首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ovariectomized (OVX), hypothalamo/pituitary-disconnected (HPD) ewes were used to ascertain the short-term effects of estradiol on the number of gonadotropin-releasing hormone (GnRH) receptors in the pituitary gland. The time course of the study was such that measurements were made during the period of short-term negative feedback and positive feedback. Groups of 4 OVX-HPD ewes were given 250-ng pulses of GnRH each hour and an i.m. injection of oil (Group 1) or 50 micrograms estradiol benzoate in oil (Groups 2-4). Blood samples were collected from each ewe prior to treatment with estradiol or oil and again immediately before slaughter. Groups 2, 3, and 4 were killed 6, 16, and 20 h, respectively, after administration of estradiol. Amplitudes of luteinizing hormone (LH) pulses and average plasma concentrations of LH were reduced 6 h after estradiol treatment. Sixteen and 20 h after injection, the average plasma LH levels were elevated, but pulse amplitudes were similar to preinjection values. The number of GnRH receptors was significantly (p less than 0.01) increased within 6 h of estrogen treatment and further increased 16 and 20 h after treatment. Pituitary content of LH was similar in all groups. These data indicate that the number of GnRH receptors in the pituitary gland of ewes can be acutely influenced by a direct effect of estradiol. However, the magnitude and direction of the change in receptors number does not account for the changes in pituitary responsiveness to GnRH, suggesting estradiol also modifies post-receptor mechanisms that influence secretion of LH.  相似文献   

2.
We recently demonstrated that progesterone and estradiol inhibit pituitary LH secretion in a synergistic fashion. This study examines the direct feedback of progesterone on the estradiol-primed pituitary. Nine ovariectomized (OVX) ewes underwent hypothalamic-pituitary disconnection (HPD) and were infused with 400 ng GnRH every 2 h throughout the experiment. After 7 days of infusion, estradiol was implanted s.c. Four days later, estradiol implants were exchanged for blank implants in 4 ewes and for progesterone implants in 5 ewes. These implants remained in place for another 4 days. Blood samples were collected around exogenous GnRH pulses before and 0.5 to 96 h after implant insertion and exchange. Serum LH and progesterone concentrations were determined through RIA. One month later, 4 of the HPD-OVX ewes previously implanted with steroids were reinfused with GnRH and the implantation protocol was repeated using blank implants only. In estradiol-primed ewes, progesterone significantly lowered LH secretion after 12 h of implantation and LH secretion remained inhibited while progesterone implants were in place (p less than 0.05). Removing estradiol transiently lowered LH secretion, and this effect was significant only 24 h after estradiol withdrawal (p less than 0.05). These data suggest that progesterone has a direct, estradiol-dependent inhibitory effect on pituitary LH release and that estradiol may sustain pituitary gonadotrope response to GnRH.  相似文献   

3.
The retention time of the estrogen receptor in the nucleus of target cells after antiestrogen treatment has been shown to be longer than after estradiol. This paper describes the accumulation of nuclear estrogen receptors and the obtention of estrogenic responses (i.e. synthesis of cytosolic progesterone receptors and DNA) in the rat uterus after tamoxifen treatment in the presence or absence of estradiol. One-week ovariectomized adult rats were implanted with a silicone elastomer capsule containing corn oil or 25 micrograms estradiol/capsule (0 h). 48 h after implantation rats were injected with corn oil or 2 mg tamoxifen/kg and decapitated at 72, 96 or 120 h after implantation. In parallel experiments the implants were removed just before the injections of tamoxifen or oil. Tamoxifen injected into rats implanted with oil increased both the occupied nuclear receptors and the progesterone receptors at 96 h. In rats implanted with estradiol, tamoxifen did not increase the occupied nuclear receptors and decreased the levels of progesterone receptor and DNA at 96 h. In rats whose estradiol implants were removed at 48 h tamoxifen did not change the level of occupied nuclear receptors at 72 h but it increased them abruptly at 96 and 120 h. In these rats progesterone receptors decreased at 72 h but they increased at 96 and 120 h, and DNA decreased at 120 h to a lower level than before implantation. The results suggest that when estradiol is acting, tamoxifen is not able to increase the level of occupied estrogen receptor and it acts as an antiestrogen by decreasing the high level of progesterone receptors previously induced by estradiol. When estradiol is not acting tamoxifen behaves as a partial estrogen agonist by inducing progesterone receptors. However, the antiestrogenic action of tamoxifen on the rat uterus DNA does not seem to be affected by estradiol.  相似文献   

4.
L V Swanson  S K McCarthy 《Steroids》1986,47(2-3):101-114
A significant dose-response relationship between gonadotropin-releasing hormone (GnRH) and time to luteinizing hormone (LH) peak, peak serum LH and total serum LH was obtained in prepubertal Holstein heifers (28 weeks of age) (Experiment 1). For the second experiment, the effect of steroid feedback on the anterior pituitary was determined. A steady infusion of saline, estradiol-17 beta or progesterone was maintained for 24 h while GnRH, in various schemes, was administered 8 h after the beginning of steroid infusion. Estradiol-17 beta infusion (2.08 micrograms/h), although it did not affect peripheral concentrations of estrogen, caused an LH release 24 to 30 h later in 37.5% of the heifers. This amount of exogenous estrogen did not affect the LH response to a single GnRH (4 micrograms) challenge. When the same GnRH dosage (4 micrograms) was administered 6 times at hourly intervals, the heifers infused with estradiol had a lower response after the first 2 injections of GnRH and a greater response after the last 4 injections than heifers infused with saline. When GnRH was infused (4 micrograms/h) for 6 h, beginning 8 h after steroid infusion, estradiol infusion caused a significantly higher peak LH and total LH release than an infusion of either saline or progesterone (7.3 micrograms/h). The progesterone infusion had no effect on the GnRH-stimulated LH release. We conclude that prepubertal dairy heifers have an anterior pituitary capable of responding to the feedback effect of estrogen in a positive manner.  相似文献   

5.
Studies were undertaken to determine if changes in the amplitude of luteinizing hormone (LH) pulses that occur in response to changes in the frequency of gonadotropin-releasing hormone (GnRH) pulses are due to an alteration in the number of GnRH receptors. Ewes were ovariectomized (OVX) and the hypothalamus was disconnected from the pituitary (HPD). Ewes were then given pulses of GnRH at a frequency of 1/h or 1/3 h. Two control groups were included: OVX ewes not subjected to HPD, and HPD ewes that were not OVX. At the end of one week of treatment, blood samples were collected to determine the amplitude of LH pulses. The treated ewes were killed just before the next scheduled pulse of GnRH, and the content of LH and number of GnRH receptors were measured in each pituitary. The amplitude of LH pulses was highly correlated with the amount of LH in the pituitary gland (r = 0.71, p less than 0.01), and both LH content and pulse amplitude (mean + SEM) were higher in ewes receiving GnRH once per 3 h (189.7 +/- 39.3 microgram/pituitary, 10.3 +/- 1.1 ng/ml, respectively) than in ewes receiving GnRH once per h (77.8 +/- 11.4 microgram/pituitary, 5.2 +/- 1.3 ng/ml). The pituitary content of LH was highest in the OVX ewes (260.2 +/- 57.4 micrograms/pituitary) and lowest in the nonpulsed HPD ewes (61.7 +/- 51.2 micrograms/pituitary). The number of GnRH receptors was similar in all groups, and was not correlated with any other variable.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Two experiments were performed to examine the effect of estradiol on secretion of luteinizing hormone (LH) and on the number of receptors for gonadotropin-releasing hormone (GnRH) after down regulation of GnRH receptors in ovariectomized ewes. In the first experiment, ovariectomized ewes were administered one of four treatments: Group 1) infusion of GnRH i.v. for 40 h; Group 2) injection of 100 micrograms estradiol i.m.; Group 3) infusion of GnRH i.v. for 16 h followed immediately by an injection of 100 micrograms estradiol i.m.; and Group 4) infusion of GnRH i.v. for 40 h plus injection of 100 micrograms estradiol i.m. after the 16th h of infusion. Ewes in Groups 1, 3 and 4 responded to the infusion of GnRH with an immediate increase in serum concentrations of LH, with maximum values occurring between 2 and 4 h after the start of infusion; serum concentrations of LH then began to decline and were approaching the pretreatment baseline within 16 h. Administration of estradiol resulted in a surge of LH regardless of whether the pituitary had been desensitized by infusion of GnRH or not. In all cases the magnitude of the surge was similar to that induced by the initial infusion of GnRH. In Groups 2 and 3 the surge of LH began at 12.3 +/- 0.1 and 11.9 +/- 0.1 h after administration of estradiol. In contrast, the ewes in Group 4 had a surge of LH beginning 3.7 +/- 0.1 h after administration of estradiol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The purpose of this experiment was to determine if pituitary stores of LH could be replenished by administration of GnRH when circulating concentrations of both progesterone and estradiol-17 beta (estradiol) were present at levels observed during late gestation. Ten ovariectomized (OVX) ewes were administered estradiol and progesterone via Silastic implants for 69 days. One group of 5 steroid-treated OVX ewes was given GnRH for an additional 42 days (250 ng once every 4 h). Steroid treatment alone reduced (p less than 0.01) the amount of LH in the anterior pituitary gland by 77%. Pulsatile administration of GnRH to steroid-treated ewes resulted in a further decrease (p less than 0.01) in pituitary content of LH. Compared to the OVX ewes, concentrations of mRNAs for alpha- and LH beta-subunits were depressed (p less than 0.01) in all steroid-treated ewes, whether or not they received GnRH. The ability of the dosage of GnRH used to induce release of LH was examined by collecting blood samples for analysis of LH at 15 days and 42 days after GnRH treatment was initiated. Two of 5 and 3 of 5 steroid-treated ewes that received pulses of GnRH responded with increased serum concentrations of LH after GnRH administration during the first and second bleedings, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Concentrations of pituitary receptors for gonadotropin-releasing hormone (GnRH) are affected by GnRH and gonadal steroids. To test the hypothesis that estradiol-17 beta (E2) directly affects the number of GnRH receptors in the pituitary, independent of GnRH secretion, ovariectomized ewes with hypothalamic-pituitary disconnections (HPD) were given 25 micrograms (i.m.) of E2 (HPD + E2, n = 5) or oil (HPD + OIL, n = 5). Ovariectomized control ewes, with intact hypothalamic-pituitary axes (INT), also received either E2 or oil (INT + E2, n = 6; INT + OIL, n = 6). Blood samples were taken hourly for analysis of serum concentrations of luteinizing hormone (LH) from 4 h prior to until 16 h after treatment. Pituitaries were collected 16 h after treatment for analysis of GnRH receptors. Treatment with E2 increased concentrations of LH in serum beginning 12.7 +/- 0.6 h after injection in INT ewes but not in HPD ewes. Compared to INT + OIL ewes, E2 treatment increased (p less than 0.001) the number of GnRH receptors by 2.5-fold in INT ewes and by 2.0-fold in HPD ewes. These results suggest that although GnRH is necessary for secretion of gonadotropins, E2 alone can directly increase the number of GnRH receptors in the pituitary.  相似文献   

9.
Primary cultures of ovine pituitary cells were used to characterize the effects of inhibin and activin on the secretion of gonadotropins and on the regulation of number of GnRH receptors in the presence or absence of estradiol. Number of GnRH receptors was determined by the specific binding of a saturating dose of [125I]des-Gly10-D-Trp6-GnRH-ethylamide (GnRH-A). Recombinant human inhibin-A (rh-inhibin-A) or inhibin in porcine and bovine follicular fluid (pFF and bFF, respectively) decreased secretion of FSH in a dose-dependent manner, with maximum inhibition at an inhibin concentration of approximately 0.1 nM. Neither pFF or bFF affected secretion of LH, although rh-inhibin-A caused a modest decrease (p less than 0.05) in secretion of LH. Treatment of cells with rh-inhibin-A, bFF, or pFF approximately doubled the number of GnRH receptors. Scatchard analysis indicated that increases in GnRH-A binding were due to an increase in receptor number rather than a change in affinity. Additionally, rh-inhibin-A, at a dose that doubled numbers of GnRH receptors, increased GnRH-induced LH release above that caused by GnRH alone, indicating that the increase in receptor number leads to increased responsiveness to GnRH. Recombinant human activin-A (rh-activin-A) increased secretion of FSH but did not affect secretion of LH. Number of GnRH receptors was not affected by lower concentrations of rh-activin-A but was decreased (p less than 0.05) by 3.0 nM activin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Antagonism of estrogen-induced prolactin release by progesterone   总被引:1,自引:0,他引:1  
Previous work from our laboratory has shown that during the process of nuclear occupancy of the progesterone receptor complex (1-2 h), nuclear estradiol receptors of the anterior pituitary are depleted. The purpose of this study was to determine whether the depletion of nuclear estradiol receptors by progesterone had functional biological significance. The ovariectomized (26 days of age) immature rat was used as the model for analysis of this question. The ability of estradiol to release prolactin from the anterior pituitary was the function chosen to determine the biological significance of the progesterone and estradiol interactions. In response to estradiol exposure (2 micrograms/rat), prolactin release reached peak values from 8 h to 12 h and returned to control levels by 24 h. A second injection of estradiol 13 h after the initial injection stimulated a second increase in serum prolactin at 25 h. This model of two injections of estradiol 13 h apart served to provide adequate levels of anterior pituitary progesterone receptors and elevated serum prolactin levels upon which superimposed progestin modulation could be examined. A single injection of progesterone (0.8 mg/kg BW) 1 h before the second estradiol injection blocked the increase in serum prolactin. This action was a receptor-mediated event because progesterone had no effect without estrogen priming or when the progesterone antagonist RU486 was used. Finally, when the interval between the progesterone and second estradiol injection was extended to 4 h, a time period when progesterone does not deplete pituitary nuclear estrogen receptors, the estrogen-induced increase in serum prolactin was not blocked.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Follicle-stimulating hormone (FSH) enhances the conversion of testosterone or androstenedione into estradiol by stimulating the aromatase enzyme system. Estradiol also enhances FSH action. Thus, a synergistic action of FSH and estradiol may be required for maturation of ovarian follicles. We hypothesized that estradiol may be required for FSH action. Thus, blocking estrogen synthesis should prevent FSH-induced increases in FSH receptors. Hypophysectomized rats were divided into five groups and injected subcutaneously with: 1) saline, 2) cyanoketone (0.05 mg, blocks the conversion of pregnenolone to progesterone), 3) ovine FSH (oFSH, 200 micrograms), 4) cyanoketone then oFSH 24 h later, or 5) cyanoketone plus estradiol [or progesterone, testosterone, promegestrone (R5020), dihydrotestosterone (DHT), 2 mg], then FSH 24 h later. Animals were decapitated at 0, 12 or 24 h after an injection of oFSH, and membrane receptors for FSH and luteinizing hormone (LH), plus nuclear receptors for estradiol from granulosa cells, were measured. LH receptor levels were increased only after administration of FSH and estradiol. At 0 and 24 h, numbers of FSH or estradiol receptors were similar in saline- and cyanoketone-treated animals. FSH alone increased (P less than 0.01) FSH and estradiol receptors 3-fold and 4-fold, respectively, over controls by 12 and 24 h. Cyanoketone prevented these increases in FSH and estradiol receptors. Estradiol replacement fully reversed the effects of cyanoketone on FSH action. Replacement with progesterone and testosterone was able to only partially restore levels of FSH receptors; however, estradiol receptor numbers were also increased.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Stress-related activation of the hypothalamic-pituitary-adrenal axis (HPA) is associated with suppression of the reproductive axis. This effect has been explained by findings indicating that corticotropin-releasing hormone suppresses hypothalamic gonadotropin-releasing hormone (GnRH) secretion via an opioid peptide-mediated mechanism, and that glucocorticoids suppress both GnRH and gonadotropin secretion and inhibit testosterone and estradiol production by the testis and ovary, respectively. To evaluate whether glucocorticoids suppress the effects of estradiol on its target tissues, we examined the ability of dexamethasone to inhibit estradiol-stimulated uterine and thymic growth in ovariectomized rats. Estradiol alone, given daily for 5 days, caused dose-dependent uterine and thymic growth. Dexamethasone alone, given daily for 5 days, caused a dose-dependent decrease in body weight gain and in thymic growth. When estradiol and dexamethasone were administered simultaneously, however, body weight gain and thymic growth were also inhibited (p less than 0.05). Dexamethasone decreased estradiol-induced uterine cytosolic and nuclear estrogen receptor concentrations (E2 R0, p less than 0.05; E2nR0, respectively), but had no effect on estradiol-induced progesterone receptor concentrations (P4R0, p greater than 0.05). Levels of uterine glucocorticoid receptors were not affected by estrogen and/or dexamethasone treatment. These findings suggest that stress levels of glucocorticoids, administered over a 5-day interval, block the estradiol-stimulated growth of female sex hormone target tissues. This effect may be partially mediated by a glucocorticoid-induced decrease of the estradiol receptor concentration. Thus, another mechanism by which the HPA may influence reproductive function during stress is by a direct effect of glucocorticoids on the target tissues of sex steroids.  相似文献   

13.
Acute (0.5–4 h) treatment of estradiol (E)-primed female rat pituitary cells with progesterone (P) augments gonadotropin-releasing hormone (GnRH)-induced LH release, whereas chronic (48 h) P-treatment reduces pituitary responsiveness to the hypothalamic decapeptide. Dispersed E-primed (48 h, 1 nM) rat pituitary cells were cultured for 4 or 48 h in the presence of 100 nM P to assess the effects of the progestagen on GnRH receptors and on gonadotrope responsiveness to the decapeptide. P-treatment (4 h) significantly augmented GnRH-receptor concentrations (4.44 ± 0.6 fmol/106 cells) as compared to cells treated only with E (2.6 ± 0.5fmol/106 cells). Parallel significant changes in GnRH-induced LH secretion were observed. The acute increase in GnRH-receptor number was nearly maximal (180% of receptor number in cells treated with E alone) within 30 min of P addition. Chronic P-treatment (48 h) significantly reduced pituitary responsiveness to GnRH as compared to E-treatment. The GnRH-receptor concentrations (3.9 ± 0.6 fmol/106 cells), however, remained elevated above those in E-primed cells. GnRH-receptor affinity was not influenced by any of the different treatments. These results indicate that the acute facilitatory P-effect on GnRH-induced LH release is at least chronologically closely related to an increase in GnRH-receptor concentration. The chronic negative P-effect on pituitary responsiveness to GnRH, however, shows no relation to changes in available GnRH receptors.  相似文献   

14.
To evaluate the effect of progesterone on the synthesis and secretion of gonadotropins, ovariectomized ewes either were treated with progesterone (n = 5) for 3 wk or served as controls (n = 5) during the anestrous season. After treatment for 3 wk, blood samples were collected from progesterone-treated and ovariectomized ewes. After collection of blood samples, hypothalamic and hypophyseal tissues were collected from all ewes. Half of each pituitary was used to determine the content of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), and the number of receptors for gonadotropin-releasing hormone (GnRH). The amounts of mRNA for LH beta subunit, FSH beta subunit, alpha subunit, growth hormone, and prolactin were measured in the other half of each pituitary. Treatment with progesterone reduced mean serum concentrations of LH (p less than 0.001) but ot FSH (p greater than 0.05). Further, progesterone decreased (p less than 0.05) the total number of pulses of LH. We were unable to detect pulsatile release of FSH. Hypothalamic content of GnRH, number of receptors for GnRH, pituitary content of gonadotropins and mRNA for LH beta subunit, FSH beta subunit, alpha subunit, growth hormone, and prolactin were not affected (p greater than 0.05) by treatment with progesterone. Thus, after treatment with progesterone, serum concentrations of LH (but not FSH) are decreased. This effect, however, is not due to a decrease in the steady-state amount of mRNA for LH beta or alpha subunits.  相似文献   

15.
Clinical and preclinical studies have found sex-specific differences in the discrimination and perception of inflammatory stimuli. The emerging picture suggests that the biological basis of these differences resides in the regulatory activity of gonadal hormones in the central nervous system. This study describes the effects of ovarian hormones in inflammatory pain processes. Ovariectomized rats received estradiol and/or progesterone, and the number of paw flinches was measured after 1, 2.5 or 5% formalin administration. Both estradiol and progesterone altered the number of flinches only after 1% formalin administration. Estradiol significantly reduced the overall number of flinches during Phase II of the formalin nociceptive response while progesterone attenuated Phase I of the response. After co-administration of estradiol and progesterone, progesterone reversed estradiol's analgesic effect in Phase II, however, estradiol did not reverse progesterone's analgesic activity in Phase I. To determine if estradiol effects are receptor-mediated, tamoxifen (selective estrogen receptor mediator, 15 mg/kg) or alpha-estradiol (an inactive isomer of estradiol, 20 microg) were utilized. Tamoxifen decreased the number of formalin-induced flinches during Phase II while alpha-estradiol did not affect any formalin-induced responses. When co-administered with estradiol, tamoxifen failed to reverse estradiol's effect, suggesting both tamoxifen and estradiol activate similar intracellular mechanisms. Although Western blot analysis detected the presence of estradiol alpha and beta and progesterone B receptors in the spinal cord, hormone replacement treatments had no effects on the levels of these receptors. We postulate that the mechanisms by which estradiol and progesterone induce analgesia occur through the activation of their receptor at the spinal cord level.  相似文献   

16.
17.
The pituitary and corpus luteum responses to acute gonadotropin-releasing hormone (GnRH) administration at the mid-luteal phase (LP) were studied in 24 infertile women. Patients were randomly divided into two groups. In one group (n = 12) metoclopramide (MCP, 10 mg orally 3 times daily) was administered from day 0 or 1 of the LP for 7 days. On day 7 or 8 of LP blood samples were taken every 15 min for 180 min; then 25 micrograms GnRH were acutely administered intravenously and blood samples taken at 185, 195, 210, 225, 240, 255, 270, 285 and 300 min. In the other 12 patients the same experimental design was performed on day 7 or 8 of an untreated LP. Plasma prolactin (PRL), luteinizing hormone (LH), follicle-stimulating hormone (FSH), progesterone and estradiol (E2) were assayed. The responsiveness of the different hormones to GnRH was evaluated as the integrated secretory area for 120 min after injection (sISA = stimulated integrated secretory area) and as the percentage increase (delta A) with respect to the area under basal conditions before GnRH administration (bISA = basal integrated secretory area). MCP-treated women showed higher basal PRL levels (p less than 0.01) and lower basal plasma concentrations and bISA (p less than 0.01) values of LH than controls. After GnRH a more marked response of LH secretion was observed in the treated group (p less than 0.01), so that the absolute values of sISA were superimposable in both groups. Basal and stimulated FSH secretion did not differ significantly in the study groups. Basal plasma and bISA values of progesterone were also decreased in MCP-treated subjects. After GnRH injection the absolute values of progesterone sISA were greater in controls (p less than 0.01), but delta A values were similar in both groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
These experiments tested the hypothesis that administration of steroid hormones to ovariectomized (OVX) mares during the vernal transition to the breeding season would influence LH and FSH secretion. Circulating gonadotropin concentrations, response to exogenous GnRH, and pituitary gonadotropin content were monitored. Experiments 1 and 2 were conducted, beginning 10 March, and 3 February, respectively, utilizing a total of 30 long-term OVX pony mares. In experiment 1, mares were administered vehicle (n = 5) or estradiol-17 beta (E2, n = 5, 5 mg/3 ml sesame oil), twice daily for 16 days. Blood samples were collected daily for assessment of circulating LH and FSH concentrations. On Day 10 of treatment, 400 micrograms GnRH were administered to all mares. LH increased significantly over days of treatment in the estradiol-treated group, but pituitary response to GnRH tended to be less than in control mares. Circulating FSH tended to decline over days of treatment in estradiol-treated mares, and the pituitary response to GnRH was significantly reduced. Pituitary LH, but not FSH, was increased on Day 16 of treatment with estradiol. In experiment 2, 20 OVX mares received, twice daily, vehicle (n = 5), E2, n = 5; 5 mg), progesterone (P4, n = 5; 100 mg), or progesterone plus estradiol (P4/E2, n = 5; 100 + 5 mg). Treatment continued for 14 days. GnRH (100 micrograms) challenges were administered on Days 6 and 13 of treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
To study the relation between steroid receptor concentrations and biological response, we measured cytosol and nuclear progesterone receptors from rabbit uterus under different experimental conditions, and compared receptor values with induction of uteroglobin, a progesterone-regulated protein. A 5-day progesterone treatment (1 mg/kg per day) reduced the nuclear receptor content by 40%, slightly elevated cytosol receptor levels and increased uteroglobin content 3000-fold. Estradiol and tamoxifen altered progesterone-induced changes in the receptor and uteroglobin values: cytosol and nuclear receptors rose significantly, but uteroglobin induction declined markedly, when progesterone treatment was supplemented with estradiol or tamoxifen. A 50% inhibition of progesterone action on uteroglobin synthesis was achieved with 1 μg/kg of estradiol per day. Thus under certain conditions, there is a clear disparity between steroid receptor levels and biological response.  相似文献   

20.
The objectives were to determine the effects of (i) time during the first FSH increase of the estrous cycle (time-course study) and (ii) exogenous steroid treatment (steroid feedback study) on the relationship between circulating serum gonadotropins, and the proportions of pituitary cells immunoreactive for gonadotropins and steroid receptors during the estrous cycle in heifers. Pituitaries were collected from heifers (n=40) slaughtered at 13h (n=8), 30h (n=24) and 66h (n=8) after estrous onset, corresponding to before, during and after the first FSH increase of the estrous cycle. Heifers slaughtered during the FSH increase (at 30h) either received no treatment (n=8), or were treated (n=16) with estradiol benzoate and/or progesterone before slaughter. During the time-course study, the proportion of pituitary cells immunoreactive for FSH increased (P<0.05) during the first transient FSH increase reflecting serum concentrations. The proportion of pituitary cells immunoreactive for LH was unaltered, a reflection of serum LH concentrations. The proportion of estrogen receptors (ER)-alpha, but not ER-beta, was decreased (P<0.05) at 30h compared with at either 13 or 66h. During the steroid feedback study, exogenous progesterone with or without estradiol suppressed (P<0.05) the proportions of pituitary cells immunoreactive for gonadotropins, serum FSH concentrations and LH pulse frequency. Steroid treatment did not alter the proportion of pituitary cells positive for estrogen receptors (alpha and beta). While progesterone receptors (PR) were not detected in the anterior pituitary by immunohistochemistry during the early estrous cycle or in response to steroid treatment, quantitative real-time PCR revealed that mRNA for progesterone receptors was expressed at very low levels. The expression of pituitary PR mRNA was decreased (P<0.05) at 30 and 66h compared with 13h, and was suppressed (P<0.05) following steroid treatments. Alterations in pituitary steroid receptors are implicated in the differential regulation of gonadotropin secretion during the first transient FSH rise, but not in response to exogenous steroids. The time-course study and steroid feedback responses support the hypothesis that LH pulse frequency is tightly linked to regulation of GnRH pulse frequency. Serum FSH is regulated by its own synthesis, as reflected by pituitary FSH content and perhaps by alterations in pituitary sensitivity to circulating steroids by changes in steroid receptor content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号