首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
I.r. spectra in the “carbonyl region” (1800-1400 cm?1) have been obtained for aqueous solutions of a number of glycosaminoglycans and model compounds. In D2O solution, the uronic carboxylate and acetamido groups absorb at characteristic frequencies (νasCOO?, 1605 ±5; ν5COO?, 1420 ±5; Amide I, 1623 ±3; and Amide II, 1480 ±2 cm?1). In acidic (m DCl) solution, the amide bands remain substantially unmodified, whereas those of the carboxylate anion disappear and are replaced by a single band due to the undissociated carboxyl (νCOOH, 1723 ±3 cm?1). These bands can be used for quantitative evaluation of the uronic acid and acetamidodeoxyhexose moieties of glycosaminoglycans, using either standard polysaccharides or the corresponding monosaccharides as reference compounds. For D2O solutions, the absorbances of the carboxylate and acetamido groups have been measured by graphical extrapolation of the corresponding most-intense bands (νasCOO? and Amide I). In DCl, the two analytical bands (νCOOH and Amide I) are well-resolved, and analyses have been performed directly from the absorbances recorded. I.r. data for the uronic acid and 2-acetamido-2-deoxyhexose content of various reference samples of glycosaminoglycans are in reasonable agreement with those expected from the “established” structures, as well as with those obtained by colorimetric and conductimetric methods. When sodium d-glucuronate was used as the reference standard, the i.r. data gave relatively low values for the uronic acid content of heparin. The apparent acid dissociation constants of chondroitin 4-sulfate and heparin were estimated from the absorbance of νCOO? and/or the νCOOH bands at different pH (pD) values.  相似文献   

3.
Conformational changes in ovalbumin, a globular protein, induced by an anionic surfactant, sodium dodecyl sulfate (SDS), have been monitored by an FT-IR spectrometer using ZnSe cylindrical internal reflection optics which allows high quality IR spectra to be obtained in water solution. The most notable change, on addition of SDS, occurs in the composite band of the Amide I absorption band and the vibrational frequency of the composite C = O bond shifts from 1639 cm-1 to 1652 cm-1. On the other hand, the position of the Amide II band remains fairly unchanged. Comparison of the various peak positions in the deconvoluted spectra for the native protein and the perturbed protein clearly shows the effect of SDS on the secondary structures of the protein. SDS unfolds the protein. It increases the helix content slightly. More importantly, it alerts the beta sheet structure, destroying it almost completely in the Amide I region, while retaining it in its neighbourhood. In the deconvoluted spectra of the perturbed protein, a band at 1531 cm-1 indicates generation of some beta turns. We used the second derivative of the deconvoluted spectra for fixing positions of minor peaks and shoulders. The results of this study indicate that the deconvolution of the normal IR spectra, consisting of composite bands, provides evidence for the specific secondary structures in a protein and for the way they are affected by changes in the environment, e.g., the addition of SDS. This makes it possible to relate conformational changes to specific secondary structures.  相似文献   

4.
We have undertaken a new and more detailed Fourier-transform infrared (FTIR) spectroscopic study of alpha-lactalbumin (in D2O solution) aimed at correlating its secondary structures to observed Amide I' infrared bands. The spectra reported here were interpreted in light of the recently determined crystal structure of alpha-lactalbumin and by comparison with the spectra and structure of the homologous protein lysozyme. Of particular importance is the new evidence supporting the assignment of the band at 1639 cm-1 to 3(10)-helices. This assignment is in excellent agreement with one based on theoretical and experimental studies of 3(10)-helical polypeptides. The frequency observed for 3(10)-helices is distinctly different from that at which alpha-helices are typically found (viz., around 1655 cm-1). In the present study, two bands are clearly resolved in the latter region at 1651 and 1659 cm-1. Both are apparently associated with alpha-helices. These results suggest that for D2O solutions of globular proteins. FTIR spectroscopy can be a facile method for detecting the presence of these two different types of helical conformation and distinguishing between them. This provides a distinct advantage over ultraviolet circular dichroism spectroscopy (UV-CD). This work also provides a basis for future studies of alpha-lactalbumin which examine the effects of environment (e.g., pH, temperature) and ligands (e.g., Ca2+, Mn2+) on its conformation.  相似文献   

5.
1. Erythrocyte ghosts exhibit resonance-enhanced Raman bands at 1530 cm(-1) and 1165 cm(-1) attributable to v(-C=C-) and v(=C-C=), respectively, of the conjugated polyene chains in carotenoids. In lipid extract of ghosts, these resonance-enhanced bands lie at 1527 and 1158 cm(-1). The spectra indicate the presence of membrane-bound beta-carotene. 2. The resonance-enhanced Raman spectrum of beta-carotene in lecithin liposomes is identical to that obtained with hexane or chloroform solutions. 3. Increasing proportions of cholesterol in cholesterol-lecithin liposomes up to a cholesterol: phospholipid molar ratio of 0.8-0.9 drastically decreases the intensity of both resonance-enhanced bands. 4. In ghosts the carotenoid bands respond to membrane perturbations. Trypsinization, lysolecithin treatment and reduction of pH increase the intensities of the 1530 and 1165 cm(-1) bands. In contrast, a decrease in the intensity of both bands follows equilibration of ghosts for 15 min at approx. 50 degrees C or addition of (0.1%) sodium dodecyl sulfate. 5. We suggest that perturbants known to change lipid-protein interactions in erythrocyte membranes modify the microenvironment and/or configuration of the membrane-bound carotenoid.  相似文献   

6.
Abstract

Conformational changes in ovalbumin, a globular protein, induced by an anionic surfactant, sodium dodecyl sulfate (SDS), have been monitored by an FT-IR spectrometer using ZnSe cylindrical internal reflection optics which allows high quality IR spectra to be obtained in water solution. The most notable change, on addition of SDS, occurs in the composite band of the Amide I absorption band and the vibrational frequency of the composite C=O bond shifts from 1639 cm?1 to 1652 cm?1. On the other hand, the position of the Amide II band remains fairly unchanged.

Comparison of the various peak positions in the deconvoluted spectra for the native protein and the perturbed protein clearly shows the effect of SDS on the secondary structures of the protein. SDS unfolds the protein. It increases the helix content slightly. More importantly, it alters the β sheet structure, destroying it almost completely in the Amide I region, while retaining it in its neighbourhood. In the deconvoluted spectra of the perturbed protein, a band at 1531 cm?1 indicates generation of some β turns. We used the second derivative of the deconvoluted spectra for fixing positions of minor peaks and shoulders.

The results of this study indicate that the deconvolution of the normal IR spectra, consisting of composite bands, provides evidence for the specific secondary structures in a protein and for the way they are affected by changes in the environment, e.g., the addition of SDS. This makes it possible to relate conformational changes to specific secondary structures.  相似文献   

7.
The peptide backbone conformation and salient structural details of oxytocin were examined by laser Raman spectroscopy. Spectra were obtained in the solid phase, water, 2H2O, and dimethyl sulfoxide solutions. A distinct Amide I band was obtained at 1663 cm-1 for aqueous and deuterated samples and 1666 cm-1 for the solid sample. A relatively high frequency Amide III band at 1260 cm-1 was obtained. It is concluded that these Amide I and III bands arise from the "beta-turn"-like conformation of oxytocin. The tyrosine side chain, according to the I850 cm-1/I830 cm-1 intensity ratio, is exposed to the solvent. The S-S stretching vibration at 512 cm-1 indicates the conformation of C-C-S-S-C-C in the disulfide bridge of oxytocin in the ring is gauche-gauche-gauche.  相似文献   

8.
Raman spectra are presented for sarcoplasmic reticulum membranes. Interpretation of the 1000-1130 cm-1 region of the spectrum indicates that the sarcoplasmic reticulum membrane may be more fluid than erythrocyte membranes that have been examined by the I portion of the membrane spectrum with a strong 1658 cm-1 band characteristic of C=C stretching in hydrocarbon side chains exhibiting cis conformation. This band is unaltered in intensity and position in H2O and in 2H2O thus obscuring amide I protein conformation. Of particular interest is the appearance of strong, resonantly enhanced bands at 1160 and 1527 cm-1 attributable to membrane-associated carotenoids.  相似文献   

9.
Furutani Y  Iwamoto M  Shimono K  Wada A  Ito M  Kamo N  Kandori H 《Biochemistry》2004,43(18):5204-5212
pharaonis phoborhodopsin (ppR; also called pharaonis sensory rhodopsin II, psR-II) is a photoreceptor protein for negative phototaxis in Natronobacterium pharaonis. During the photocycle of ppR, the retinal chromophore is thermally isomerized from the 13-cis to all-trans form. We employed FTIR spectroscopy of ppR at 260 K and pH 5 to reveal that this isomerization occurs upon formation of the O intermediate (ppR(O)) by using ppR samples reconstituted with 12,14-D(2)-labeled retinal. In ppR(O), C=O stretching vibrations of protonated carboxylates newly appear at 1757 (+)/1722 (-) cm(-1) in H(2)O and at 1747 (+)/1718 (-) cm(-1) in D(2)O in addition to the 1765 (+) cm(-1) band of Asp75. Amide I vibrations are basically similar between ppR(M) and ppR(O), whereas unique bands of ppR(O) are also observed such as the negative 1656 cm(-1) band in D(2)O and intense bands at 1686 (-)/1674 (+) cm(-1). In addition, O-D stretching vibrations of water molecules in the entire mid-infrared region are assigned for ppR(M) and ppR(O), the latter being unique for ppR, since it can be detected at low temperature (260 K). The ppR(M) minus ppR difference spectra lack the lowest frequency water band (2215 cm(-1)) observed in the ppR(K) minus ppR spectra, which is probably associated with water that interacts with the negative charges in the Schiff base region. It is likely that the proton transfer from the Schiff base to Asp75 in ppR(M) can be explained by a hydration switch of a water from Asp75 to Asp201, as was proposed for the light-driven proton-pump bacteriorhodopsin (hydration switch model) [Tanimoto, T., Furutani, Y., and Kandori, H. (2003) Biochemistry 42, 2300-2306]. In the transition from ppR(M) to ppR(O), a hydrogen-bonding alteration takes place for another water molecule that forms a strong hydrogen bond.  相似文献   

10.
W L Peticolas 《Biochimie》1975,57(4):417-428
The Raman spectra of biological macromolecules arise from molecular vibrations of either the backbone chains or the side chains. The frequencies of the Raman bands lie in a region between 200 cm-1 and 3000 cm-1. From certain frequencies of the vibrations of the backbone chains one can determine the conformation or secondary structure of a macromolecule. Thus for polypeptides and proteins the frequencies of the Amide I and Amide III vibrations allow one to determine the averge conformation of their backbone chain. In polynucleotides and nucleic acids, the frequency of the phosphate diester stretch of the phosphate furanose chain varies between 814 cm-1 for A conformation and 790 cm-1 for B conformation. Raman spectra of the bases in nucleic acids can be used to determine base stacking and hydrogen bonding interactions. Thus Raman spectroscopy is an important tool for determining the conformation structure of proteins and nucleic acids.  相似文献   

11.
The dioxygen stretch bands in infrared spectra for solutions of oxy species of human hemoglobin A and its separated subunits, human mutant hemoglobin Zurich (beta 63His to Arg), rabbit hemoglobin, lamprey hemoglobin, sperm whale myoglobin, bovine myoglobin, and a sea worm chlorocruorin are examined. Each protein exhibits multiple isotope-sensitive bands between 1160 and 1060 cm-1 for liganded 16O2, 17O2, and 18O2. The O-O stretch bands for each of the mammalian myoglobins and hemoglobins are similar, with frequencies that differ between proteins by only 3-5 cm-1. The spectra for the lamprey and sea worm hemoglobins exhibit greater diversity. For all proteins an O-O stretch band expected to occur near 1125 cm-1 for 16O2 and 17O2, but not 18O2, appears split by approximately 25 cm-1 due to an unidentified perturbation. The spectrum for each dioxygen isotope, if unperturbed, would contain two strong bands for the mammalian myoglobins (1150 and 1120 cm-1) and hemoglobins (1155 and 1125 cm-1). Two strong bands separated by approximately 30 cm-1 for each oxy heme protein subunit indicate that two major protein conformations (structures) that differ substantially in O2 bonding are present. The two dioxygen structures can result from a combination of dynamic distal and proximal effects upon the O2 ligand bound in a bent-end-on stereochemistry.  相似文献   

12.
13.
The aim of this article was to study the effects of mobile phone electromagnetic waves at 1750 MHz on the Amide I and Amide II vibration bands of some proteins in bidistilled water solution by means of Fourier transform infrared (FTIR) spectroscopy and Fourier self-deconvolution (FSD) analysis. The proteins that were used for the experiment were hemoglobin, myoglobin, bovine serum albumin and lysozyme.

The exposure system consisted of microwaves emitted by an operational mobile phone at the frequency at 1750 MHz at the average power density of 1 W/m2. Exposed and control samples were analyzed using FTIR spectroscopy and FSD analysis. The main result was that Amide I band of the proteins that were used increased significantly (p < 0.05) after 4 h of exposure to MWs, whereas Amide II band did not change significantly. This result can be explained assuming that the α-helix structure of the proteins aligned itself with the direction of the electromagnetic field due to the alignment of C = O stretching and N ? H bending ligands that are oriented along with the α-helix axis that give rise to the Amide I mode.  相似文献   


14.
Raman spectra are presented for sarcoplasmic reticulum membranes. Interpretation of the 1000–1130 cm?1 region of the spectrum indicates that the sarcoplasmic reticulum membrane may be more fluid than erythrocyte membranes that have been examined by the same technique. The fluidity of the membrane also manifests itself in the amide I portion of the membrane spectrum with a strong 1658 cm?1 band characteristic of CC stretching in hydrocarbon side chains exhibiting cis conformation. This band is unaltered in intensity and position in H2O and in 2H2O thus obscuring amide I protein conformation. Of particular interest is the appearance of strong, resonantly enhanced bands at 1160 and 1527 cm?1 attributable to membrane-associated carotenoids.  相似文献   

15.
Dutch Belt rabbit erythrocyte ghosts have been examined by Raman spectroscopy. An unusually high signal-to-noise spectrum was obtained which enabled assessment of vibrations within 300 cm?1 of the exciting radiation. Assignment of the observed bands to specific vibrations yielded information concerning membrane fluidity, the conformations of the peptide backbones and disulfide bonds of membrane proteins, and the configurations of lipid unsaturated hydrocarbon side chains.  相似文献   

16.
Raman studies of conformational changes in model membrane systems   总被引:2,自引:0,他引:2  
Laser Raman spectra of concentrated samples of phosphatidyl choline and phosphatidyl ethanolamine were taken at approximately 10° intervals over a temperature range of 90°–19°C. The spectral region from 30 to 3300 cm?1 was investigated. Several new spectral features were discovered which are correlated to phospholipid liquid crystalline structure. It is shown that 1) frequency shifts occur in the PO2? symmetric stretch band which suggest a change in exposure of the PO2 group to the solvent upon melting, 2) the frequency of the translational hydrocarbon mode around 150 cm?1 appears to indicate the degree to which the hydrocarbon chain is extended, 3) the methyl and methylene stretch bands at 2890 and 2850 cm?1 very clearly demonstrate hydrocarbon chain melting, and 4) the 720 cm?1 band, previously assigned to the symmetric OPO diester stretch, appears to be due instead to the symmetric CN stretch of choline.  相似文献   

17.
The effect of dimethyl sulfoxide (DMSO) on the structure of sarcoplasmic reticulum was analyzed by Fourier transform infrared (FTIR) and fluorescence spectroscopy. Exposure of sarcoplasmic reticulum vesicles to 35% DMSO (v/v) at 2 degrees C for several hours in a D2O medium produced no significant change in the phospholipid and protein Amide I regions of the FTIR spectra, but the intensity of the Amide II band decreased, presumably due to proton/deuterium exchange. At 40% to 60% DMSO concentration a shoulder appeared in the FTIR spectra at 1630 cm-1, that is attributed to the formation of new beta or random coil structures; irreversible loss of ATPase activity accompanied this change. At 70% DMSO concentration the intensity of the main Amide I band at 1639 cm-1 decreased and a new band appeared at 1622 cm-1, together with a shoulder at 1682 cm-1. These changes indicate an abrupt shift in the conformational equilibrium of Ca2+-ATPase from alpha to beta structure or to a new structure characterized by weaker hydrogen bonding. Decrease of ionization of aspartate and glutamate carboxyl groups in the presence of DMSO may also contribute to the change in intensity at 1622 cm-1. The changes were partially reversed upon removal of DMSO. Exposure of sarcoplasmic reticulum vesicles to 1.5 kbar pressure for 1 h at 2 degrees C in an EGTA-containing (low Ca2+) medium causes irreversible loss of ATPase activity, with the appearance of new beta structure, and abolition of the Ca2+-induced fluorescence response of FITC covalently bound to the Ca2+-ATPase; DMSO (35%) stabilized the Ca2+-ATPase against pressure-induced changes in structure and enzymatic activity, while urea (0.8 M) had the opposite effect.  相似文献   

18.
Singlet molecular oxygen (1O2) is one of the most active intermediates involved in photosensitized oxygenation reactions in chemical and biological systems. Deactivation of singlet oxygen is accompanied by infrared phosphorescence (1270 nm) which is widely employed for 1O2 detection and study. This review considers techniques for phosphorescence detection, phosphorescence spectra, quantum yields and kinetics under laser excitation, the radiative and real 1O2 lifetimes in organic solvents and water, 1O2 quenching by biomolecules, and estimation of singlet oxygen lifetimes, diffusion lengths and phosphorescence quantum yields in blood plasma, cell cytoplasm, erythrocyte ghosts, retinal rod outer segments and chloroplast thylakoids. The experiments devoted to 1O2 phosphorescence detection in photosensitizer-containing living cells are discussed in detail. Information reviewed is important for understanding the mechanisms of photodestruction in biological systems and various applied problems of photobiology and photomedicine.  相似文献   

19.
A Blume  W Hübner  G Messner 《Biochemistry》1988,27(21):8239-8249
Fourier transform infrared spectroscopy has been used to characterize the carbonyl stretching vibration of DMPC, DMPE, DMPG, and DMPA, all labeled with 13C at the carbonyl group of the sn-2 chain. Due to the vibrational isotope effect, the 13C = O and the 12C = O vibrational bands are separated by ca. 40-43 cm-1. This frequency difference does not change when the labeling is reversed with the 13C = O group at the sn-1 chain. For lipids in organic solvents possible conformational differences between the sn-1 and sn-2 ester groups have no effect on the vibrational frequency of the C = O groups. In aqueous dispersion unlabeled phospholipids always show a superposition of two bands for the C = O vibration located at ca. 1740 and 1727 cm-1. These two bands have previously been assigned to the sn-1 and sn-2 C = O groups. FT-IR spectra of 13C-labeled phospholipids show that the vibrational bands of both, the sn-1 as well as the sn-2 C = O group, are clearly superpositions of at least two underlying components of different frequency and intensity. Band frequencies were determined by Fourier self-deconvolution and second-derivative spectroscopy. The difference between the component bands is ca. 11-17 cm-1. Again, the conformational effect as shown by reversed labeling is negligible with only 1-2 cm-1. The splitting of the C = O vibrational bands in H2O and D2O is caused by hydrogen bonding of water molecules to both C = O groups as shown by a comparison with spectra of model ester compounds in different solvents. To extract quantitative information about changes in hydration, band profiles were stimulated with Gaussian-Lorentzian functions. The chemical nature of the head group and its electronic charge have distinctive effects on the extent of hydration of the carbonyl groups. In the gel and liquid-crystalline phase of DMPC the sn-2 C = O group is more hydrated than the sn-1 C = O. This is accord with the conformation determined by X-ray analysis. In DMPG the sn-1 C = O group seems to be more accessible to water, indicating a different conformation of the glycerol backbone.  相似文献   

20.
Human erythrocyte membranes and freshly isolated spectrin were separated into their constituent peptides by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The peptides were electrophoresed from slices of such gels into agarose gels containing anti-spectrin antibodies and Triton X-100. In fresh preparations, precipitin arcs were observed only against peptides migrating as bands 1 and 2. It was found that bands 1 and 2 did not cross-react. There were two major arcs from band 1 and one principal arc from band 2, plus minor splitting of these arcs. None of the band 1 arcs fused with band 2 arcs. In fresh erythrocyte ghosts only bands 1 and 2 reacted with anti-spectrin; bands 2.1, 3, and 5, in particular, showed no precipitin arcs. However, in aged ghosts, arcs appeared in the band 3 region; in aged isolated spectrin, arcs appeared in the band 2.1 region; and in trypsin-degraded spectrin, reactive species occurred in all molecular weight classes. It is concluded that spectrin has no subunits smaller than 220,000 molecular weight and that bands 1 and 2 are immunochemically distinct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号