首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microsomes from Tetrahymena pyriformis catalyzed the conversion of 1-acyl-2-[1-14C]oleoyl-sn-glycero-3-phosphorylcholine to 1-acyl-2-[1-14C]linoleoyl-sn-glycero-3-phosphorylcholine in the presence of oxygen and NADH or NADPH as cofactors. This desaturation enzyme activity was inhibited by cyanide and increased by 0.05-0.1% Triton X-100. Under optimal conditions desaturation appeared to follow Michaelis-Menten kinetics with a Km value of 6.9 . 10(-4) M. During incubation, no significant cleavage of phospholipid substrate was observed and no desaturation of free fatty acid occurred. The activity of 1-acyl-2-oleoyl-sn-glycero-3-phosphorylcholine desaturase was increased approx. 4-fold when Tetrahymena cells were shifted to a lower growth temperature. These data suggest the existence of a direct phospholipid desaturation system from oleoylphosphatidylcholine to linoleoylphosphatidylcholine. In addition, this desaturation may participate in the control of membrane lipid adaptation to a lower growth temperature in Tetrahymena.  相似文献   

2.
Author index     
The stearoyl-coenzyme A desaturase system of L-M cells, grown as monolayers, was examined in microsomal membranes that contained 8.2% phosphatidylisopropylethanolamine, an unnatural phospholipid analog. Desaturation of both [1-14C]stearic acid by whole cells and [1-14C]stearoyl-coenzyme A by cell-free homogenates, or microsomes, was decreased to about 40% of control levels in cells that had been grown for 24 h in the presence of 10 mmN-isopropylethanolamine. No decrease in microsomal NADH- or NADPH-dependent cytochrome c reductase activities or the level of cytochrome b5 was found in the L-M cells that had been treated for 24 h with N-isopropylethanolamine. Although amino acid transport into L-M cells was not affected by treatment with N-isopropylethanolamine, protein synthesis was decreased by about 30%. These results indicate that the decrease in stearoyl-coenzyme A desaturation in the modified membranes is specifically associated with the terminal oxidase activity (cyanide-sensitive factor) of the desaturase enzyme complex.  相似文献   

3.
Desaturation of oleoyl CoA by the microsomal fraction of Fusarium oxysporum hyphal cells required O2, NADPH, MgCl2, and the addition of either bovine serum albumin or the 105 000g supernatant fraction. In the absence of reduced nucleotide, [14C]oleoyl CoA was rapidly incorporated into phospholipid and triacylglycerol and hydrolyzed to free fatty acids. After addition of NADPH, oleate was desaturated at the normal rate. Analysis of the distribution of [14C]oleate and [14C]linoleate between different lipid classes revealed that phosphatidylcholine and phosphatidylethanolamine were labeled with [14C]linoleate before any other lipid class. These results are consistent with oleoyl phospholipid being a direct intermediate in the desaturation of oleoyl CoA. The preference of the oleoyl-desaturase for NADPH, the relatively high pH optimum of 8.2, and the sensitivity to thenoyltrifluoroacetone inhibition suggest that some components of the microsomal electron-transport chain are common to both the oleoyl desaturase and stearoyl CoA desaturase systems in this fungus.  相似文献   

4.
Since tumor cells show abnormal fatty acid composition, it is likely that their desaturase systems were affected to some extent. Although desaturase activities in experimental tumors have been evaluated, to our knowledge, fatty acid desaturases in human neoplasms and particularly in human tumors grown in nude mice have not been assessed yet. We have therefore, chosen a rapidly growing human lung mucoepidermoid carcinoma (HLMC) grown in nude mice to study microsomal fatty acid desaturation and chain elongation activities. Tumor microsomal proteins were incubated with unlabeled malonyl-CoA and one of the following fatty acids: [1-14C]palmitic (16:0), [1-14C]linoleic (18:2), alpha-[1-14C]linolenic (alpha-18:3), and unlabeled gamma-linolenic (gamma-18:3) plus [2-14C]malonyl-CoA. Data show that HLMC microsomes were capable to desaturate 16:0, alpha-18:3, and dihomogammalinolenic acids (20:3) by delta 9, delta 6 and delta 5 desaturase, respectively; however, delta 6 desaturase activity on [14C]18:2 was not detected. The microsomal elongation system was active in all fatty acid series tested except for 18:2. These findings show that the undetectable activity for 18:2 desaturation is not exclusively found in experimental tumors.  相似文献   

5.
[1-14-C]Palmitoyl-Co A was incubated with Tetrahymena microsomes containing the complete enzyme system for desaturation during various time periods. The level of [1-14C]palmitoleoyl-CoA increased to a maximum during the 1--3 min incubation time, while [1-14C]palmitoleic acid in the phospholipid reached a maximum level during 6--7 min incubation time. The radioactivity of [1-14C]palmitoleic acid in free fatty acid and the triglyceride fraction was not significantly observed upon 3 min incubation. Incubation of [1-14C]palmitoyl-CoA with microsomes in the absence of NADH produced [1-14C]palmitoyl lipid without desaturation. Radioactive palmitic acids in the microsomal lipids were not converted to palmitoleic acids after addition of NADH by the complete enzyme system. When microsomes prepared from cells labeled with [1-14C]palmitic acid or [1-14C]stearic acid were incubated alone in the presence of O2 and NADH, no significant increase in [1-14C]palmitoleic acid in the phospholipid was observed, wherease an increase in [1-14C]linoleic acid and gamma-[1-14C]linolenic acid did occur at the expense of [1-14C]oleic acid in the phospholipid. From these results it can be concluded that the enzyme involving desaturation of palmitic acid to palmitoleic acid requires palmitoyl-CoA as the substrate. However, the possibility of oleoyl and linoleoyl phospholipids being substrates in the desaturation of Tetrahymena microsomes was suggested.  相似文献   

6.
Some properties of a microsomal oleate desaturase from leaves.   总被引:13,自引:0,他引:13       下载免费PDF全文
1. When [1-14C]oleoyl-CoA was incubated with a pea-leaf homogenate oleate was both incorporated into microsomal 3-sn-phosphatidylcholine and released as the unesterified fatty acid. The proportion of oleate incorporated into this phospholipid was dependent on the relative amounts of thiol ester and microsomal preparation present in reactions. 2. At the concentrations of microsomal preparation and [14C]oleoyl-CoA used to study oleate desaturation the metabolism of the thiol ester was essentially complete after 5 min incubation, but the loss of label from 3-sn-phosphatidylcholine oleate and the concomitant increase in radioactivity in the linoleate of this phospholipid proceeded at approximately linear rates over a 60 min period. The kinetics of labelling of unesterified linoleate was consistent with the view that this labelled fatty acid was derived from 3-sn-phosphatidylcholine. 3. Oleate desaturation required oxygen and with unwashed microsomal fractions was stimulated either by NADPH or by the 105 000g supernatant. Washed microsomal preparations did not catalyse desaturation, but actively was restored by the addition of NADPH, 105 000G supernatant or Sephadex-treated supernatant. NADPH could be replaced by NADH or NADP+, but not by NAD+. 4. Microsomal fractions from mature and immature maize lamina and expanding spinach leaves also rapidly incorporated oleate from ([14C]oleoyl-CoA into 3-sn-phosphatidylcholine, but desaturation of 3-sn-phosphatidylcholine oleate was detected only with microsomal preparations from immature maize lamina. 5. It is proposed that leaf microsomal preparations posses an oleate desaturase for which 3-sn-phosphatidylcholine oleate is either the substrate or an immediate precursor of the substrate.  相似文献   

7.
The NADH-dependent stearoyl CoA desaturase of hepatic microsomes (EC 1.14.99.5) is an enzyme system consisting of cytochrome b5 reductase (EC 1.6.2.2), cytochrome b5, and the terminal desaturase. We have developed a simple method for routine assay of the terminal enzyme based on complementation of the enzyme with chick embryo liver microsomes lacking desaturase activity. Desaturation of [1-14C]stearoyl CoA by the enzyme-microsome mixture is then assayed by thin-layer chromatography of the reaction products and determination of the amount of oleate formed. Microsomes from the livers of starved-refed rats were used as the source of the stearoyl CoA desaturase. The enzyme alone, solubilized and free from cytocrome b5 reductase and cytochrome b5, was unable to catalyze the desaturation of stearoyl CoA. However, after preincubation with chick embryo liver microsomes in the presence of 1% Triton X-100, the enzyme was active. The enzyme activity was linear with time and desaturase protein under the conditions described and depended on the concentrations of Triton X-100 present in the preincubation and the assay. The optimum concentrations of Triton X-100 were 1% for the preincubation and 0.1-0.15% in the assay. The desaturation activity was dependent on NADH and O2, and was inhibited 95% by 1 mM KCN. The use of chick embryo liver microsomes in this method eliminates the need to use purified cytochrome b5 reductase, cytochrome b5, and liposomes for routine assays and greatly reduces the complexities of timing and order of addition encountered in the existing assays.  相似文献   

8.
Stearyl-CoA desaturase of bovine mammary microsomes   总被引:4,自引:0,他引:4  
Stearyl-CoA desaturase from the microsomal fraction of lactating bovine mammary tissue had a specific activity of 0.4 nmoles oleate formed min?1 mg?1 protein. NADH was required for desaturase activity. However, oxidized NAD+ and NADP+ supported measurable desaturase activity. Km values for stearyl-CoA and NADH were 25.0 μm and 3.0 μm, respectively. Desaturase was depressed by increasing concentrations of other acyl-CoA esters, i.e., palmityl-CoA and oleyl-CoA (>10 μm). Sn-1,2 diglycerides (1–2.0 μm) depressed desaturase slightly in the order 0–20%, as did l-α-glycerolphosphate (0.2–3.6 μm). 1-Acyl-sn-glycerol-3-phosphorylcholine (>0.1 μm) depressed desaturase activity markedly. Sonication of the microsomal preparation stimulated desaturase activity. The addition of ethanol depressed desaturation, and EDTA inhibited desaturation. Palmityl CoA was equally desaturated by the microsomes. The acyl-CoA desaturase was very stable when stored at ?30 °C as a freeze-dried microsomal preparation, i.e., activity was retained after 12-month storage.Labeled stearate and oleate were isolated as esters (triglycerides and phospholipids) and as free fatty acids, indicating the presence of acyl transferases and acyl-CoA hydrolase in mammary microsomes.  相似文献   

9.
The membrane lipid composition of Tetrahymena pyriformis NT-I was observed to change in a manner markedly dependent on the progress of culture age. The pellicular, mitochondrial and microsomal membranes were isolated from cell harvested at various growth phases (I, early exponential; II, mid-exponential; III, late exponential; IV, early stationary; V, late stationary) and their lipid composition was analyzed by thin-layer and gas-liquid chromatography. Although the phospholipid composition varied somewhat among membrane fractions, the most general age-dependent alteration was a considerable decrease in the content of phosphatidylethanolamine accompanied by a small increase in phosphatidylcholine. The 2-aminoethylphosphonolipid, enriched in the surface membrane pellicle, did not undergo a consistent change. As for fatty acid composition the most notable variation occurred in unsaturated fatty acids; a great increase in oleic and linoleic acids and a compensatory decrease in palmitoleic acid. This resulted in an augmented unsaturation of the overall phospholipid fatty acid profile of the aged membranes. The age-associated drastic decline in the palmitoleic acid content in membrane phospholipids could be accounted for by the markedly lowered activity of palmitoyl-CoA desaturase. The microsomes from the early exponential phase cells possess a 4-fold higher activity of the desaturase as compared to that of the late stationary phase microsomes. The decreased desaturase activity associated with the culture age was also reflected in the corresponding decrease in the conversion rate of [14C]palmitate to [14C]palmitoleate in cells labelled in vivo. The ESR spectra of the spin-labeled phospholipids extracted from the pellicular and microsomal membranes have led to the suggestion that these types of membrane would become more fluid with the age of growth.  相似文献   

10.
Two-minute exposures to exogenous [14C]palmitic, [14C]oleic, or [14C]lauric acid differentially labeled the lipids of Dunaliella salina microsomes and chloroplasts. Changes in fatty acid desaturation and intracellular movement during a subsequent 16-h incubation in nonradioactive medium indicated a slow transfer of lipids into the chloroplast from other organelles. Since Dunaliella lacks the massive traffic of microsomally produced glycerolipids into chloroplast galactolipids that dominates chloroplast-microsome lipid relations in most plant cells, it affords a sensitive system for studying more subtle intracellular lipid fluxes. Lowering the culture temperature from 30 to 12 degrees C was more inhibitory toward glycerolipid biosynthesis in chloroplasts than in microsomes. The ability of Dunaliella chloroplasts to utilize microsomal lipids may be essential for their systematic acclimation to low temperature.  相似文献   

11.
The regulatory mechanism of a key enzyme, palmitoyl-CoA desaturase, involved in the adaptation to temperature shift was investigated by labeling Tetrahymena pyriformis cells with [14C]palmitic acid. The rate of conversion of [14C]palmitate to [14C]palmitoleate was shown to be dependent on incubation temperature and also to be maximal at 2 h after the shift 39.5 to 15 degrees C. Addition of cycloheximide before the temperature shift produced no increase in desaturation of [14C]palmitate after the shift. These data would provide evidence for temperature-triggered increase of palmitoyl-CoA desaturase level and are also discussed in relation to membrane fluidity.  相似文献   

12.
(1) The metabolism of stearic acid was studied in vivo following intratesticular injection of [1-14C] stearate. Soon after injection 14C activity was found mainly in the free fatty acid pool. This was followed at later time periods by transfer of label primarily to the phosphatide pool. During each time period significant amounts of label were recovered at 14CO2. (2) Analysis of 14C-labeled fatty acids from the injected testes demonstrated an initial rapid rate of oxidation and desaturation of [1-14C] stearate followed by a slower steady state rate. It was concluded that the initial rate was due to the rapid turnover of the highly labeled free fatty acid pool followed by a much slower rate as [14C] stearate was esterified to the more metabolically stable phospholipids. Elongation of the labeled stearic or its desaturated derivative was not observed. (3) The rate of desaturation in vitro of stearic acid was measured in microsomal preparations from rat testes and found to be 12.0 +/- 0.5 pmol/min/mg compared to the estimated in vivo value of 22 pmol/min/mg and the value of 390 pmol/min/mg for hepatic microsomal desaturase.  相似文献   

13.
Human skin fibroblasts incorporate and actively desaturate long-chain fatty acids. Growth of these cells in lipid-free medium can be used to enhance delta 9 and delta 6 desaturation of [14C]stearate and [14C]linoleate, respectively. Medium supplementation with cis fatty acids inhibits delta 9 desaturation; effectiveness as inhibitors is linoleate (9c,12c-18:2) greater than oleate (9c-18:1) greater than vaccenate (11c-18:1). Linoelaidate (9t,12t-18:2), trans-vaccenate (11t-18:1) and saturated fatty acids are without effect; elaidate (9t-18:1) appears stimulatory. By contrast, the trans fatty acids elaidate and linoelaidate are potent inhibitors of delta 6 desaturation; inhibition by trans-vaccenate is 50% of that of elaidate. Desaturation of [14C]linoleate is only slightly inhibited by oleate, cis-vaccenate, or (6c,9c,12c)-linolenate. The relative effectiveness of isomeric cis- and trans-octadecenoic acids as inhibitors of delta 9 and delta 6 desaturation in intact human cells is different from that found in microsomal studies. The cell culture system can thus be important in evaluating physiological effects of isomeric fatty acids on cellular metabolic processes.  相似文献   

14.
1. [14C]Oleoyl-CoA was metabolized rapidly and essentially completely by microsomal preparations from developing safflower (Carthamus tinctorius) cotyledons, and most of the [14C]oleate was incorporated into 3-sn-phosphatidylcholine. 2. In aerobic reaction mixtures containing NADH2 the [14C]oleate in 3-sn-phosphatidylcholine was converted into [14C]linoleate without any change in the specific radioactivity of the lipid. Over a 60 min incubation period the extent of conversion of [14C]oleoyl phosphatidylcholine into [14C]linoleoyl phosphatidylcholine was generally greater than 60%. The rate of desaturation of endogenous [14C]oleoyl phosphatidylcholine labelled from [14C]oleoyl-CoA was much greater that of exogenous [14C]dioleoyl phosphatidylcholine the specific radioactivity of the oleoyl moiety of the lipid remained constant, indicating that labelled and unlabelled oleate were desaturated at the same rate. On this assumption an initial rate of desaturation of about 15 nmol of oleate desaturated/min per mumol of 3-sn-phosphatidylcholine was estimated. 4. [14C]Oleate esterified at positions 1 and 2 of both endogenous and exogenous 3-sn-phosphatidylcholine was desaturated. 5. Attempts to demonstrate the presence of an oleoyl-CoA desaturase in safflower microsomal fractions by the appearance of linoleoyl-CoA in reaction mixtures were inconclusive.  相似文献   

15.
The microsomal fraction was used to test the ability of human platelets to metabolize gammalinolenic acid. The microsomal delta 6 and delta 5 fatty acid desaturase activities were measured and the incorporation of [14C]malonyl CoA into prostaglandins was also determined. The results indicate that human platelets have the capacity to elongate gammalinolenic acid (18:3 n-6) to dihomogammalinolenic acid (20:3 n-6) precursor of PGE1. Labeled PGE1 could be detected when human platelets microsomes were incubated with [14C]malonyl CoA in the presence of gammalinolenic acid. The results also show that human platelet microsomes have little delta 6 or delta 5 desaturase enzyme activity.  相似文献   

16.
Phosphatidylcholine metabolism and membrane fluidity were studied in microsomes isolated from rabbit lung, which had been exposed to high oxygen tension for 30 min. In these microsomes the incorporation of [3H]-palmitate into phosphatidylcholine increased whereas the incorporation of [14C]-glycerol and [14C]-choline from CDP-[methyl-14C]-choline remained unchanged in comparison to the control microsomes. The enhanced [3H]-palmitate incorporation may be explained by an increase of the specific activity of acyl-CoA:lysophosphatidylcholine acyltransferase which was measured in microsomes from hyperoxic lung. Although microsomal parameters influencing membrane fluidity, such as the cholesterol/phospholipid molar ratio, unsaturation degree of phospholipid acyl chains and lipid/protein ratio, are altered after oxygen treatment in vivo, no change of fluorescence polarization (PDPH) and lipid structural order parameter (SDPH) could be measured. Probably, the membrane maintains its fluidity by counteracting effects on different factors on which the fluidity depends.  相似文献   

17.
The biosynthesis of 1-alk-1'-enyl-2-acyl-sn-glycero-3-phosphoethanolamine (ethanolamine plasmalogens) was studied using 1-[1-14C]hexadecyl-sn-glycero-3-phosphoethanolamine as the substrate and EDTA-washed microsomes from brains of 14-day-old rats. It was found that the 1-E11-14C]hexadecyl-sn-glycero-3-phosphoethanolamine was first acylated to form 1-[1-14C]hexadecyl-2-acyl-sn-glycero-3-phosphoethanolamine, then was desaturated to form 1-[1-14C]hexadec-1'-enyl-2-acyl-sn-glycero-3-phosphoethanolamine. The desaturation required O2 and NADH or NADPH and was inhibited by KCN but not by CO. The data indicated that the desaturation is carried out by a mixed-function oxidase system similar to that involved in the desaturation of fatty acids and that the pathway for the biosynthesis of plasmalogens in brain is similar to that previously found in other tissues. The desaturase was not stimulated by ATP and Mg2plus nor inhibited by EDTA. The specific activity of microsomes from brains of rats of different ages was determined; the activity decreased with age until in adults the activity was only 15% that of the 12--14-day-old rats.  相似文献   

18.
The cholesterol content of rat liver microsomal membranes was modified in vitro by incubating microsomes and cytosol with liposomes prepared by sonication of microsomal lipids and cholesterol. In this way, the cholesterol to phospholipid molar ratio was increased from 0.11-0.13 in untreated microsomes to a maximal of 0.8 in treated ones. Cholesterol incorporation in microsomes produced an increase in the diphenyl-hexatriene steady-state fluorescence anisotropy and a decrease in the efficiency of pyrene-excimer formation which indicated a decrease in the rotational and translational mobility, respectively, of these probes in the membranes lipid phase. Cholesterol incorporation in microsomes did not affect significantly the glucose-6-phosphatase activity in 0.1% Triton X-100 totally disrupted microsomes, but diminished the glucose-6-phosphatase activity of 'intact' microsomes. This indicates that possibly the glucose 6-phosphate translocation across the microsomal membrane is impeded by an increase in the membrane apparent 'microviscosity'. Cholesterol incorporation in microsomes decreased NADH-cytochrome c reductase without affecting NADH-ferricyanide reductase activity. The delta 9 desaturation reaction rate was enhanced by cholesterol incorporation at low but not at high palmitic acid substrate concentration. delta 5 and delta 6 desaturase reaction-rates were increased both at low and high fatty acid substrate concentrations. These results suggest that a mechanism involving fatty acid desaturase enzymes, might exist to self-regulate the microsomal membrane lipid phase 'fluidity' in the rat liver.  相似文献   

19.
R. Garcés  C. Sarmiento  M. Mancha 《Planta》1992,186(3):461-465
The effect of temperature on oleate desaturation in developing sunflower (Helianthus annuus L.) seeds has been examined. When seeds from plants grown at low (20/10° C, day/night) temperature were transferred for 24 h to 10° C, an increase in the linoleate/oleate ratio in phosphatidylcholine and triacylglycerol was observed, but not when transfer was to 20 or 30° C. The same effect was observed in triacylglycerol, phosphatidylcholine and phosphatidylethanolamine in the newly synthesized lipids after in-vivo incubation with [1-14C]oleate at 10° C. The microsomal oleoyl phosphatidylcholine desaturase (ODS) activity of the seeds maintained at 10 C was also enhanced. The stimulation was observed after only 3 h in plants grown at high temperature (30/20° C). This effect was inhibited by cycloheximide, implying that the low-temperature stimulation of the ODS activity was caused by the synthesis of new enzyme. As a consequence, seeds from plants grown at low temperature had higher ODS activities and linoleate contents than those grown at high temperature. The microsomal ODS activity of seeds from plants grown at low temperature was dependent on incubation temperature and showed a maximum at 20° C. By contrast, this activity was almost temperature-insensitive in seeds from plants grown at high temperature. These results could explain how temperature regulates the fatty-acid composition in sunflower-seed lipids.Abbreviations DAF days after flowering - ODS oleoyl phosphatidylcholine desaturase - PC phosphatidylcholine - PE phosphatidylethanolamine - TAG triacylglycerol - 181 oleic acid - 182 linoleic acid To whom correspondence should be addressedThanks are due to M.C. Ruiz for skillful technical assistance. This work was supported by a grant from Junta de Andalucia, Spain.  相似文献   

20.
The electron donors for the membrane-bound fatty acid desaturases of higher plants have not previously been identified. In order to assess the participation of cytochrome b5 in microsomal fatty acid desaturation, the cytoplasmic domain of microsomal cytochrome b5 was purified from Brassica oleracea, and murine polyclonal antibodies were prepared. The IgG fraction from ascites fluid inhibited 62% of NADH-dependent cytochrome c reduction in safflower (Carthamus tinctorius L.) microsomes. These antibodies also blocked desaturation of oleic acid to linoleic acid in lipids of C. tinctorius microsomes by 93%, suggesting that cytochrome b5 is the electron donor for the delta 12 desaturase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号