首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Photosynthesis of tomato fruit was studied using green fruit from six heritage cultivars of Lycopersicon esculentum Mill. and one of Lycopersicon pimpinellifolium. Chlorophyll concentrations in the green shoulder, pericarp and locular parenchyma of the fruit were determined and the apparent photosynthetic electron transport activity (ETR) and chlorophyll fluorescence quenching characteristics of these tissues and the calyx were compared. In all cultivars, green shoulder formation, apparent as intense pigmentation of the proximal pericarp shoulder, was positively related to the degree of shading of the fruit during development. Appearing as a photosynthetic adaptive trait for increasing the photoautotrophic capacity of fruit grown under low light, the green shoulder contained 17-57% of the total pericarp chlorophyll content. The pericarp below the green shoulder had lower chlorophyll a+b. At a photon flux density (PFD) of 1200 mol m-2 s-1, different fruit tissues were found to have different levels of ETR. In 'Yellow Pear', the upper surface of the calyx had an ETR of 154 mol m-2 s-1, while the lower surface had an ETR of 88 mol m-2 s-1. On the green shoulder, ETR was 203 mol m-2 s-1, whereas in the pericarp distal to the green shoulder, ETR was 97 mol m-2 s-1. In the locular parenchyma, ETR was 66 mol m-2 s-1. This trend towards a lower ETR in distal and internal fruit tissues appeared to indicate a shift towards a more shade-type photosynthesis. Concomitant with this shift were changes in chlorophyll fluorescence quenching characteristics. Generally when tissues displayed reduced levels of ETR they also displayed a faster decrease in the photochemical quenching coefficient qp and a more rapid diversion of absorbed photon energy to non-photosynthetic activity found in the calyx, green shoulder, pericarp, and locular parenchyma suggest that all of these tissues have significant roles in CO2 scavenging and the provision of carbon assimilates. The potential role of fruit photosynthesis in influencing the fruit acid to sugar ratio and hence fruit quality is discussed.  相似文献   

2.
An increase of cytosolic Ca2 in the unicellular green alga Eremosphaera viridis activities Ca2-dependent K channels causing a hyperpolarization of the plasma membrane. Data from parallel calcium, and potential measurements were combined with I/V relationships. This yielded a steep Ca2-dependence of K channels with a co-operativity of 4 and an affinity of 300 nM.Key words: Eremosphaera viridis, plasma membrane, Ca2-dependent K channel, co-operative binding.   相似文献   

3.
Apical abortion in calabrese (Brassica oleracea var. italica), a highly destructive disorder which occurs in overwintered transplants, has been investigated using a model system in which blindness (abortion of the apical meristem) can be reproducibly and predictably induced. An initial experiment examined the susceptibility of 12 cultivars to apical abortion when grown throughout a winter period under commercial conditions. Three of those varieties showed very high levels of blindness (100%). Subsequently, plants of the susceptible cultivar PETO 7204 were subjected to an inductive period of low light intensity (30 mol m-2 s-1) and low temperature (4 C). Apical meristematic cells of all plants ceased mitotic activity within 3 d of being transferred to a regime comprising higher light intensity (100 mol m-2 s-1) and temperature (15 C). Using this system the structures of normal apices were compared with those which became blind. Blindness was characterized by a cessation of leaf primordium production by the vegetative apex, the last formed primordium growing on in some cases to form a mature normal leaf, or in others, a deformed structure known as a whip-tail. The inactive apical bud became embedded in the tissues of this last-formed structure. The cells of the inactivated apical bud remained alive, but lost their meristematic capability, becoming enlarged, highly vacuolated parenchyma cells with amyloplasts.Keywords: Apical abortion, apical meristem, blindness, calabrese.   相似文献   

4.
The influence of long-term water deficit on photosynthesis, electron transport and carbon metabolism of sunflower leaves has been examined. Water deficit was imposed from flower bud formation up to the stage of full flowering in the field on two sunflower hybrids with different drought tolerance. CO2 assimilation and stomatal conductance of the intact leaves, determined at atmospheric CO2 and full sunlight (1500-2000 mol quanta m-2 s-1), decreased with water deficit. Maximum quantum efficiency of PSII (Fy/Fm) and relative quantum yield of PSII (II) determined under similar experimental conditions, did not change significantly in severely stressed leaves. The strong inhibition of the plateau region of the light response curve, determined at high CO2 (5%) in water-deficient sunflower leaves, indicates that photosynthesis is also limited by non-stomatal factors. The decreased slope and the plateau of the CO2 response curves show that the capacity of carboxylation and RuBP regeneration decreased in severely stressed intact leaves. Rubisco specific activity decreased in severely stressed leaves, but Rubisco content increased under prolonged drought. The increase of Rubisco content was significantly higher in leaves of the drought-tolerant sunflower hybrid indicating that a higher Rubisco content could be one factor in conferring better acclimation and higher drought tolerance.  相似文献   

5.
The possibility that an enhanced supply of dissolved inorganic carbon (DIC=CO2+HCO3-) to the root solution could increase the growth of Lycopersicon esculentum (L.) Mill. cv. F144 was investigated under both saline and non-saline root medium conditions. Tomato seedlings were grown in hydroponic culture with and without NaCl and the root solution was aerated with CO2 concentrations in the range between 0 and 5000 mol mol-1. The biomass of both control and salinity-stressed plants grown at high temperatures (daily maximum of 37C) and an irradiance of 1500 mol m-2 s-1 was increased by up to 200% by enriched rhizosphere DIC. The growth rates of plants grown with irradiances of less than 100 mol m-2 s-1 were increased by elevated rhizosphere DIC concentrations only when grown at high shoot temperatures (35C) or with salinity 28°C). At high light intensities, the photosynthetic rate, the CO2 and light-saturated photosynthetic rate (jmax) and the stomatal conductance of plants grown at high light intensity were lower in plants supplied with enriched compared to ambient DIC. This was interpreted as 'down-regulation' of the photosynthetic system in plants supplied with elevated DIC. Labelled organic carbon in the xylem sap derived from root DI14C incorporation was found to be sufficient to deliver carbon to the shoot at rates equivalent to 1% and 10% of the photosynthetic rate of the plants supplied with ambient- and enriched-DIC, respectively. It was concluded that organic carbon derived from DIC incorporation and translocated in the xylem from the root to the shoot may provide a source of carbon for the shoots, especially under conditions where low stomatal conductance may be advantageous, such as salinity stress, high shoot temperatures and high light intensities.  相似文献   

6.
The possible interaction of two stresses, UV-B radiation and cadmium, applied simultaneously, was investigated in Brassica napus L. cv. Paroll with respect of chlorophyll fluorescence, growth and uptake of selected elements. Plants were grown in nutrient solution containing CdCl2, (0, 0.5, 2 or 5 M) and irradiated with photosynthetically active radiation (PAR, 400-700 nm, 800 mol m-2 s-1) with or without supplemental ultraviolet-B radiation (UV-B, 280-320 nm, 15 kJ m-2 d-1, weighted irradiance). After 14 d of treatment, the most pronounced effects were found at 2 and 5 M CdCl2 with and without supplemental UV-B radiation. Exposure to cadmium significantly increased the amount of Cd in both roots and shoots. In addition, increases occurred in the concentrations of Fe, Zn, Cu, and P in roots, while K was reduced. In shoots the S content rose significantly both in the presence and absence of UV-B radiation, while significant increases in Mg, Ca, P, Cu, and K occurred only in plants exposed to Cd and UV-B radiation. Manganese decreased significantly under the combined exposure treatment. The rise in S content may have been due to stimulated glutathione and phytochelatin synthesis. Cadmium exposure significantly decreased root dry weight, leaf area, total chlorophyll content, carotenoid content, and the photochemical quantum yield of photosynthesis. As an estimation of energy dissipation processes in photosynthesis, non-photochemical quenching (qNPQ) was measured using a pulse amplitude modulated fluorometer. The qNPQ increased with increasing Cd, while the combination of cadmium and UV-B reduced the qNPQ compared to that in plants exposed only to cadmium or UV-B radiation. The chlorophyll a:b ratio showed a reduction with UV-B at no or low Cd concentrations (0 M, 0.5 M CdCl2), but not at the higher Cd concentrations used (2 M, 5 M CdCl2). Thus in some instances there appeared to be a UV-B and Cd interaction, while in other plants response could be attributed to either treatment alone.Keywords: Brassica napus, cadmium, ultraviolet-B radiation.   相似文献   

7.
Long-term phytoplankton studies in the Bahí Blanca estuary showed a seasonal pattern characterized by a winter-early spring bloom of diatoms dominated by Thalassiosira curviseriata. Laboratory experiments were carried out to elucidate the influence of irradiance, temperature and salinity on the growth rate of T.curviseriata. The maximum daily growth rate was 1.93 divisions at 20C. The compensation point (Ic) varied from approaching zero to 3.08 mol m-2 s-1, values were -0.020-0.070 divisions mol-1, and the calculated Ik (the irradiance at which initial slope line reaches the maximum rate of growth) varied between 32 and 36 mol m-2 s-1. Growth became light saturated (when max) between 70 and 80 mol m-2 s-1, and was inhibited at -150 mol m-2 s-1 at all temperatures (5-20°C). The range of temperatures at which T.curviseriata can grow (5-20°C) coincides with the temperature range over which it is found in the field. In contrast, the thermal optimum for growth, 20°C, was higher than the range of temperatures (between 5 and 10°C) characteristic of the winter-early spring bloom in Bahí Blanca estuary. The mean specific growth rate of T.curviseriata was not affected by salinity over the tested range between 25 and 40 p.p.t. Field observations and experimental data support the characterization of T.curviseriata as a eurythermal and euryhaline species adapted to growth at relatively low light intensity. These characteristics may explain the ability of T.curviseriata to flourish seasonally when light conditions are apparently limiting and its presence almost year round under variable conditions of temperature and salinity.   相似文献   

8.
Changes in components of leaf water potential during soil waterdeficits influence many physiological processes. Research resultsfocusing on these changes during desiccation of peanut (Arachishypogeae L.) leaves are apparently not available. The presentstudy was conducted to examine the relationships of leaf waterl, solute s and turgor p potentials, and percent relative watercontent (RWC) of peanut leaves during desiccation of detachedleaves and also during naturally occurring soil moisture deficitsin the field. The relationship of p to l and RWC was evaluated by calculatingp from differences in l and s determined by thermocouple psychrometryand by constructing pressure-volume (P-V) curves from the land RWC measurements. Turgor potentials of ‘Early Bunch’and ‘Florunner’ leaves decreased to zero at l of–1.2 to –1.3 MPa and RWC of 87%. There were no cultivardifferences in the l at which p became zero. P-V curves indicatedthat the error of measuring s after freezing due to dilutionof the cellular constituents was small but resulted in artefactualnegative p values. Random measurements on two dates of l, s, and calculation ofp from well-watered and water-stressed field plots consistingof several genotypes indicated that zero p occurred at l of–1.6 MPa. It was concluded that the relationships of p,l, s, and RWC of peanut leaves were similar to leaves of othercrops and that these relationships conferred no unique droughtresistance mechanism to peanut.  相似文献   

9.
Carbon assimilation (14C) and dissolved organic carbon (DO14C) release by a tropical strain of Cryptomonas obovata was studied. Cells were exposed to a range of irradiances (0-2000 mol m-2 s-1) using axenic batch cultures in the laboratory (Ek = 180 mol m-2s-1). At up to 2000 mol m-2s-1, carbon assimilation was not inhibited and an acclimation to low irradiances was observed. DO14C release was dependent on carbon fixation and no increase was detected under high irradiances. To determine particulate organic carbon (PO14C) loss and CO14C release cells acclimated to 350 mol m-2 s-1 were incubated during 4 h at 35, 350, 850 and 1900 mol m-2 s-1. DO14C release was responsible for 30% of the PO14C loss at 1900 mol m-2s-1. High- and low-molecular-weight (HMW, LMW) compounds were released by C.obovata under all irradiance conditions. However, increased release with exposure time was observed only for the HMW compounds.   相似文献   

10.
The effects of -hydroxy-2-pyridinemethanesulphonic acid (-HPMS)upon net photosynthesis (Pn, the CO2 compensation point (),post-lower illumination burst of CO2 (PLIB) and post-lower temperatureburst of CO2 (PLTB) in detached rye (Secale cereale L.) leaveswere investigated. At low concentrations ( 0.5 mol m–3),-HPMS initially stimulated Pn and decreased the magnitude ofboth PLIB and PLTB. The decreased at all concentrations of-HPMS (0.05–5.0 mol m–3. The effects of -HPMS onPn and were time-dependent and, after a few minutes, the Pnwas inhibited while values increased considerably. At a higherconcentration (5.0 mol m –3), the transient effects of-HPMS were shorter () or not observed at all (Pn. Both PLIBand PLTB, when expressed in relation to Pn, increased at higherlevels of this compound. Similar data with respect to the effectsof -HPMS on PLIB and PLTB were found for leaves of dandelion(Taraxacum officinale L.). The results suggest that -HPMS may stimulate Pn by inhibitingphotorespiration, as originally suggested by Zelitch (1966),but only at low concentrations and over a short time span. Thedecrease of PLIB and PLTB values at low -HPMS levels is consistentwith these processes being a residual activity of the glycolatepathway. Key words: CO2 compensation point, -hydroxy-2-pyridinemethanesulphonic acid, photorespiration, photosynthesis  相似文献   

11.
The Meaning of Matric Potential   总被引:6,自引:1,他引:5  
The commonly used equation, = P - + , which describes thepartitioning of plant water potential, , into components ofhydrostatic pressure, P, osmotic pressure, , and matric potential,, is misleading. The term , which is supposed to show the influenceof a solid phase on , is zero if a consistent definition ofpressure is used in the standard thermodynamic derivation. However,it can be usefully defined by = + D, where D is the osmoticpressure of the equilibrium dialysate of the system. The practicaland theoretical significance of this definition is discussed.  相似文献   

12.
The natural 15N abundance (15N value) in acetylpropyl derivatives of amino acids and in ethyloxycarbonyl derivatives of polyamines was determined using a gas chromatography/combustion/mass spectrometer-(GC/C/MS). 15N value determined for 12 amino acids and five polyamines by GC/C/MS were identical to those obtained by a direct combustion method using an automatic nitrogen and carbon analysis (ANCA) mass spectrometer, the difference being less than 1.0% in most cases. The GC/C/MS method was used to analyse 15N values in the amino acids and polyamines from root nodules of pea and faba bean and from stem nodules of Sesbania rostrata. The analysis of 15N values revealed that homospermidine had high 15N values, as much as +40%, while the amino acids investigated had 15N values between -3 and +6%, putrescine between +2 and +8%, cadaverine between +1 and +7%, spermidine between -2 and +4%, and spermine between 0 and +6%. The mechanism of 15N enrichment in homospermidine is discussed.  相似文献   

13.
In a companion paper several methods of calculating the marginal unit water cost of plant carbon gain (E/A) were tested to determine whether stomata were behaving optimally in relation to regulating leaf gas exchange. In this paper one method is applied to several tropical tree species when leaf-to-air vapour pressure difference (D), photosynthetic photon flux density, leaf temperature, and atmospheric soil water availability were manipulated. The response of leaves that had expanded during the dry season were also compared to that of leaves that had expanded in the wet season. Few differences in absolute value of E/A, or the form of the relationship, were observed between species or between seasons. In the majority of species, E/A increased significantly as either leaf-to-air vapour pressure difference increased, at a leaf temperature of either 33C or 38C, or as in photosynthetic photon flux density increased. In contrast, as leaf temperature increased at constant D, E/A was generally constant. As pre-dawn water potential declined, E/A declined. The relationship between E/A and D did not differ whether internal or ambient carbon dioxide concentration were kept constant. It is concluded that stomata are only behaving optimally over a very small range of D. If a larger range of D is used, to incorporate values that more closely reflect those experienced by tropical trees in a savanna environment optimization is incomplete.Key words: Stomatal optimization theory, marginal unit water cost.   相似文献   

14.
A karyopherin (LeKAP1) cDNA was isolated from tomato plants. The deduced LeKAP1 protein sequence of 527 amino acids showed similarity to other plant karyopherin proteins. When LeKAP1 was expressed in a yeast two-hybrid system together with the gene coding for the capsid protein (CP) of the tomato yellow curl leaf virus (TYLCV), it interacted directly with CP. Thus, LeKAP1 may be involved in the nuclear import of TYLCV CP and, potentially, the TYLCV genomes during viral infection of the host tomato cells.  相似文献   

15.
Smith, J. R. 1987. Potassium transport across the membranesof Chara. II. 42K fluxes and the electrical current as a functionof membrane voltage.—J. exp. Bot. 38: 752–777. The current required to clamp the trans-membrane voltage ofinternodal cells of Chara australis at different levels wasmeasured simultaneously with either the 42K influx or efflux.Examination of the voltage-dependence of the ratio of the electricalcurrent to the unidirectional tracer fluxes yielded no evidenceof any amplification of the electrical driving force on theK+ ions. There was thus no evidence for the interaction of K+ions with themselves or any other species during their passageacross the membrane. These measurements allow the determinationof , the fraction of the electrical current carried by K+ ions.When the external [K+] = 10 mol m–3, the average valueof was 0?85 for Vm > –125 mV and 07?5 for Vm <–150 mV. When the external [K+] = 0?1 mol m–3, was 0?6 for Vm < –80 mV and 0?1 for Vm > –250mV. It was also found that the conductance associated with K+transport was inhibited by hyperpolarization. Key words: Potassium, conductance, flux-ratio  相似文献   

16.
Lu  C; Zhang  J 《Journal of experimental botany》1999,50(336):1199-1206
Modulated chlorophyll fluorescence, rapid fluorescence induction kinetics and the polyphasic fluorescence transients (OJIP) were used to evaluate PSII photochemistry in wheat plants exposed to water stress and/or heat stress (25-45C). Water stress showed no effects on the maximal quantum yield of PSII photochemistry (Fv/Fm), the rapid fluorescence induction kinetics, and the polyphasic fluorescence transients in dark-adapted leaves, indicating that water stress had no effects on the primary photochemistry of PSII. However, in light-adapted leaves, water stress reduced the efficiency of excitation energycapture by open PSII reaction centres (F'v/F'm) and the quantum yield of PSII electron transport (PSII), increased the non-photochemical quenching (qN) and showed no effects on the photochemical quenching (qP). This suggests that water stress modified the PSII photochemistry in the light-adapted leaves and such modifications may be a mechanism to down-regulate the photosynthetic electron transport to match a decreased CO2 assimilation. In addition, water stress also modified the responses of PSII to heat stress. When temperature was above 35C, thermostability of PSII was strongly enhanced in water-stressed leaves, which was reflected in a less decrease in Fv/Fm, qP, F'v/F'm, and PSII in water-stressed leaves than in well-watered leaves. There were no significant variations in the above fluorescence parameters between moderately and severely water-stressed plants, indicating that the moderate water-stressed plants, indicating that the moderate water stress treatment caused the same effects on thermostability of PSII as the severe treatment. It was found that increased thermostability of PSII may be associated with an improvement of resistance of the O2-evolving complex and the reaction centres in water-stressed plants to high temperature.Key words: Chlorophyll fluorescence, heat stress, photosystem II photochemistry, water stress, wheat (Tritium aestivum L.).   相似文献   

17.
An error occurs in the calibration of xylem pressure potential() against leaf-water potential () when the calibration is madeusing plant material in which the water stress has been inducedartificially after excision. The impostion of water stress afterexcision affects the determination more than it affects , consequentlythe relationship between these two indices of water stress isaltered. Care should be exercised to ensure that identical proceduresare adopted during . calibrations and during susbsequent fieldmeasurements of with the pressure-chamber apparatus.  相似文献   

18.
With the aim of determining the level at which ageing exerts its effect on the expression of -amylase, GA3 regulation of -amylase production was studied in isolated aleurone layers from aged wheat seeds. GA3-induced -amylase activity was lower in the tissue from aged seeds than in controls. However, the proportion of 35S-methionine incorporated into -amylase was higher in the aged than in control tissue. The pattern of -amylase isoforms was resolved by isoelectric focusing and showed that two isogroups were present with the activity of the high-pI isogroup being higher in the control than in the aged lot. These apparently contradictory results may be explained in terms of differences in isozyme expression. Studies on the expression of -amylase genes indicated a reduction in the level of high-pI mRNA in aged tissue. Dose-response curves showed lower GA3-responsiveness of aleurone layers from aged seeds as compared to the controls. From these results, it is proposed that the diminished capacity of -amylase production in aleurone from aged seeds is apparently due to a decrease in the expression of the high-pI -amylase genes, and this reduction is associated with a decrease in the response to GA3.Key words: Seed ageing, wheat aleurone, gibberellic acid, -amylase isozymes, gene expression.   相似文献   

19.
Ber (Ziziphus mauritiana Lamk.) is a major fruit tree crop of the north-west Indian arid zone. In a study of the physiological basis of drought tolerance in this species, two glasshouse experiments were conducted in which trees were droughted during single stress-cycles. In the first experiment, during a 13 d drying cycle, pre-dawn leaf water (leaf) and osmotic () potentials in droughted trees declined from -0.5 and -1.4 MPa to -1.7 and -2.2 MPa, respectively, for a decrease in relative water content () of 14%. During drought stress, changes in sugar metabolism were associated with significant increases in concentrations of hexose sugars (3.8-fold), cyclitol (scyllo-inositol; 1.5-fold), and proline (35-fold; expressed per unit dry weight), suggesting that altered solute partitioning may be an important factor in drought tolerance of Ziziphus. On rewatering pre-dawn leaf and recovered fully, but remained depressed by 0.4 MPa relative to control values, indicating that solute concentration per unit water content had changed during the drought cycle.Evidence for osmotic adjustment was provided from a second study during which a gradual drought was imposed. Pressure-volume analysis revealed a 0.7 MPa reduction in osmotic potential at full turgor, with leaf at turgor loss depressed by 1 MPa in drought-stressed leaves. Coupled with osmotic adjustment, during gradual drought, was a 65% increase in bulk tissue elastic modulus (wall rigidity) which resulted in turgor loss at the same in both stressed and unstressed leaves. The possible ecological significance of maintenance of turgor potential and cell volume at low water potentials for drought tolerance in Ziziphus is discussed.Keywords: Ziziphus mauritiana, drought, solute accumulation, osmotic adjustment, proline.   相似文献   

20.
The euryhaline charophyte Lamprothamnium papulosum (Wallr.)J. Gr. was adapted to media with decreasing salinities rangingfrom 550 to 0 mosmol kg–1. Vegetative plants grown inmedia with osmotic pressures (0) in the range of 550 to 130mosmol kg–1 maintained a constant turgor pressure () at309 + 7 mosmol kg–1. The ions K+, Na+ and Cl–, werethe predominant solutes in the vacuole. Changes in their concentrationsaccount for the variation in internal osmotic pressure (1) with,0. The divalent ions Mg2+, Ca2+ and were also present in significant amounts, but their concentrationsdid not alter with changes in, 0. In cells subjected to hypo-osmotic shock the regulation of was incomplete. The turgor pressure increased from 302 to 383mosmol kg–1. The first rapid response to the sudden decreasein 0 was a loss of K+ and Cl. In contrast to the decreasein ionic concentrations an accumulation of sucrose occurredwhich could account for the increase of . The increase in sucroseconcentration started 24 to 48 h after the downshock and reachedits highest value after 3 to 4 weeks. The sucrose concentrationin the vacuole was up to 320 mol m–3. During this timethe ionic content continued to decrease but did not counterbalancethe sucrose concentration sufficiently to regain the original. High sucrose levels accompanied by an enhanced were also observedduring the period of fructification (sexual reproduction: formationof antheridia and oogonia) in Lamprothamnium kept under conditionsof constant salinity. It is concluded that high sucrose content and elevated arecharacteristic of sexual reproduction in this charophyte. Lamprothamniumis able to tolerate different during various developmentalstages (e.g. vegetative and reproductive phases). Key words: Lamprothamnium papulosum, sucrose, turgor pressure  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号