首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We previously reported a deficit of methionine enkephalin-like immunoreactivity (ME-LI), in the cerebral cortex, septal area, hippocampus, and striatum and the abnormal metabolism of opioid peptides in the hippocampus and striatum of seizure-susceptible El mice, which are involved in the pathogenesis of seizures. However, these findings suggest that the ME-LI does not necessarily reflect the bioactive methionine enkephalin (ME). Herein, we measured the biologically active peptide, ME excluding cross-reactive substances by using HPLC coupled with radioimmunoassay to clarify the abnormal function of enkephalinergic neurons in the El mouse brain. The ME content in 25-day-old El mice that had no seizures was significantly decreased in the hippocampus and septal area, as compared with corresponding regions in ddY mice (seizure-nonsusceptible; the mother strain of El). At the age of 50 days when El mice displayed abortive seizures, this content in both stimulated El[s] and nonstimulated El[ns] was significantly reduced in the septal area and cerebral cortex. At the age of 150 days when El mice exhibit tonic-clonic seizures, this content in both El[s] and El[ns] was significantly reduced in the septal area, cerebral cortex and striatum. These findings were generally compatible with our previous findings. This study further supports our hypothesis that a deficit of anticonvulsant endogenous ME, in the cerebral cortex, septal area, and hippocampus of seizuresusceptible El mice play an important role in the pathogenesis of seizures.  相似文献   

2.
After the intracisternal injection of three protease inhibitors which prevent the degradation of methionine enkephalin (amastatin, Des-Pro2-bradykinin, and phosphoramidon) and a mixture of these protease inhibitors, we investigated the effect on convulsive seizures in the seizure-susceptible El mouse. We also measured the cerebral methionine enkephalin content by high-performance liquid chromatography coupled with radioimmunoassay. Protease inhibitors significantly decreased both the incidence of seizures and the seizure score in El mice in a dose-dependent manner. This anticonvulsant effect was reversed by naloxone (2 mg/kg, sc). The cerebral methionine enkephalin content increased significantly after the administration of protease inhibitors in comparison with saline injection. These findings suggest that it was not protease inhibitors but instead increase of endogenous methionine enkephalin that reduced the incidence of seizures and the seizure score in El mice. Together with our previous data, the present findings support our hypothesis that a deficit in anticonvulsant endogenous methionine enkephalin is involved in the pathogenesis of seizures in the El mouse.  相似文献   

3.
We previously suggested that a deficit of anticonvulsant endogenous methionine enkephalin, in the cerebral cortex, septal area, hippocampus, and striatum of seizure-susceptible E1 mice plays a role in the pathogenesis of seizures. To determine whether a hypofunction of enkephalinergic neuron may be due to metabolic abnormalities of opioid peptides in the E1 mouse brain, we measured methionine enkephalin-like immunoreactivity (ME-LI) of 50 fractions eluted by high performance liquid chromatography obtained from those four regions of the brain of E1 and seizure-nonsusceptible ddY mice (the mother strain of E1 mice). We observed the same ME-LI patterns of 50 fractions in the cerebral cortex and septal area in E1 and ddY mice, whereas exhibited differing ME-LI patterns in the hippocampus and striatum in the two stains. Different ME-LI patterns may imply the difference in the metabolic profile of opioid peptides. Thus, an abnormal metabolism of opioid peptides in the hippocampus and striatum of the E1 mouse may be involved in the pathogenesis of seizures.  相似文献   

4.
The distribution density of opioid receptors in the brain of El mice (seizure-susceptible strain) was examined to determine the relation between seizures and the opioid system. Saturation curves and Scatchard plots of [3H]2-d-alamine-5-d-leucine enkephalin binding revealed that the opioid delta receptor density in adult El mice during interictal periods was significantly increased in the cerebral cortex, hippocampus, and septal area. It was further shown that the concentration of such receptors in 25-day-old El mice that had no seizures was also significantly increased in the hippocampus and septal area, with no changes in apparent affinities, as compared with in the corresponding regions in ddY mice (seizure-nonsusceptible strain; the mother strain of El). Such up-regulation of opioid receptors in the El mouse brain could result from deficits in endogenous opioid peptides, which could be associated with the pathogenesis of seizure diathesis in the El mouse.  相似文献   

5.
Opioid agonists were used to investigate the modulation of seizures in the seizure-susceptible El mouse. Morphine andd-Ala2-d-Leu5-enkephalin (DADLE) were injected subcutaneously or intracisternally as prototypic agonists for and opioid receptors. Systemic or intracisternal injection of both morphine and DADLE decreased the incidence of seizures and the seizure score in El mice in a dose-dependent manner. The anticonvulsant effects of morphine and DADLE were reversed by naloxone (2 mg/kg, s.c.). This implies that opioid agonists have anticonvulsant properties which are mediated by and opioid receptors. In conclusion, a deficit in endogenous opioid peptides, which act as anticonvulsants may play a significant role in the etiology or pathophysiology of seizures in the El mouse.  相似文献   

6.
The distribution of synenkephalin, the N-terminal fragment of proenkephalin, was studied in various parts of the bovine brain (globus pallidus, caudate nucleus, hypothalamus) and in the posterior pituitary by the use of a radioimmunoassay. The distribution of synenkephalin-immunoreactivity (IR) was compared to the distribution of Met-enkephalin-IR. Gel exclusion chromatography was used to examine the molecular forms of the immunoreactivities present in the tissues. The distribution of synenkephalin-IR was similar to the distribution of Met-enkephalin-IR, with a molar ratio of Met-enkephalin/synenkephalin ranging between 2.7 and 5.9. In all regions tested except the hypothalamus the synenkephalin-IR was present as a single species. However, in the hypothalamus a small amount of IR material (3% of the total synenkephalin-IR) was detected in fractions where larger Met-enkephalin-containing peptides eluted. Based on the concordance between the molar ratio of Met-enkephalin to synenkephalin found in the tissues and the molar ratio present in the sequence of adrenal proenkephalin, it is concluded that the brain and adrenal glands utilize a similar precursor for enkephalin biosynthesis.  相似文献   

7.
The interrelationships between cortical efferents and terminals containing enkephalin-like immunoreactivity (ELI) were examined by combining anterograde degeneration with electron microscopic immunocytochemistry in the adult rat neostriatum. Two days following unilateral removal of the cerebral cortex, the brains were fixed by aortic arch perfusion, then sectioned and processed for the immunocytochemical localization of an antiserum directed against methionine (Met5)-enkephalin. The observed relationships between the degenerating cortical efferents and immunocytochemically labeled terminals were of two types. In the first, the degenerating and ELI containing terminals converged on the same unlabeled dendrite or dendritic spine. In the second, terminal and preterminal axons of the ELI containing neurons had one surface directly apposed to the plasma membrane of a degenerating axon terminal. These findings support the concept that neurons containing opioid peptides and cortical efferents modulate the output of common recipient neurons and may also directly interact with each other through presynaptic axonal mechanisms in the rat neostriatum.  相似文献   

8.
We compared the changes in monoamines and their metabolites in the El mouse brain induced by GABA-A and GABA-B receptor agonists. Muscimol was used as a GABA-A receptor agonist, and baclofen as a GABA-B receptor agonist. Muscimol (3 mg/kg) significantly increased the DOPAC level in all parts of the mouse brain and the HVA level in the cortex, striatum, and midbrain. No significant change was observed in the dopamine (DA) level. These findings suggest that muscimol may accelerate both the synthesis and catabolism of DA. Baclofen (20 mg/kg) increased the DA level in the hippocampus and midbrain, and the DOPAC level in the hippocampus. Muscimol increased 5-HIAA levels and decreased 5-HT levels. This result suggests that 5-HT metabolism is accelerated by muscimol. No change in 5-HT or 5-HIAA levels was induced by baclofen. The GABA-A receptor system seems to have a potent effect not only on DA neurons, but on 5-HT neurons. However, the GABA-B receptor system appears to have almost no effect on 5-HT neurons, though it appears to have some effect on DA neurons.  相似文献   

9.
10.
Many organisms have been shown to possess a methionine sulfoxide reductase (MsrA), exhibiting high specificity for reduction the S form of free and protein-bound methionine sulfoxide to methionine. Recently, a different form of the reductase (referred to as MsrB) has been detected in several organisms. We show here that MsrB is a selenoprotein that exhibits high specificity for reduction of the R forms of free and protein-bound methionine sulfoxide. The enzyme was partially purified from mouse liver and a derivative of the mouse MsrB gene, in which the codon specifying selenocystein incorporation was replaced by the cystein codon, was prepared, cloned, and overexpressed in Escherichia coli. The properties of the modified MsrB protein were compared directly with those of MsrA. Also, we have shown that in Staphylococcus aureus there are two MsrA and one nonselenoprotein MsrB, which demonstrates the same substrate stereospecificity as the mouse MsrB.  相似文献   

11.
12.
Immunoreactive (IR)-gamma 3-melanotropin (MSH), -adrenocorticotropin (ACTH) and -beta-endorphin in various areas of bovine brain were measured with their respective radioimmunoassays (RIA). The concentrations of IR-gamma 3-MSH were almost the same as those of IR-ACTH in most areas. Furthermore, in all brain regions, the concentrations of both peptides were lower than those of IR-beta-endorphin. The highest concentration of IR-gamma 3-MSH was found in hypothalamus, followed by thalamus, midbrain and striatum. Gel permeation chromatographic studies showed that the main gamma 3-MSH-like peptide in the hypothalamus, striatum and midbrain was a small form, whose molecular weight is about 4500. These brain gamma 3-MSH-like peptides were also found to be glycosylated.  相似文献   

13.
Summary— An ultrastructural and immunocytological study was carried out on the collar cells of the optic tentacle of Helix aspersa. These cells are supposed to be the source of a reproduction controlling hormone. The immunocytological study was performed using an anti-methionine enkephalin antibody obtained from rabbits in our laboratory. The collar cells are characterized by an enlarged rough endoplasmic reticulum, numerous mitochondria and Golgi bodies surrounded by secretory vesicles, suggesting an intense synthesizing activity. Their principal feature consists of numerous various-sized granules where methionine enkephalin immunoreactivity is localized. No classical neurosecretory granules are observed while synapse-like structures are often encountered. The cells should not be regarded as neurosecretory cells but rather as glandular cells which could ensure different functions, one in relation to reproduction, and another in relation to perception processes, particularly as they contain methionine enkephalin-like material.  相似文献   

14.
15.
In an attempt to elucidate the relationship between endogenous methionine-enkephalin (ME) and vasoactive intestinal polypeptide (VIP) with generalized seizures, we determined regional brain levels of ME-like and VIP-like immunoreactivity (ME-LI and VIP-LI) in El mice during and after seizures induced by repeated tossing stimulation. The levels of ME-LI in the striatum and hippocampus of seizure-naive El mice (El–) were lower than those of the control ddY mice, the mother strain of El mice. Conversely, the level of VIP-LI in the medulla oblongata and pons of El– was higher than that of ddY mice. The level of ME-LI in the striatum of seizure-experienced El mice (El+) killed 96 hours after three consecutive seizures was high, while levels of VIP-LI in the striatum and hypothalamus were low, in comparison to those of El– mice. A detailed time-course study revealed that seizures in El mice caused (1) significant decreases in levels of ME-LI in the striatum and hippocampus during seizures, (2) a significant decrease of VIP-LI content in the striatum 3 hours after seizures, and (3) a significant increase in hypothalamic VIP-LI 9 hours after seizures. These observations suggest that ME and VIP may play some role in El mouse seizures.  相似文献   

16.
Studies with cultured tumour cell lines are widely used in vitro to evaluate peptide-induced cytotoxicity as well as molecular and biochemical interactions. The objectives of this study were to investigate the influence of the cell culture medium on peptide metabolic stability and in vitro antitumour activity. The degradation kinetics of the model peptide methionine enkephalin (Met-E, Tyr-Gly-Gly-Phe-Met), demonstrated recently to play an important role in the rate of proliferation of tumour cells in vitro and in vivo, were investigated in cell culture systems containing different amounts of fetal bovine serum (FBS). The influence of enzyme inhibitors (bestatin, captopril, thiorphan) on the Met-E degradation was also investigated. The results obtained in the Dulbecco's modified Eagle medium containing 10% FBS indicated a rapid degradation of Met-E (t(1/2) = 2.8 h). Preincubation of the medium with a mixture of peptidase inhibitors reduced the hydrolysis of Met-E, as shown by the increased half-life to 10 h. The in vitro activity of Met-E against poorly differentiated cells from lymph node metastasis of colon carcinoma (SW620) and human larynx carcinoma (HEp-2) cells was determined. Tumour cells were grown for 3 weeks prior to the experiment in a medium supplemented with 10%, 5% or 2% FBS. Statistically significant to mild or no suppression of cell proliferation was observed in all cultures. In both cell lines, a significant suppression of cell growth by a combination of peptidase inhibitors and Met-E, compared with cells exposed to the peptide alone and cells grown in the absence of Met-E, was observed. This study indicated that caution must be exercised in interpreting the antiproliferative effects of peptide compounds in conventional drug-response assays.  相似文献   

17.
We investigated acute and chronic effects administration of methionine (Met) and/or methionine sulfoxide (MetO) on ectonucleotidases and oxidative stress in platelets and serum of young rats. Wistar rats were divided into four groups: control, Met, MetO, and Met + MetO. In acute treatment, the animals received a single subcutaneous injection of amino acid(s) and were euthanized after 1 and 3 hours. In chronic protocol, Met and/or MetO were administered twice a day with an 8-hour interval from the 6th to the 28th day of life. Nucleoside triphosphate phosphohydrolase and 5′-nucleotidase activities were reduced in platelets and serum by Met, MetO, and Met + MetO after 3 hours and 21 days. Adenosine deaminase activity reduced in platelets at 3 hours after MetO and Met + MetO administration and increased after 21 days in animals treated with Met + MetO. Superoxide dismutase and catalase activities decreased in platelets in MetO and Met + MetO groups after 3 hours, while reactive oxygen species (ROS) levels increased in same groups. Catalase activity in platelets decreased in all experimental groups after chronic treatment. Met, MetO, and Met + MetO administration increased plasmatic ROS levels in acute and chronic protocols; glutathione S-transferase activity increased by MetO and Met + MetO administration at 3 hours, and ascorbic acid decreased in all experimental groups in acute and chronic protocols. Thiobarbituric acid reactive substances increased, superoxide dismutase and catalase activities reduced in the Met and/or MetO groups at 3 hours and in chronic treatment. Our data demonstrated that Met and/or MetO induced changes in adenine nucleotide hydrolysis and redox status of platelets and serum, which can be associated with platelet dysfunction in hypermethioninemia.  相似文献   

18.
Tissue transglutaminase (tTG) is a multifunctional enzyme that catalyzes both transamidation and GTPase reactions. In cell culture models tTG-mediated transamidation positively regulates many processes that occur in vivo during the mammalian brain growth spurt (BGS), including neuronal differentiation, neurite outgrowth, synaptogenesis and cell death mechanisms. However, little is known about the levels of tTG expression and transglutaminase (TG) activity during mammalian brain development. In this study, C57BL/6 mouse forebrains were collected at embryonic day (E) 12, E14, E17, postnatal day (P) 0, P7 and P56 and analyzed for tTG expression and TG activity. RT-PCR analysis demonstrated that tTG mRNA content increases during mouse forebrain development, whereas immunoblot analysis demonstrated that tTG protein content decreases during this time. TG activity was low in prenatal mouse forebrain but increased fivefold to peak at P0, which corresponds with the beginning of the mouse BGS. Further analysis demonstrated that the lack of temporal correlation between tTG protein content and TG activity is the result of an endogenous inhibitor of tTG that is present in prenatal but not postnatal mouse forebrain. These results demonstrate for the first time that tTG enzymatic activity in the mammalian forebrain is developmentally regulated by post-translational mechanisms.  相似文献   

19.
Summary The enzymeN 5-methyltetrahydrofolate: homocysteine methyltransferase (methionine synthetase) catalyzes the synthesis of methionine from homocysteine. Methylcobalamin is a cofactor for the reaction. The effects of methionine deprivation and methylcobalamin supplementation on the growth of normal and transformed rat liver epithelial cell lines were determined using growth constants to quantitate cell proliferation. No marked specific requirement by the transformed cell lines for methionine relative to leucine was observed. A sigmoidal relationship, however, was found to exist between growth constants and the logarithms of the amino acid concentrations for both normal and transformed cells. Methylcobalamin stimulated the growth rates of the normal and transformed liver cells in methionine-deficient, homocysteine-containing medium. Growth on methionine was not increased by the addition of methylcobalamin. The growth constants for two normal, two spontaneously transformed, one chemically transformed, and one tumor cell line grown in medium in which methionine was replaced by homocysteine were found to be proportional to the level of methionine synthetase. The results demonstrate the utility of growth quantitation to study the methionine dependency of transformed cells. Presented in part at the Conference on Differentiation and Carcinogenesis in Liver Cell Cultures sponsored by the New York Academy of Sciences, October 11, 1979 (see reference 1).  相似文献   

20.
Noradrenaline (NA) and dopamine (DA) levels in six brain regions of stimulated and nonstimulated El (El[s] and El[ns]) mice and their maternal ddY mice were determined at various ages and various times after a convulsion. The NA levels in the striatum and hippocampus of 12-week-old El[s] and El[ns] mice were lower than in ddY mice, and remained lower in 23-week-old El[s] mice, but not in El[ns] mice. DA levels were lower in the striatum of El[s] mice than in El[ns] and ddY mice at 16 and 23 weeks of age. NA levels decreased during seizure in the striatum and hippocampus of El[s] mice, and returned to preconvulsive levels 1 hr after convulsion in the striatum and 30 min in the hippocampus. DA levels in the striatum of El[s] mice decreased during convulsion and increased from 1 to 10 min after convulsion. These changes suggest that the NAergic systems in the striatum and hippocampus and the DAergic system in the striatum have important roles in relation to seizure susceptibility in El mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号