首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied neutrophil responses to LPS using three methodologic refinements: Teflon bags or serum-coated glass tubes that did not directly trigger neutrophils, LPS-free cytochrome c to measure O2- release, and heat-inactivated serum to inhibit inactivation of LPS by neutrophils. Neutrophils incubated in uncoated glass or plastic tubes adhered to the glass and released O2-, but were not primed for enhanced release of O2- in response to triggering by FMLP. Triggering by the glass or plastic surface did not occur if the neutrophils were stirred to prevent adherence. Adherence to glass or plastic and O2- release were not affected by a mAb (IB4) directed against the beta-chain of the leukocyte adhesion family of surface glycoproteins (CD11/CD18). Neutrophils incubated in glass or plastic did not show enhanced expression of alkaline phosphatase on their surface. When neutrophils were incubated in serum-coated glass tubes or in Teflon bags, there was no O2- release. However, adherence, expression of alkaline phosphatase, and release of O2- were triggered by adding 1 ng/ml LPS plus 1% serum, but not by either LPS or serum alone. In the presence of LPS and serum, O2- release was much higher when the cells were unstirred (adherent) rather than stirred. However, both unstirred and stirred cells expressed a similar elevated level of alkaline phosphatase. LPS-triggered O2- release and adherence were inhibited by antibody IB4. In contrast, priming by LPS for enhanced FMLP-triggered O2- release was greater in stirred cells than in unstirred cells. The antibody enhanced priming of unstirred neutrophils. These results suggested that uncoated glass or plastic triggered O2- release without involvement of leukocyte adhesion glycoproteins. However, neutrophils incubated with LPS and serum expressed alkaline phosphatase and IB4-inhibitable adherence glycoproteins that allowed neutrophils to interact with serum-coated glass or Teflon to trigger O2- release. Priming by LPS for enhanced response to FMLP was suppressed in adherent neutrophils, and this suppression was partly released by IB4. Thus, triggering and priming were reciprocally regulated by neutrophil glycoproteins interacting with surfaces.  相似文献   

2.
Incubation of platelets, neutrophils, and lymphoma cells with Descemet's membranes of bovine corneas and with the extracellular matrix (ECM) produced by cultured corneal endothelial cells resulted in release of basic fibroblast growth factor (bFGF), which stimulated the proliferation of 3T3 fibroblasts and vascular endothelial cells. Similar requirements were observed for release of endogenous bFGF stored in Descemet's membrane and of exogenous bFGF sequestered by the subendothelial ECM. Release of ECM-resident bFGF by platelets, neutrophils, and lymphoma cells was inhibited by carrageenan lambda, but not by protease inhibitors, in correlation with the inhibition of heparanase activity expressed by these cells. Degradation of the ECM-heparan sulfate side chains by this endo-beta-D-glucuronidase is thought to play an important role in cell invasion, particularly in the extravasation of blood-borne tumor cells and activated cells of the immune system. We propose that both heparanase and ECM-resident bFGF may modulate the cell response to contact with its local environment. Heparanase-mediated release of active bFGF from storage in basement membranes provides a novel mechanism for a localized induction of neovascularization in various normal and pathological processes, such as wound healing, inflammation, and tumor development.  相似文献   

3.
The role of the neutrophil in inflammatory diseases of the lung   总被引:7,自引:0,他引:7  
L A Boxer  R Axtell  S Suchard 《Blood cells》1990,16(1):25-40; discussion 41-2
Under certain circumstances, the neutrophil has been implicated in causing disease by damaging normal host tissue. This may occur in the adult respiratory distress syndrome (ARDS). The neutrophil has been implicated since a) substances that activate neutrophils are produced in association with the predisposing risks that lead to ARDS; b) activated neutrophils migrate into the alveolar spaces and their toxic products can be found in lung lavage fluid and in the breath of patients with ARDS; and c) the magnitude of the physiologic alterations correlate with the number of neutrophils in the alveolar space. Additionally, the neutrophils may be primed by substances which are released by activated platelets within the confines of the lung. Both platelet adenine nucleotides and the platelet-derived extracellular matrix protein (ECM), thrombospondin, can prime the neutrophil for subsequent O2- generation following activation of the cells with the chemotactic peptide, F-met-leu-phe (FMLP). Furthermore, neutrophils can be primed or O2- generation by the basement membrane ECM protein, laminin. Since neutrophils express receptors for both laminin and thrombospondin, these constituents may serve to modulate neutrophil behavior for subsequent oxidative metabolism and contribute to exacerbating pulmonary disease.  相似文献   

4.
Human neutrophils exposed to protein-coated polystyrene or cultured endothelial monolayers produce large quantities of H2O2 in response to soluble stimuli that elicit little or no secretion of reactive oxygen species from cells in suspension. To characterize the mechanisms involved in this adherence-dependent respiratory burst, we have investigated the possible role of one integrin known to participate in the adhesion of neutrophils to endothelial cells, CD11b/CD18 (Mac-1). H2O2 production was examined with chemotactic factor-stimulated human and canine neutrophils exposed to protein-coated surfaces and cultured human and canine endothelial cells. The two protein-coated surfaces used were type I collagen-coated glass or plastic, a surface to which neither human nor canine neutrophils adhered, and keyhole limpet hemocyanin (KLH)-coated glass or plastic, a surface to which human and canine neutrophils adhered only after chemotactic stimulation. FMLP-stimulated human neutrophils and platelet activating factor-stimulated canine neutrophils failed to produce detectable H2O2 when in contact with type I collagen, but secreted large amounts of H2O2 when adherent to KLH or endothelial cell monolayers. FMLP-stimulated neutrophils from patients with CD18-deficiency failed to adhere to any of these surfaces and failed to produce H2O2 under these conditions. mAb reactive with CD18 and CD11b were equally effective in markedly inhibiting the adhesion of normal human neutrophils to these surfaces and markedly inhibited the production of H2O2. A mAb reactive with CD18 blocked adhesion of stimulated canine neutrophils, and mAb directed against both CD18 and CD11b blocked H2O2 production by canine neutrophils on KLH and endothelium. A nonbinding mAb and a mAb reactive with CD11a did not inhibit H2O2 production of human cells on KLH or endothelial monolayers, and nonbinding and binding control mAb did not inhibit H2O2 production by canine neutrophils. These results indicate that Mac-1 (CD11b/CD18) can mediate adhesion-dependent H2O2 production by human and canine neutrophils exposed to chemotactic factors.  相似文献   

5.
Macrophages at sites of inflammation are exposed to proteolytic enzymes derived from neutrophils, platelets, clotting factors, complement, and damaged tissues. To investigate the possible effect of proteases on the plasma membrane-mediated oxidative metabolic response of macrophages in inflammatory sites, cultured human monocyte-derived macrophages were treated in vitro with proteolytic enzymes and were then assayed for their ability to release superoxide anion (O2-) and hydrogen peroxide (H2O2) in response to stimuli. Macrophages pretreated for 1 to 20 min with trypsin, chymotrypsin, pronase, or papain, 0.1 to 200 micrograms/ml, released up to 3.5-times more O2- and H2O2 than did control (untreated) cells. This enhanced production of oxygen metabolites was observed by using either phorbol myristate acetate or opsonized zymosan as the stimulus. Macrophages were also "primed" for enhanced O2- release (2.3-fold) by pretreatment with a subfraction of granules extracted from human neutrophils. This subfraction contained primarily elastase and cathepsin G. Similar enhancement was observed with 60 ng/ml or purified human neutrophil cathepsin G (2.2-fold) and with 20 micrograms/ml of purified neutrophil elastase (3.3-fold). Priming by these neutrophil proteases could be blocked by specific inhibitors of their proteolytic activity. These results suggest that macrophages involved in an inflammatory response might be rapidly primed by proteases released from degranulating neutrophils. Primed macrophages could mount a more effective oxidative metabolic response to microorganisms or tumor cells, but might also cause greater tissue damage.  相似文献   

6.
TNF-alpha can incite neutrophil-mediated endothelial cell damage and neutrophil H2O2 release. Both effects require adherent neutrophils. Using specific mAb, we showed in this in vitro study that the CD18 beta 2-chain and the CD11b alpha M-chain of the CD11/CD18 integrin heterodimer have a major role in both TNF-alpha-induced neutrophil-mediated detachment of human umbilical vein endothelial cells and H2O2 release by TNF-alpha-activated human neutrophils. In contrast to anti-CD18 mAb, which consistently prevented neutrophil activation, anti-CD11a mAb and two of three anti-CD11b mAb did not reduce endothelial cell detachment and neutrophil H2O2 release, although they decreased neutrophil adhesion to human umbilical vein endothelial cells. mAb 904, directed against the bacterial LPS binding region of CD11b, reduced endothelial cell detachment for about 40% and neutrophil H2O2 release for more than 50%, demonstrating that CD11b/CD18 is engaged in TNF-induced neutrophil activation. Dependence on CD11b/CD18 could not be overcome by CD18-independent anchoring of neutrophils via PHA. Additionally, neither induction of increased expression of the endothelial cell adhesion molecules ICAM-1 and ELAM-1, nor subsequent addition of specific mAb, influenced endothelial cell injury or H2O2 release by TNF-activated neutrophils. Interaction with ICAM-1 and ELAM-1 therefore appears not to induce additional activation of TNF-stimulated neutrophils. These studies suggest that a specific, CD11b/CD18-mediated signal, instead of adherence only, triggers toxicity of TNF-activated neutrophils.  相似文献   

7.
All of the common cytochalasins activate superoxide anion release and exocytosis of beta-N-acetylglucosaminidase and lysozyme from guinea-pig polymorphonuclear leukocytes (neutrophils) incubated in a buffered sucrose medium. Half-maximal activation of both processes is produced by approx. 0.2 microM cytochalasin A, C greater than 2 microM cytochalasin B greater than or equal to 4-5 microM cytochalasin D, E. While maximal rates of O2- release and extents of exocytosis require extracellular calcium (1-2 mM), replacing sucrose with monovalent cation chlorides is inhibitory to neutrophil activation by cytochalasins. Na+, K+ or choline inhibit either cytochalasin B- or E-stimulated O2- production with IC50 values of 5-10 mM and inhibition occurs whether Cl-, NO3- or SCN- is the anion added with Na+ or K+. Release of beta-N-acetylglucosaminidase in control or cytochalasin B-stimulated cells is inhibited by NaCl(IC50 approximately 10 mM), while cytochalasin E-stimulated exocytosis is reduced less and K+ or choline chloride are ineffective in inhibiting either cytochalasin B- or E-stimulated exocytosis. Release of beta-glucuronidase, myeloperoxidase or acid phosphatase from neutrophils incubated in buffered sucrose is not stimulated by cytochalasin B. Stimulation of either O2- or beta-N-acetylglucosaminidase release by low concentrations of cytochalasin A is followed by inhibition of each at higher concentrations. It appears that all cytochalasins can activate both NAD(P)H oxidase and selective degranulation of neutrophils incubated in salt-restricted media and that differential inhibition of these two processes by monovalent cations and/or anions is produced at some step(s) subsequent to cytochalasin interaction with the cell.  相似文献   

8.
It is well established that activation of neutrophils within the pulmonary circulation produces acute lung injury in which adherence of neutrophils to endothelial cells is an obligatory step in the mechanism of injury. The effects of in vivo activation of neutrophils on the in vitro responses of these cells to stimulation have not been determined, although such information may be important in understanding how different etiological factors may interact to produce infection or acute respiratory failure. By using an assay to sequentially measure superoxide anion (O2-) release from adherent neutrophils stimulated with phorbol myristate acetate (PMA), we measured the in vitro activation response of peripheral blood neutrophils isolated before and 24 h after infusion of zymosan-activated plasma (ZAP; or untreated plasma as a control), air bubbles, or PMA in awake, instrumented sheep. Each of the three inflammatory agents produced an increase in lung microvascular permeability characteristic of acute lung injury; control plasma did not. For the in vivo ZAP experiments, stimulated O2- release in vitro by using PMA was approximately 50% lower (P less than 0.05) for neutrophils isolated 24 h after the in vivo infusion (4.3 +/- 0.8 nmol/500,000 cells) than before (8.1 +/- 0.2 nmol/500,000 cells). For the air emboli or PMA in vivo experiments, there were no changes in neutrophil activation responses in vitro. Similarly, infusion of control plasma did not result in reduced neutrophil O2- release. These results show that alterations in the inflammatory potential of neutrophils may occur in vivo and that such alterations appear to be dependent on the mechanism and agent by which lung injury is produced.  相似文献   

9.
The effect of plasminogen on the ability of highly metastatic ESb mouse lymphoma cells to degrade heparan sulfate (HS) in the subendothelial extracellular matrix (ECM) was studied. A metabolically sulfate-labeled ECM was incubated with the lymphoma cells, and labeled degradation products were analyzed by gel filtration on Sepharose 6B. Heparanase-mediated release of low-Mr (0.5 less than Kav less than 0.85) HS cleavage products was stimulated fourfold in the presence of plasminogen. Incubation of plasminogen alone with the ECM resulted in its conversion into plasmin, which released high-Mr (Kav less than 0.33) labeled proteoglycans from the ECM. Heating the ECM (80 degrees C, 1 hr) abolished its ability to convert plasminogen into plasmin, yet plasminogen stimulated, through its activation by the ESb plasminogen activator, heparanase-mediated release of low-Mr HS fragments. Heparin inhibited both the basal and plasminogen-stimulated degradation of HS side chains but not the total amount of labeled material released from the ECM. In contrast, aprotinin inhibited the plasminogen-stimulated release of high- as well as low-Mr material. In the absence of plasminogen, degradation of heated ECM by ESb cells was completely inhibited by aprotinin, but there was only a partial inhibition of the degradation of native ECM and no effect on the degradation of soluble HS proteoglycan. These results demonstrate that proteolytic activity and heparanase participate synergistically in the sequential degradation of ECM HS and that the ESb proteolytic activity is crucial for this degradation when the ECM-associated protease is inactivated. Plasminogen may serve as a source for the proteolytic activity that produces a more accessible substrate to the heparanase.  相似文献   

10.
To address the question whether leukocyte integrins are able to generate signals activating neutrophil functions, we investigated the capability of mAbs against the common beta chain (CD18), or the distinct alpha chains of CR3, LFA-1, or gp150/95, to activate neutrophil respiratory burst. These investigations were performed with mAbs bound to protein A immobilized to tissue culture polystyrene. Neutrophils plated in wells coated with the anti-CD18 mAbs IB4 and 60.3 released H2O2; H2O2 release did not occur when neutrophils were plated in wells coated with an irrelevant, isotype-matched mAb (OKDR), or with mAbs against other molecules (CD16, beta 2-microglobulin) expressed on the neutrophil surface at the same density of CD18. Four different mAbs, OKM1, OKM9, OKM10, 60.1, which recognize distinct epitopes of CR3 were unable to trigger H2O2 or O2- release from neutrophils. However, mAbs against LFA-1 or gp150/95 triggered both H2O2 and O2- release from neutrophils. Stimulation of neutrophils respiratory burst by both anti-CD18, and anti-LFA-1 or gp150/95 mAbs was totally inhibited by the microfilaments disrupting agent, cytochalasin B, and by a permeable cAMP analogue. While the capability to activate neutrophil respiratory burst was restricted to anti-LFA-1 and gp150/95 mAbs, we observed that mAbs against all members of leukocyte integrins, including CR3, were able to trigger neutrophil spreading. These findings indicate that, in neutrophils, all three leukocyte integrins can generate signals activating spreading, but only LFA-1 and gp150/95 can generate signals involved in activation of the respiratory burst. This observation can be relevant to understand the mechanisms responsible for the activation of neutrophil respiratory burst by tumor necrosis factor-alpha, which has been shown to be strictly dependent on expression of leukocyte integrins (Nathan, C., S. Srimal, C. Farber, E. Sanchez, L. Kabbash, A. Asch, J. Gailit, and S. Wright. 1989. J. Cell Biol. 109:13411349.  相似文献   

11.
Despite the ubiquitous presence of basic fibroblast growth factor (bFGF) in normal tissues, endothelial cell proliferation in these tissues is usually very low, suggesting that bFGF is somehow sequestered from its site of action. Immunohistochemical staining revealed the localization of bFGF in basement membranes of diverse tissues, suggesting that the extracellular matrix (ECM) may serve as a reservoir for bFGF. Moreover, functional studies indicated that bFGF is an ECM component required for supporting endothelial cell proliferation and neuronal differentiation. We have found that bFGF is bound to heparan sulfate (HS) in the ECM and is released in an active form when the ECM-HS is degraded by heparanase expressed by normal and malignant cells (i.e. platelets, neutrophils, lymphoma cells). It is proposed that restriction of bFGF bioavailability by binding to ECM and local regulation of its release provide a novel mechanism for neovascularization in normal and pathological situations. The subendothelial ECM contains also tissue type- and urokinase type-plasminogen activators which participate in cell invasion and tissue remodeling. These results and studies on the properties of other ECM-immobilized enzymes (i.e. thrombin, plasmin, lipoprotein lipase) and growth factors (GM-CSF, IL-3, osteogenin), suggest that the ECM provides a storage depot for biologically active molecules which are thereby stabilized and protected. This may allow a more localized and persistent mode of action, as compared to the same molecules in a fluid phase.  相似文献   

12.
Tumor necrosis factor (TNF) is a 17,000-Da protein which is produced by mononuclear cells upon exposure to endotoxin. Increases in adherence, phagocytosis, hydrogen peroxide release, and lysozyme secretion have been demonstrated after prolonged incubation of human neutrophils with TNF. In this study, the ability of highly purified recombinant human TNF to modulate neutrophil responses to soluble stimuli was evaluated. Tumor necrosis factor alone (0.1 to 10,000 units/ml) failed to induce neutrophil superoxide anion (O2-) production, granule release, or aggregation when incubated for up to 25 min at 37 degrees C. TNF did, however, stimulate a significant time-, dose-, and temperature-dependent increase in neutrophil F-actin content. Although exposure of neutrophils to TNF alone caused no superoxide anion production, it enhanced the O2- production in response to the chemotactic peptide, f-methionyl-leucyl-phenylalanine (FMLP) or the tumor promotor, phorbol myristate acetate, by as much as 278%. The enhancement was time-, dose-, and temperature-dependent and was due to a more rapid initial rate of O2- production. The TNF enhancement of FMLP-induced O2- production was blocked when an anti-TNF monoclonal antibody 241-1H11, is present during the preincubation period. TNF preincubation also enhanced FMLP-induced lysozyme release, but had no effect on aggregation and actin polymerization by FMLP. The kinetics of NADPH oxidase activation by arachidonic acid was unaltered by TNF. These results indicate that brief exposures to recombinant human TNF are able to enhance or prime the neutrophil oxidative burst in response to a second stimulus.  相似文献   

13.
Basic fibroblast growth factor (bFGF) exhibits specific binding to the extracellular matrix (ECM) produced by cultured endothelial cells. Binding was saturable as a function both of time and of concentration of 125I-bFGF. Scatchard analysis of FGF binding revealed the presence of about 1.5 X 10(12) binding sites/mm2 ECM with an apparent kD of 610nM. FGF binds to heparan sulfate (HS) in ECM as evidenced by (i) inhibition of binding in the presence of heparin or HS at 0.1-1 micrograms/mL, but not by chondroitin sulfate, keratan sulfate, or hyaluronic acid at 10 micrograms/mL, (ii) lack of binding to ECM pretreated with heparitinase, but not with chondroitinase ABC, and (iii) rapid release of up to 90% of ECM-bound FGF by exposure to heparin, HS, or heparitinase, but not to chondroitin sulfate, keratan sulfate, hyaluronic acid, or chondroitinase ABC. Oligosaccharides derived from depolymerized heparin, and as small as the tetrasaccharide, released the ECM-bound FGF, but there was little or no release of FGF by modified nonanticoagulant heparins such as totally desulfated heparin, N-desulfated heparin, and N-acetylated heparin. FGF released from ECM was biologically active, as indicated by its stimulation of cell proliferation and DNA synthesis in vascular endothelial cells and 3T3 fibroblasts. Similar results were obtained in studies on release of endogenous FGF-like mitogenic activity from Descemet's membranes of bovine corneas. It is suggested that ECM storage and release of bFGF provide a novel mechanism for regulation of capillary blood vessel growth. Whereas ECM-bound FGF may be prevented from acting on endothelial cells, its displacement by heparin-like molecules and/or HS-degrading enzymes may elicit a neovascular response.  相似文献   

14.
The role of specific granules and cytochrome b in superoxide (O(2)) release was studied by comparing the effects of three different stimuli on normal human neutrophils, neutrophils congenitally deficient in specific granules, and granule-free normal neutrophil cytoplasts. Phorbol myristate acetate (PMA) stimulated normal neutrophils to release more O(2) than did N-formylmethionylleucylphenylalanine (fMet-Leu-Phe), which stimulated greater release than the calcium ionophore A23187. Neutrophils lacking specific granules produced variable amounts of O(2) in response to all stimuli. Stimulation with PMA, fMet-Leu-Phe, and A23187 produced maximal rates of O(2) release that were 32, 55, and 21% of that by normal cells. Likewise, granule-free neutrophil cytoplasts released 24, 20, and 0% of the O(2) released by intact cells. These data suggest that the stimuli require different mechanisms for activation. Three subcellular fractions (azurophil granule rich, specific granule rich, and plasma membrane rich) were separated by Percoll gradients from normal resting and stimulated neutrophils. In resting neutrophils, the cytochrome b content in the plasma membrane was 31% of the total, with the rest in the specific granule-rich fraction. Ten minutes after stimulation, PMA, fMet-Leu-Phe, and A23187 induced translocation of 27, 8, and 49%, respectively, of the cytochrome b from the specific granule-rich fraction to the plasma membrane. Although our data support a role for specific granule factors in A23187-induced O(2) release, there is no correlation between the amount of cytochrome b incorporated into the plasma membrane and the extent of O(2) production activated by the different stimuli.  相似文献   

15.
Recent observations support an active role for the vascular endothelial cell in the induction and evolution of the inflammatory response. Since prior studies suggested that cultured bovine endothelial cells express high affinity binding sites for the neutrophil chemotactic oligopeptide formyl methionyl-leucyl-phenylalanine (f-Met-Leu-Phe), we sought to further characterize the interaction between formyl peptide chemoattractants and human vascular endothelial cells. Cultured human umbilical vein endothelial cells and peripheral blood neutrophils specifically bound f-Met-Leu-[3H]Phe, whereas specific binding to cultured fibroblasts, smooth muscle, and epithelial cells was negligible. Endothelial cells expressed 3.6 +/- 0.7 X 10(5) binding sites/cell with a Kd of 210 +/- 31 nM. Although the hexapeptide formyl norleucyl-leucyl-phenylalanyl-norleucyl-tyrosyl-lysine (f-Nle-Leu-Phe-Nle-Tyr-Lys) and the tetrapeptide f-Met-Leu-Phe-Lys completed with f-Met-Leu-[3H]Phe for binding to endothelial cells, specific binding of 125I-f-Nl-Leu-Phe-Tyr-Lys or f-Met-Leu-Phe-Lys-fluorescein to endothelial cells was not observed, suggesting that steric constraints on formyl peptide binding differ between endothelial cells and leukocytes. At 37 degrees C, cell-associated f-Met-Leu-[3H]Phe greatly exceeded that bound at 0 degrees C and was incorporated predominantly into a nondisplaceable compartment. Release of f-Met-Leu-[3H]Phe or radioactive breakdown products from this compartment was time- and temperature-dependent with a t1/2 of approximately equal to 20 min at 37 degrees C. Resolution of the radioactive products released from f-Met-Leu-[3H]Phe-loaded endothelial cells by thin layer chromatography indicated that greater than or equal to 57% of the released material co-migrated with intact f-Met-Leu-[3H]Phe. Degradative release was blocked by agents that interfere with lysosomal acidification. The radioactive material released from f-Met-Leu-[3H]Phe-loaded endothelial cells bound specifically to neutrophils. This binding was inhibited 50.2 +/- 6.4% by a greater than or equal to 10(3)-fold excess of nonradioactive f-Met-Leu-Phe whereas binding of authentic f-Met-Leu-[3H]Phe was inhibited 89.4 +/- 3.0%. Supernatant obtained from f-Met-Leu-[3H]Phe-loaded endothelial cells elicited a rise in neutrophil cytosolic free calcium ([Ca2+]i) measured by quin2 fluorescence. The change in neutrophil [Ca2+]i depended on ligand binding to the neutrophil formyl peptide receptor since endothelial supernatants were devoid of activity in the presence of the f-Met-Leu-Phe antagonist, tert-butoxycarbonyl-Phe-Leu-Phe-Leu-Phe.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Incubation of plasminogen with the subendothelial extracellular matrix (ECM) synthesized by cultured bovine corneal and aortic endothelial cells resulted in generation of fibrinolytic activity, indicated by proteolysis of 125I-fibrin in a time-and dose-dependent manner. Both tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA) were identified in the ECM by fibrin zymography, immunoblotting, and inhibition of plasminogen activation by anti-u-and anti-t-antibodies. Most of the ECM-resident plasminogen activator (PA) activity did not originate from intracellular PA release occurring when the endothelial cells were lyzed and the ECM exposed, since a comparable amount of PA was associated with the ECM when the cells were lyzed with Triton X-100 or removed intact by treatment with 2 M urea. Active u-PA and t-PA were released from ECM by treatment with heparanase (endo-β-D-), indicating that some of the ECM-resident PA activity is sequestered by heparan sulfate side chains. These results indicate that both u-PA and t-PA produced by endothelial cells are firmly sequestered in an active form by the subendothelial ECM. It is suggested that ECM-resident plasminogen activators participate in sequential matrix degradation during cell invasion and tumor metastasis. PA activity may also function in release of ECM-bound growth factors (i.e., basic fibroblast growth factor) and activation of proenzymes (i.e., prothrombin), resulting in modulation of the ECM growth-promoting and thrombogenic properties. © 1993 Wiley-Liss, Inc.  相似文献   

17.
Endothelial cell-neutrophil interactions are an important aspect of inflammatory responses. Because vascular endothelial cells respond to the inflammatory mediator histamine, these studies determined whether histamine could induce endothelial cells to release substances that affect human neutrophil migration. Cultured bovine and human endothelial cells incubated with histamine released neutrophil chemoattractant activity within 1 min; peak levels were noted in 45 min. Cimetidine, an H2 receptor antagonist, blocked chemoattractant production, whereas diphenhydramine, an H1 receptor antagonist, did not. Cycloheximide did not inhibit release of chemoattractant activity, suggesting de novo protein synthesis was not necessary for its appearance. Extraction with acidified diethyl ether partitioned all neutrophil chemoattractant activity into the organic phase. The lipoxygenase pathway inhibitors, diethylcarbamazine and 5,8,11,14 eicosatetraynoic acid, inhibited generation of this lipophilic chemoattractant activity, whereas indomethacin, a cyclo-oxygenase inhibitor, did not. Resolution of the histamine-induced endothelial cell-derived chemoattractant activity by reverse-phase high pressure liquid chromatography yielded several peaks of chemoattractant activity, none of which co-eluted with leukotriene B4, platelet-activating factor, or two mono-hydroxyeicostetraenoic acids. These findings suggest that endothelial cells release lipid neutrophil chemoattractant activity that may play a role in inflammatory responses associated with histamine.  相似文献   

18.
Lipid hapten-containing monolayer membranes with bound, anti-hapten antibody molecules serve as model immunological target membranes. Targets with bound-IgG trigger guinea pig macrophages to (a) adhere, (b) spread, (c) release lysosomal enzymes, and (d) increase cyanide-insensitive oxygen consumption. When the target membranes are derivatized with fluorescein, there is a 2-3-fold enhancement in the rate of fluorescein photobleaching in regions of cell-monolayer contact. This effect is due to release of O2- from macrophages, as shown by inhibition with superoxide dismutase and by the fact that enhanced photobleaching is not observed with cells of the RAW264 macrophage line, which undergo responses (a)-(d), but do not release O2- extracellularly. The O2- dependent photobleaching reaction appears to be relatively specific for fluorescein, as it did not occur with two other fluorophores, 4-nitrobenz-2-oxa-1,3-diazole and tetramethyl-rhodamine. Because stimulated neutrophils release large quantities of O2-, the photobleaching of fluorescein-labeled target membranes in response to neutrophils was examined. Monolayer membranes with specifically bound IgG caused neutrophils to adhere and become markedly motile during incubation at 37 degrees C. Like macrophages, neutrophils induced O2- -dependent photobleaching of fluorescein-labeled IgG in regions of cell-monolayer contact. In addition, neutrophils gave rise to a slower, nonphotochemical loss of fluorescence in the same contact regions. The latter effect is apparently due to cleavage of target-bound fluorescent IgG by proteolytic enzymes secreted by the neutrophils in response to the target surface.  相似文献   

19.
Heparanase is a mammalian endoglycosidase that degrades heparan sulfate (HS) at specific intra-chain sites. Blood-borne neutrophils, macrophages, mast cells, and platelets exhibit heparanase activity that is thought to be stored in specific granules. The degranulated heparanase is implicated in extravasation of metastatic tumor cells and activated cells of the immune system. Degranulation and heparanase release in response to an inflammatory stimulus or platelet activation would facilitate cellular extravasation directly, by altering the composition and structural integrity of the extracellular matrix, or indirectly, by releasing HS-bound proinflammatory cytokines and chemokines. We hypothesized that in addition to such indirect effect, the released heparanase may also locally affect and activate neighboring cells such as endothelial cells. Here, we provide evidence that addition of the 65-kDa latent heparanase to endothelial cells enhances Akt signaling. Heparanase-mediated Akt phosphorylation was independent of its enzymatic activity or the presence of cell membrane HS proteoglycans and was augmented by heparin. Moreover, addition of heparanase stimulated phosphatidylinositol 3-kinase-dependent endothelial cell migration and invasion. These results suggest, for the first time, that heparanase activates endothelial cells and elicits angiogenic responses directly. This effect appears to be mediated by as yet unidentified heparanase receptor.  相似文献   

20.
There is controversy concerning whether intravascular activation of neutrophils during acute inflammation injures contiguous endothelial cells in vivo. Several physiologic defense mechanisms tend to limit such injury. In this paper we have examined evidence for one of these putative protective mechanisms: endothelial cell modulation of the activation responses of neutrophils during adherence and diapedesis. In vitro, endothelial cells co-incubated with neutrophils inhibit the release of superoxide anion when stimulated by receptor-mediated activators. The possible mechanisms include contact-linked down-regulation of neutrophil activation, the release from endothelial cells of soluble mediators which attenuate neutrophil activation responses, and the presence of free radical scavengers in endothelial cells which are active at the interface between endothelial cells and adherent neutrophils. There may be a broad spectrum of mechanisms by which intercellular interactions protect the lining cells of the vascular lumen from 'inadvertent' destruction by phagocytes which become activated while in an intravascular location.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号