首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Primary structure of the Dolichos biflorus seed lectin   总被引:2,自引:0,他引:2  
The Dolichos biflorus seed lectin is a tetramer composed of equal amounts of two subunit types. The subunit types are structurally very similar, yet only the larger subunit exhibits the ability to bind carbohydrate. A cDNA clone representing the entire coding region of the D. biflorus lectin mRNA has been sequenced. This cDNA represents 1075 nucleotides of seed lectin mRNA encoding a polypeptide of Mr = 29,674. Analysis of the deduced sequence indicates that the NH2 termini and COOH termini of both lectin subunits are present within the mRNA coding region. This information supports previous data indicating that both subunits of the lectin are encoded by a single mRNA and that the difference between the subunit types apparently arises by the proteolytic removal of a 10-amino acid sequence from the COOH terminus of the larger subunit. Comparison of the D. biflorus seed lectin sequence to the sequence of other leguminous seed lectins indicates regions of extensive homology. The residues of concanavalin A involved in metal binding are highly conserved in the D. biflorus lectin, but those involved in saccharide binding show a much lower degree of conservation. Prediction of the secondary conformation of the D. biflorus polypeptide suggests that structures involved in the formation of quaternary structure in concanavalin A are also conserved.  相似文献   

2.
The seed lectin (DBL) from the leguminous plant Dolichos biflorus has a unique specificity among the members of the legume lectin family because of its high preference for GalNAc over Gal. In addition, precipitation of blood group A+H substance by DBL is slightly better inhibited by a blood group A trisaccharide (GalNAc(alpha1-3)[Fuc(alpha1-2)]Gal) containing pentasaccharide, and about 40 times better by the Forssman disaccharide (GalNAc(alpha1-3)GalNAc) than by GalNAc. We report the crystal structures of the DBL-blood group A trisaccharide complex and the DBL-Forssman disaccharide complex.A comparison with the binding sites of Gal-binding legume lectins indicates that the low affinity of DBL for Gal is due to the substitution of a conserved aromatic residue by an aliphatic residue (Leu127). Binding studies with a Leu127Phe mutant corroborate these conclusions. DBL has a higher affinity for GalNAc because the N-acetyl group compensates for the loss of aromatic stacking in DBL by making a hydrogen bond with the backbone amide group of Gly103 and a hydrophobic contact with the side-chains of Trp132 and Tyr104.Some legume lectins possess a hydrophobic binding site that binds adenine and adenine-derived plant hormones, i.e. cytokinins. The exact function of this binding site is unknown, but adenine/cytokinin-binding legume lectins might be involved in storage of plant hormones or plant growth regulation. The structures of DBL in complex with adenine and of the dimeric stem and leaf lectin (DB58) from the same plant provide the first structural data on these binding sites. Both oligomers possess an unusual architecture, featuring an alpha-helix sandwiched between two monomers. In both oligomers, this alpha-helix is directly involved in the formation of the hydrophobic binding site. DB58 adopts a novel quaternary structure, related to the quaternary structure of the DBL heterotetramer, and brings the number of know legume lectin dimer types to four.  相似文献   

3.
A lectin has been isolated from the roots of 7-day-old Dolichos biflorus plants and has been compared with the D. biflorus seed lectin. The root lectin differs from the seed lectin in molecular weight, subunit stoichiometry, amino acid composition, amino terminal amino acid sequence, and isoelectric focusing pattern. However, the root lectin has in common with the seed lectin a specificity for N-acetyl-D-galactosamine, and upon denaturation the root lectin will react weakly with antiserum made to denatured seed lectin. Distribution studies of this lectin in germinating seedlings show that the highest levels of lectin are found in 1-day-old roots. Upon dissection and analysis of 7-day-old roots, the highest levels of the lectin are in the uppermost segment. In addition, isoforms of this lectin also exist in the stems and leaves of the plant.  相似文献   

4.
Previous studies have shown that the Dolichos biflorus plant contains a lectin in its stems and leaves, called DB58, that is closely related to the D. biflorus seed lectin. DB58 is a heterodimer composed of two closely related subunits. Immunoprecipitation of total translation products from D. biflorus stem and leaf mRNA suggests a single polypeptide precursor for both of these subunits. Several identical cDNA clones representing the entire coding region of the DB58 mRNA have been isolated from a D. biflorus stem and leaf cDNA library. The DB58 cDNA represents an mRNA encoding a polypeptide of Mr = 29,545. The predicted polypeptide is equal in length to the larger subunit of DB58 with the addition of a 22-amino acid amino-terminal signal sequence. The sequence of the DB58 lectin exhibits 84% homology to the D. biflorus seed lectin at the amino acid level, suggesting that these lectins are encoded by differentially expressed genes and may have evolved to carry out tissue-specific functions. Comparison of the DB58 sequence to other leguminous seed lectins indicates a high degree of structural conservation.  相似文献   

5.
The autoradiographic detection of 125I-labeled lectins binding to glycolipids on thin-layer chromatograms can be used to rapidly analyze total glycolipid extracts of cells or tissues for specific oligosaccharide structures. The Helix pomatia lectin which binds with high affinity to terminal alpha-linked GalNAc residues did not bind to globoside (terminal beta 1-3GalNAc) but did bind the ganglioside GM2 and its asialo derivative which have terminal beta 1-4GalNAc residues. The lectin from Dolichos biflorus bound specifically to the Forssman glycolipid with relatively low affinity. The lectin from Wisteria floribunda was bound to Forssman glycolipid, globoside, and the asialo derivative of the ganglioside GM2. The interactions of these lectins with the glycolipid-derived, 3H-labeled oligosaccharides was also analyzed by affinity chromatography. The results indicated that the reactivity of multivalent carbohydrate-binding proteins with polyvalent surfaces of glycolipids is strong enough to permit detection of low-affinity interactions that may not be observed in binding assays that are based on carbohydrate-protein interactions in solution. The autoradiographic analysis of 125I-Helix pomatia lectin binding to thin-layer chromatograms of total lipid extracts from human erythrocyte membranes detected the quantitative differences in the A-active glycolipids from type A1 and A2 cells.  相似文献   

6.
7.
The seed lectin and a stem and leaf lectin (DB58) from Dolichos biflorus have high-affinity hydrophobic sites that bind to adenine. The present study employs a centrifugal filtration assay to characterize these sites. The seed lectin contains two identical sites with Ka's of 7.31 x 10(5) L/mol whereas DB58 has a single site with a Ka of 1.07 x 10(6) L/mol. The relative affinities of these sites for a host of adenine analogs and derivatives were determined by competitive displacement assays. The most effective competitors for adenine were the cytokinins, a class of plant hormone, for which the lectins had apparent Ka's of 1.96 x 10(5)-4.90 x 10(4) L/mol. Direct binding of the cytokinin 6-(benzylamino)purine (BAP) to both lectins showed positive cooperativity for only the seed lectin, indicating the interaction of this ligand with more than one class of hydrophobic binding site. Fluorescence enhancement assays demonstrate cooperativity between hydrophobic sites of the seed lectin and also suggest that BAP binds to more than one class of site.  相似文献   

8.
W G Carter  M E Etzler 《Biochemistry》1975,14(12):2685-2689
The subunits of the two molecular forms (A and B) of the Dolichos biflorus lectin were isolated by ion-exchange chromatography on DEAE-cellulose in 8.0 M urea. Subunits IA and IIA which comprise the predominant molecular form A of the lectin were found to have molecular weights of 27,700 and 27,300, respectively, as determined by sedimentation equilibrium studies in 8.0 M urea. These subunits have similar amino acid compositions and each have alanine at their amino-terminal ends. Comparison of the IA and IIA subunits by immunodiffusion against antisera to the seed extract as well as to subunits IA and IIA showed no antigenic differences between the two subunits. Carboxyl terminal analyses of subunits IA and IIA with carboxypeptidase A produced an essentially simultaneous release of both leucine and valine residues from subunit IA; no detectable amino acids were released from subunit IIA under identical conditions. The data suggest that the molecular form A of the lectin (molecular weight 113,000, Carter and Etzler, 1975) consists of four subunits with a possible stoichiometry of IA2IIA2. Other possible arrangements of the subunits are discussed.  相似文献   

9.
cDNA cloning and in vitro synthesis of the Dolichos biflorus seed lectin   总被引:2,自引:0,他引:2  
The Dolichos biflorus seed lectin contains two structurally related subunits. A cDNA library was constructed using RNA isolated from D. biflorus seeds actively synthesizing the seed lectin. The library was expressed in Escherichia coli using a lambda Charon 16 vector, and lectin-specific antiserum was used to isolate a seed lectin cDNA. Hybridization of the D. biflorus seed lectin cDNA to RNA isolated from seeds actively producing both lectin subunits identifies a single-size RNA of 1100 bases. An oligodeoxyribonucleotide probe, constructed from an amino acid sequence common to both lectin subunits, detects the same size RNA. Translation of seed mRNA in vitro and immunoprecipitation of translation products using a lectin-specific antiserum yields a single polypeptide of slightly higher molecular mass than the largest seed lectin subunit. This seed lectin precursor is indistinguishable from a polypeptide synthesized from mRNA hybrid selected by the seed lectin cDNA. These data support the existence of a single polypeptide precursor for both subunit types of the D. biflorus seed lectin and suggest that differences between the subunit types arise by posttranslational processing.  相似文献   

10.
W G Carter  M E Etzler 《Biochemistry》1975,14(23):5118-5122
The 110000 molecular weight Dolichos biflorus lectin is a glycoprotein composed of four subunits of approximately 27000 molecular weight with one methionine residue per subunit (Carter and Etzler, 1975b). Cyanogen bromide cleavage of the lectin yielded two fragments with approximate molecular weights of 15000 and 12000 as determined by electrophoresis on sodium dodecyl sulfate gels. Only the 15000 molecular weight fragment stained for carbohydrate with the periodic acid-Schiff stain. The two fragments were isolated, and their amino acid compositions were determined. The 15000 molecular weight fragment was identified as the amino terminal segment of the lectin subunits by NH2-terminal amino acid analysis. A glycopeptide with a minimum molecular weight of 1100 was isolated from the lectin by exhaustive Pronase digestion. Complete acid hydrolysis of the glycopeptide yielded aspartic acid, mannose, and N-acetylglucosamine in the ratio of 1:4-5:1-2. Partial acid hydrolysis of the glycopeptide produced a component which had an identical mobility with commercial N-acetylglucosaminylasparagine in high voltage paper electrophoresis. The data indicate that the carbohydrate unit of the lectin is bound to the amino terminal half of the subunits by a glycosylamine linkage between N-acetylglucosamine and asparagine.  相似文献   

11.
12.
Neuraminidase treatment of blood type A and B human erythrocytes, which is required for the agglutination of these cells by peanut (Arachis hypogaea) lectin, increased the number of receptor sites for the lectin from about 5 × 104 to 1.8 × 106 sites/ cell for both blood types. The same treatment also increased the agglutinability of type A cells by the blood group A-specific Dolichos biflorus lectin, but the number of receptor sites for this lectin (~6 × 105 sites/cell) did not change. D. biflorus lectin binding and agglutination of blood type B cells were negligible both before and after neuraminidase treatment. To isolate the peanut agglutinin receptor from the membrane of these cells, washed type A erythrocytes were incubated with neuraminidase and galactose oxidase and then treated with NaB3H4, thus labeling the galactose residues on the membrane. For measuring peanut agglutinin receptor activity, a radioaffinity assay was developed based on the displacement of [14C]asialofetuin from peanut agglutinin by receptor and precipitation of the complex in the presence of polyethyleneglycol. Membranes were isolated by hypotonic lysis and were solubilized in 0.5% Empigen BB, a zwitterionic detergent, which was found to be superior to Triton X-100 for this purpose. The cell extract, after centrifugation, was subjected to affinity chromatography on peanut agglutinin-polyacrylhydrazido-Sepharose. Elution with lactose afforded a peak of radioactivity (32% yield) containing 70% of the applied receptor activity. The eluting sugar and the receptor were separated by chromatography on Bio-Gel P-2 with subsequent dialysis against 80% acetone to remove the detergent. The bulk of the isolated receptor radioactivity (91%) precipitated with peanut agglutinin. The amino acid composition, the glucosamine and galactosamine content and the electrophoretic mobility, on polyacrylamide gel electrophoresis in sodium dodecyl sulfate of the peanut receptor were similar to those of asialoglycophorin. In addition, the peanut receptor coprecipitated with asialoglycophorin and with isolated erythrocyte T antigen on Ouchterlony double-diffusion plates against peanut agglutinin and the Ricinus communis lectin, but not with D. biflorus lectin, suggesting that the receptor for the latter lectin is distinct from the peanut agglutinin receptor.  相似文献   

13.
Spleen cells from mice immunized with the Dolichos biflorus seed lectin were fused with cells from the mouse myeloma Sp2/O-Ag14 cell line to form hybridomas. Those hybridomas producing antibodies against the seed lectin were cloned at least four times and the monoclonal antibodies from clone C11/64-56.28 were characterized and found to be specific for Subunit I of the lectin; they do not react with the structurally similar Subunit II. In previous studies, we have shown that although these two subunits appear to differ only at their COOH-terminal ends, only Subunit I has carbohydrate binding activity. Using a solid phase enzyme immunoassay, the antigenic determinant fr the monoclonal antibody was found to be located on the COOH-terminal cyanogen bromide fragment of this subunit. The monoclonal antibody inhibits the ability of the lectin to agglutinate erythrocytes and N-acetyl-D-galactosamine, the specific hapten for the lectin, inhibits the ability of the antibody to combine with the lectin. These results suggest that the monoclonal antibody recognizes a determinant that is located either at or near the active site of the lectin or that is conformationally interdependent with the active site.  相似文献   

14.
Plant lectins have been studied as histological markers and promising antineoplastic molecules for a long time, and structural characterization of different lectins bound to specific cancer epitopes has been carried out successfully. The crystal structures of Vatairea macrocarpa (VML) seed lectin in complex with GalNAc-α-O-Ser (Tn antigen) and GalNAc have been determined at the resolution of 1.4 Å and 1.7 Å, respectively. Molecular docking analysis of this new structure and other Tn-binding legume lectins to O-mucin fragments differently decorated with this antigen provides a comparative binding profile among these proteins, stressing that subtle alterations that may not influence monosaccharide binding can, nonetheless, directly impact the ability of these lectins to recognize naturally occurring antigens. In addition to the specific biological effects of VML, the structural and binding similarities between it and other lectins commonly used as histological markers (e.g., VVLB4 and SBA) strongly suggest VML as a candidate tool for cancer research.  相似文献   

15.
Plant-pathogen interactions play a vital role in developing resistance to pests. Dolichos biflorus (horse gram), a leguminous pulse crop of the subtropics, exhibits amazing defence against attack by pests/pathogens. Investigations to locate the possible source of the indomitable pest resistance of D. biflorus, which is the richest source of LOX (lipoxygenase) activity, have led to a molecule that exhibits LOX-like functions. The LOX-like activity associated with the molecule, identified by its structure and stability to be a tetrameric lectin, was found to be unusual. The evidence for the lectin protein with LOX activity has come from (i) MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS, (ii) N-terminal sequencing, (iii) partial sequencing of the tryptic fragments of the protein, (iv) amino acid composition, and (v) the presence of an Mn2+ ion. A hydrophobic binding site of the tetrameric lectin, along with the presence of an Mn2+ ion, accounts for the observed LOX like activity. This is the first ever report of a protein exhibiting both haemagglutination and LOX-like activity. The two activities are associated with separate loci on the same protein. LOX activity associated with this molecule adds a new dimension to our understanding of lectin functions. This observation has wide implications for the understanding of plant defence mechanisms against pests and the cellular complexity in plant-pathogen interactions that may lead to the design of transgenics with potential to impart pest resistance to other crops.  相似文献   

16.
17.
J. Mitra  A. Das  T. Joshi 《Phytochemistry》1983,22(4):1063-1064
-5-Hydroxy-7,3′,4′-trimethoxy-8-methylisoflavone 5-neohesperidoside has been identified from the seeds of Dolichos biflorus.  相似文献   

18.
The differences among individual bile acids (BAs) in eliciting different physiological and pathological responses are largely unknown because of the lack of valid and simple analytical methods for the quantification of individual BAs and their taurine and glycine conjugates. Therefore, a simple and sensitive LC-MS/MS method for the simultaneous quantification of 6 major BAs, their glycine, and taurine conjugates in mouse liver, bile, plasma, and urine was developed and validated. One-step sample preparation using solid-phase extraction (for bile and urine) or protein precipitation (for plasma and liver) was used to extract BAs. This method is valid and sensitive with a limit of quantification ranging from 10 to 40 ng/ml for the various analytes, has a large dynamic range (2500), and a short run time (20 min). Detailed BA profiles were obtained from mouse liver, plasma, bile, and urine using this method. Muricholic acid (MCA) and cholic acid (CA) taurine conjugates constituted more than 90% of BAs in liver and bile. BA concentrations in liver were about 300-fold higher than in plasma, and about 180-fold higher in bile than in liver. In summary, a reliable and simple LC-MS/MS method to quantify major BAs and their metabolites was developed and applied to quantify BAs in mouse tissues and fluids.  相似文献   

19.
Granulated metrial gland cells were the only cells in the endometria of pregnant mice and rats that reacted histochemically with fluoresceinated lectin (DBA) from Dolichos biflorus. Cell extracts of uteri of pregnant animals, separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and analysed by lectin overlay blotting, contained DBA-reactive, 40-50 kDa, doublet glycoprotein bands. This glycoprotein was purified on a DBA agarose affinity column. It was identified by amino acid sequencing as a serine protease closely related to granzymes of T lymphocytes. We conclude that this granzyme accounts for the selective reactivity of granulated metrial gland cells with fluoresceinated DBA in histological sections of uteri of pregnant rodents and show that DBA affinity columns can be used for purification of granzyme derived from granulated metrial gland cells.  相似文献   

20.
Ulex europaeus agglutinin I, revealed by an immunoperoxidase (PAP) reaction, marks strongly and uniformly, on usual preparations human endothelial cells and makes up one of the best methods to observe vascular network distribution. It defines a general type (UEA I positive, LTA and DBA negative) including most of normal and pathologic endothelial cells. Only three varieties of cells, usually named endothelial ones do not stain: they are liver and marrow sinusoidal cells and lymphatic endothelial cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号