reaction. The effects of methionine deprivation and methylcobalamin supplementation on the growth of normal and transformed rat liver epithelial cell lines were determined using growth constants to quantitate cell proliferation. No marked specific requirement by the transformed cell lines for methionine relative to leucine was observed. A sigmoidal relationship, however, was found to exist between growth constants and the logarithms of the amino acid concentrations for both normal and transformed cells. Methylcobalamin stimulated the growth rates of the normal and transformed liver cells in methionine-deficient, homocysteine-containing medium. Growth on methionine was not increased by the addition of methylcobalamin. The growth constants for two normal, two spontaneously transformed, one chemically transformed, and one tumor cell line grown in medium in which methionine was replaced by homocysteine were found to be proportional to the level of methionine synthetase. The results demonstrate the utility of growth quantitation to study the methionine dependency of transformed cells. Presented in part at the Conference on Differentiation and Carcinogenesis in Liver Cell Cultures sponsored by the New York Academy of Sciences, October 11, 1979 (see reference 1). 相似文献
14.
Tissue transglutaminase (tTG) is a multifunctional enzyme that catalyzes both transamidation and GTPase reactions. In cell culture models tTG-mediated transamidation positively regulates many processes that occur in vivo during the mammalian brain growth spurt (BGS), including neuronal differentiation, neurite outgrowth, synaptogenesis and cell death mechanisms. However, little is known about the levels of tTG expression and transglutaminase (TG) activity during mammalian brain development. In this study, C57BL/6 mouse forebrains were collected at embryonic day (E) 12, E14, E17, postnatal day (P) 0, P7 and P56 and analyzed for tTG expression and TG activity. RT-PCR analysis demonstrated that tTG mRNA content increases during mouse forebrain development, whereas immunoblot analysis demonstrated that tTG protein content decreases during this time. TG activity was low in prenatal mouse forebrain but increased fivefold to peak at P0, which corresponds with the beginning of the mouse BGS. Further analysis demonstrated that the lack of temporal correlation between tTG protein content and TG activity is the result of an endogenous inhibitor of tTG that is present in prenatal but not postnatal mouse forebrain. These results demonstrate for the first time that tTG enzymatic activity in the mammalian forebrain is developmentally regulated by post-translational mechanisms. 相似文献
15.
Hideo Tsuda Dr. Masatoshi Ito Katsuhiko Oguro Kozo Mutoh Hideyuki Shiraishi Yukiyoshi Shirasaka Haruki Mikawa 《Neurochemical research》1993,18(2):111-117
Noradrenaline (NA) and dopamine (DA) levels in six brain regions of stimulated and nonstimulated El (El[s] and El[ns]) mice and their maternal ddY mice were determined at various ages and various times after a convulsion. The NA levels in the striatum and hippocampus of 12-week-old El[s] and El[ns] mice were lower than in ddY mice, and remained lower in 23-week-old El[s] mice, but not in El[ns] mice. DA levels were lower in the striatum of El[s] mice than in El[ns] and ddY mice at 16 and 23 weeks of age. NA levels decreased during seizure in the striatum and hippocampus of El[s] mice, and returned to preconvulsive levels 1 hr after convulsion in the striatum and 30 min in the hippocampus. DA levels in the striatum of El[s] mice decreased during convulsion and increased from 1 to 10 min after convulsion. These changes suggest that the NAergic systems in the striatum and hippocampus and the DAergic system in the striatum have important roles in relation to seizure susceptibility in El mice. 相似文献
16.
J.M. Conlon G. Schäfer W.E. Schmidt L.H. Lazarus H.D. Becker W. Creutzfeldt 《Regulatory peptides》1985,11(2):117-132
Extracts of a carcinoid tumour, resected from the mid-portion of the ileum of a patient with no symptoms of endocrine disorder, were associated with a high concentration of substance P-like immunoreactivity. Using reverse-phase high performance liquid chromatography and antisera specifically directed against the C-terminal and N-terminal regions of substance P and against the N-terminal region of physalaemin, the following components were isolated and identified: substance P and its oxidised form, [pGlu5]substance P-(5–11) peptide and its oxidised form, and the oxidised form of physalaemin. The identity of tumour substance P with the undecapeptide was confirmed by amino acid analysis and high performance ion-exchange chromatography. In vitro incubation of tumour tissue from a lymph node metastasis from the same patient with [3H]leucine resulted in incorporation of radioactivity into newly synthesised substance P. 相似文献
17.
Detection of N-acetyl methionine in human and murine brain and neuronal and glial derived cell lines
Despite the fact that N-acetyl methionine (NAM) supplementation has long been reported as a bioavailable source of methionine in humans, and known to reduce liver toxicity after acetaminophen overdose, its cellular endogenous presence has never been investigated. We demonstrate for the first time that NAM is present in both human and mouse tissues and cells in culture. A wide variety of cultured cells, including a number of brain derived cell types, as well as mouse and human brain tissue all have clearly detectable levels of NAM. Methionine is rapidly acetylated to form NAM in cultured human oligodendroglioma cells with an initial rate of 0.44 ± 0.064 atom percent excess per minute. The presence of measurable quantities of NAM in brain cells in combination with its rapid formation point to a potential physiological role for N-acetylated methionine in the brain. Aminoacylase 1 is responsible for metabolism of NAM to methionine and acetate. Deficiencies in aminoacylase 1 have been linked to a variety of neurological disorders; however, it is unclear whether and how the brain is affected by this defect. The reported presence of NAM in the human brain may provide an invaluable key to discovering the link between aminoacylase 1 mutations and neurological problems. 相似文献
18.
Jiri Svejcar Sarah Ehrlich-Rogozinski Dorothea Riedel Johannes Müthing Nathan Sharon 《Glycoconjugate journal》1993,10(3):247-250
The mammalian placenta is a unique organ for the study of developmental changes. Placentas of laboratory animals such as the mouse allow for the determination of the exact stage of pregnancy, which cannot be achieved with human placenta. In this study, neutral glycosphingolipids were isolated from mouse (inbred strain C57BL/6) placentas, from day 10 to day 18 of gestation, and were separated by high performance thin layer chromatography. Densitometric measurements after orcinol staining showed, at day 10 of gestation, the presence of mono-, tetra-, tri- and dihexosylceramide in decreasing quantities, as well as four unidentified spots. On day 12, the glycosphingolipid composition changed with the disappearance of the unidentified spots and the appearance of an orcinol positive spot migrating similarly to the Forssman antigen; no further changes occurred between days 12 and 18 of gestation. The identity of the Forssman-like glycosphingolipid with the Forssman antigen was established by binding of125I labelledHelix pomatia agglutinin (-GalNAc specific) to glycosphingolipids separated on high performance thin layer chromatography plates, and by the reaction of the isolated glycosphingolipid with a monoclonal anti-Forssman antibody. The appearance of the Forssman antigen at day 12 of gestation coincided with the day of final maturation of the mouse placenta and subsequent cessation of growth, suggesting a possible role of the glycosphingolipid during embryonic development.Abbreviations asialo-GM1
Gal 3GalNAc4Gal4Glc1Cer
- BCIP
5-bromo-4-chloro-3-indolylphosphate
- DHC
lactosylceramide, Gal4Glc1Cer
- Forssman antigen
GalNAc3GalNAc3Gal4Gal4Glc1Cer
- globoside
GalNAc3Gal4Gal4Glc1Cer
- GSL
glycosphingolipids
- HPA
Helix pomatia agglutinin
- HPTLC
high performance thin layer chromatography
- MHC
galactosylceramide, Gal1Cer
- MHC
glucosylceramide, Glc1Cer
- PBS
phosphate-buffered saline
- PNA
peanut agglutinin
- PVP
poly(vinylpyrrolidone), mol. wt 40 000
- SBA
soybean agglutinin
- THC
trihexosylceramide, Gal4Gal4Glc1Cer.
To whom correspondence should be addressed. 相似文献
19.
The function of N-acetyl-aspartate (NAA), a predominant molecule in the brain, has not yet been determined. However, NAA is commonly used as a putative marker of viable neurones. To investigate the possible function of NAA, we determined the anatomical, developmental and cellular distribution of aspartoacylase, which catalyses the hydrolysis of NAA. Levels of aspartoacylase activity were measured during postnatal development in several brain regions. The differential distribution of aspartoacylase activity in purified populations of cells derived from the rat CNS was also investigated. The developmental and anatomical distribution of aspartoacylase correlated with the maturation of white matter tracts in the rat brain. Activity increased markedly after 7 days and coincided with the time course for the onset of myelination in the rat brain. Gray matter showed little activity or developmental trend. There was a 60-fold excess in optic nerve (a white matter tract) when compared with cortex at 21 days of development. In the adult brain there was a 18-fold difference in corpus callosum compared with cortex (stripped of corpus callosum). Cellular studies demonstrated that purified cortical neurons and cerebellar granular neurones have no activity. Primary O-2A progenitor cells had moderate activity, with three-fold higher activity in immature oligodendrocyte and 13-fold increase in mature oligodendrocytes (myelinating cells of the CNS). The highest activity was seen in type-2 astrocytes (20-fold difference compared with O-2A progenitors) derived from the same source. Aspartoacylase activity increased with time in freshly isolated astrocytes, with significantly higher activity after 15 days in culture. We conclude that aspartoacylase activity in the developing postnatal brain corresponds with maturation of myelination, and that the cellular distribution is limited to glial cells. 相似文献
20.
Developmental regulation of beta-1,3-galactosyltransferase-1 gene expression in mouse brain 总被引:4,自引:0,他引:4
Preadipocytes are present and can proliferate to increase fat mass throughout adult life. The importance of mitochondria in these cells has never been investigated, although we recently reported that mitochondrial oxidative metabolism is non-negligible in white preadipocytes. Mitochondrial reactive oxygen species generation is intimately associated with respiratory chain function. An increasing number of reports support their role as signalling molecules. The aim of this work was to study the effects of mitochondrial reactive oxygen species on proliferation of white preadipocytes. Rotenone and oligomycin, inhibitors of complex I and of ATP synthase respectively, increased H2O2 and inhibited cell growth of preadipocytes (without inducing necrosis or apoptosis). These effects were partly prevented by addition of radical scavengers. A chemical uncoupler had opposite effects on reactive oxygen species generation and cell growth. Propofol, which inhibits complex I but also scavenges free radicals, had effects similar to those of the uncoupler on both parameters. Thus, mitochondrial reactive oxygen species can influence development of adipose tissue by affecting the size of the white preadipocyte pool. 相似文献