首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Motility patterns of caput epididymal chimpanzee sperm, caput epididymal chimpanzee sperm incubated in vitro with chimpanzee cauda epididymal fluid, and cauda epididymal chimpanzee sperm were assessed quantitatively. Sperm recovered from the caput epididymis showed no motility, whereas sperm recovered from cauda epididymis showed progressive forward motility. After incubation in cauda fluid, approximately 25% of caput epididymal sperm showed some motile activity. Electrophoretic analysis of 125I-labeled sperm plasma membrane preparations revealed that the surface of caput epididymal sperm, incubated in cauda fluid, was modified by the appearance of a major protein-glycoprotein surface component with an apparent molecular weight of 27 kilodaltons (kD). THis 27-kD component was not detected on caput epididymal sperm incubated in buffer or in caput fluid. However, it was present in cauda fluid and on cauda epididymal sperm. Binding to caput epididymal sperm was cell specific in that chimpanzee erythrocytes incubated in cauda fluid did not bind this 27-kD cauda fluid component. Motility patterns of ejaculated chimpanzee sperm and of ejaculated chimpanzee sperm incubated in the uterus of adult female chimpanzees also were assessed quantitatively. Ejaculated sperm showed progressive forward motility, whereas in utero incubated ejaculated sperm showed hyperactivated motility typical of capacitated sperm. Electrophoretic analysis of 125I-labeled sperm plasma membrane preparations revealed the loss of a 27-kD component from the surface of ejaculated sperm after in utero incubation. No significant change in the 125I-distribution pattern was detectable when ejaculated sperm were incubated in buffer. These results suggest that the lumenal fluid component, which becomes adsorbed to the surface of chimpanzee sperm during maturation in the epididymis and which is removed from the surface of mature chimpanzee sperm in the female reproductive tract, affects sperm motility.  相似文献   

3.
Normal epididymal function, such as protein expression and secretion, is primarily regulated by testicular androgens and temperature. However, the role of spermatozoa in this critical process has never been studied. In order to determine whether sperm itself could regulate epididymal function, we have developed a cell culture system of bovine epididymal cells to study the interactions between spermatozoa and the epididymal epithelium. Primary cells from caput, corpus, and cauda epididymal tissues were cultured in the presence of androgens at 32 degrees C (scrotal) and 37 degrees C (abdominal). Newly synthesized proteins were metabolically labeled with (35)S-methionine after sperm co-incubation and the pattern of secreted proteins was analyzed by two-dimensional polyacrylamide gel electrophoresis. Proliferation rate, protein secretion rate and electrophoretic patterns of secreted proteins were evaluated 48 hr post-co-incubation. Incubation at 32 degrees C indicated that spermatozoa stimulation increases the level of protein secretion of cultured cells from all epididymal sections while it slightly decreases proliferation of corpus cells. At 37 degrees C, spermatozoa co-incubation significantly decreases the protein secretion rate of cultured cells from all epididymal sections. Independently of cell incubation temperature, spermatozoa stimulation induces both an increase in the intensity of radiolabeled proteins and the appearance of new secreted proteins of caput cells without affecting the protein pattern of corpus or cauda cells. Incubation at 37 degrees C, however, greatly modifies the pattern of proteins expressed at 32 degrees C by cauda cells. Taken together, these results support the hypothesis that spermatozoa themselves affect epididymal cell function, most importantly for caput epididymides.  相似文献   

4.
Mammalian spermatozoa mature while passing through the epididymis. Maturation is accompanied by thiol oxidation to disulfides. In rats, sperm become motile and fertile in the cauda. We have previously demonstrated that rat caput sperm contain mostly thiols and that upon passage from the corpus to the cauda epididymidis, sperm protein thiols are oxidized. The present work was undertaken to study the role of the regions of the epididymis in sperm maturation as reflected in the thiol status, fertility, and motility of the spermatozoa. The distal caput epididymidis of mature albino rats was ligated on one side. After 5 days, sperm were isolated from the ligated caput and from caput and cauda of the control side. Thiol groups in sperm, epididymal luminal fluid (EF), and epididymal tissue were labeled using the fluorescent thiol-labeling agent monobromobimane. After ligation, changes were observed in a) sperm proteins, sperm nuclear proteins, and epididymal fluid by electrophoresis; b) epididymal tissues by histochemistry; c) progressive motility by phase microscopy; and d) fertilizing ability after insemination into uteri of immature females. We found that after ligation, caput sperm thiols, especially protamine thiols, are oxidized, rendering them similar to mature sperm isolated from the cauda epididymidis. Spermatozoa from ligated caput epididymidis gain progressive motility and partial fertilizing ability. Morphology of epithelial cells of ligated caput is similar to that of cauda cells. However, other changes in caput EF and epithelium induced by ligation render the ligated caput epididymidis different from either control caput or cauda. Hence, sperm thiol oxidation, along with the development of fertilizing ability, can occur in sperm without necessity for sperm transit through the corpus and cauda epididymidis.  相似文献   

5.
Changes that occur to mammalian sperm upon epididymal transit and maturation render these cells capable of moving progressively and capacitating. Signaling events leading to mammalian sperm capacitation depend on the modulation of proteins by phosphorylation and dephosphorylation cascades. Recent experiments have demonstrated that the Src family of kinases plays an important role in the regulation of these events. However, sperm from cSrc null mice display normal tyrosine phosphorylation associated with capacitation. We report here that, despite normal phosphorylation, sperm from cSrc null mice display a severe reduction in forward motility, and are unable to fertilize in vitro. Histological analysis of seminiferous tubules in the testes, caput and corpus epididymis do not reveal obvious defects. However, the cauda epididymis is significantly smaller, and expression of key transport proteins in the epithelial cells lining this region is reduced in cSrc null mice compared to wild type littermates. Although previously, we and others have shown the presence of cSrc in mature sperm from cauda epididymis, a closer evaluation indicates that this tyrosine kinase is not present in sperm from the caput epididymis, suggesting that this protein is acquired by sperm later during epididymal maturation. Consistent with this observation, cSrc is enriched in vesicles released by the epididymal epithelium known as epididymosomes. Altogether, these observations indicate that cSrc is essential for cauda epididymal development and suggest an essential role of this kinase in epididymal sperm maturation involving cSrc extracellular trafficking.  相似文献   

6.
Testicular and cauda epididymal sperm were obtained via catheters previously implanted in the rete testis and proximal vas deferens of bulls and were used to examine the relationships among sperm motility, cyclic adenosine 3':5'-monophosphate (cAMP) level, adenine nucleotide levels, and rates of glucose and oxygen consumption. Testicular, cauda epididymal, and ejaculated sperm contain cAMP-stimulated protein kinase, adenylate cyclase, and nucleotide phosphodiesterase. Treatment of the nonmotile testicular sperm with phosphodiesterase inhibitors resulted in a doubling of cellular cAMP concentration and a 25% increase in their glucose consumption. No change in motility, ATP level, or rate of oxygen consumption was observed. Sperm in neat cauda epididymal semen had flagellating tails but no progressive motility. Dilution of these sperm into glucose-containing buffer resulted in an increase in intracellular cAMP concentration and a decrease in ATP level with concomitant increases in ADP and AMP levels. These biochemical changes occurred within 30 s after dilution and apparently preceded the initiation of progressive motility by most cells. Since sperm in neat cauda epididymal semen became progressively motile when diluted with neat cauda epididymal plasma as well as accessory sex gland fluid or buffer, composition of the fluid surrounding the sperm is not responsible for the initiation of progressive motility upon dilution nor does cauda epididymal plasma contain an inhibitory factor. Perhaps release from contact immobilization provides the stimulation for the initial acquisition of progressive motility by cauda epididymal sperm. We conclude that during epididymal passage sperm develop from a cell physically unresponsive to changes in cAMP concentration to a form which initiates progressive motility upon changes in cAMP concentration.  相似文献   

7.
Motility and protein phosphorylation have been measured under identical experimental conditions in ejaculated dog sperm lysed with low concentrations of Triton X-100 and reactivated with [gamma-32P]ATP. Cyclic AMP stimulates motility and protein phosphorylation while calcium inhibits motility and the overall incorporation of phosphate into endogenous proteins. Analysis of 32P-labeled sperm proteins on 1- and 2-dimensional polyacrylamide gels demonstrates that an enhanced phosphorylation of a defined number of specific proteins is associated with cAMP-stimulated motility. A major axonemal proteins, namely tubulin, has been tentatively identified as a phosphoprotein subject to regulation by cAMP. The phosphorylation of tubulin is almost completely dependent upon cAMP and is not affected by microM calcium. On the other hand, the cAMP-dependent stimulated phosphorylation of the other sperm proteins still occurs, but in most instances at a reduced rate in the presence of calcium. Two high molecular weight (Mr) phosphoproteins (350,000 and 260,000 daltons) whose phosphorylation states are modified by cAMP and calcium also were identified. It is suggested that 1 or both these proteins may be high Mr subunits of dynein. The phosphorylation of 1 of these proteins is stimulated by cAMP, but not affected by calcium; the other is stimulated by cAMP and inhibited by calcium. Three major cAMP-independent phosphoproteins of Mr 98,000, 43,000 and 26,000 have been identified. The phosphorylation of the 98,000 Mr protein is markedly reduced by micromolar calcium and not restored by cAMP. Using anticalmodulin drugs to inhibit motility, we suggest that the inhibitory effects of calcium on flagellar motility may be mediated in part by calmodulin. We conclude that the regulation of flagellar motility in cAMP and calcium includes mechanisms involving the control of the phosphorylation state of sperm proteins, some of which may be axonemal components.  相似文献   

8.
Micropuncture was used to collect pure suspensions of sperm from the caput and cauda regions of chimpanzee epididymides, which were analyzed with a Motion Analysis VP-110. Sperm recovered from the caput region showed no forward motility. Incubation of these sperm with cauda epididymal fluid affected motility in 62%–90% of the sperm. Dilution of cauda sperm into buffer containing >50 mM theophylline resulted in immediate initiation of progressive forward motility. Although this motility was maintained by at least 50% of the sperm for over 5 hr, these “activated” caput sperm did not penetrate zona-free hamster ova. These data show that sperm from the caput epididymis of the chimpanzee have the capacity for normal motility but do not have the capacity to bind to and penetrate an ovum. Cauda epididymal chimpanzee sperm were motile at the time of recovery and this motility was maintained for over 5 hr. These sperm penetrated both hamster zona-free ova and intact chimpanzee ova. These data show that sperm from the cauda epididymis of the chimpanzee have the capacity for normal motility and also have the capacity to bind to and penetrate an ovum. This is the first use of computer assisted analysis to quantify motility in maturing nonhuman primate sperm.  相似文献   

9.
Developing spermatozoa require a series of posttesticular modifications within the luminal environment of the epididymis to achieve maturation; this involves several surface modifications including changes in plasma membrane lipids, proteins, carbohydrates, and alterations in the outer acrosomal membrane. Epididymal maturation can therefore allow sperm to gain forward motility and fertilization capabilities. The objective of this study was to identify maturation-dependent protein(s) and to investigate their role with the production of functionally competent spermatozoa. Lectin blot analyses of caput and cauda sperm plasma membrane fractions identified a 17.5 kDa wheat germ agglutinin (WGA)-binding polypeptide present in the cauda sperm plasma membrane not in the caput sperm plasma membrane. Among the several WGA-stained bands, the presence of a 17.5 kDa WGA-binding polypeptide band was detected only in cauda epididymal fluid not in caput epididymal fluid suggesting that the 17.5 kDa WGA-binding polypeptide is secreted from the cauda epididymis and binds to the cauda sperm plasma membrane during epididymal transit. Proteomic identification of the 17.5 kDa polypeptide yielded 13 peptides that matched the sequence of peroxiredoxin-5 (PRDX5) protein (Bos Taurus). We propose that bovine cauda sperm PRDX5 acts as an antioxidant enzyme in the epididymal environment, which is crucial in protecting the viable sperm population against the damage caused by endogeneous or exogeneous peroxide.  相似文献   

10.
The bat Corynorhinus mexicanus provides an interesting experimental model for the study of epididymal sperm maturation because after spermatogenesis and the regression of the testes, this bat stores sperm in the epididymal cauda for several months. Earlier research conducted by our group suggested that sperm maturation in this species must be completed in the caudal region of the epididymis. One of the major signal transduction events during sperm maturation is the tyrosine phosphorylation of sperm proteins. The aim of the present study was to comparatively evaluate tyrosine phosphorylation in spermatozoa obtained from the caput, corpus and cauda of the epididymis during the sperm storage period. The maturation status of the sperm was determined by the percentage of capacitation and tyrosine phosphorylation in sperm obtained from the epididymis. The highest proportion of tyrosine phosphorylation was registered after the sperm had reached the cauda epididymis during the middle of the storage period. In conclusion, in Corynorhinus mexicanus and most likely in other chiropteran species with an asynchronous male reproductive pattern, epididymal sperm maturation ends in the caudal region of the epididymis and is related to the time that the sperm remains in the epididymis before mating activity.  相似文献   

11.
Rat spermatozoa are immotile in the cauda epididymidis and are kept quiescent by a protein which increases viscoelasticity of cauda luminal fluid. How species-specific this phenomenon is, is unknown. In the present study, the motility of cauda epididymal spermatozoa of rats, hamsters, guinea pigs, rabbits and humans have been investigated. Sperm motility was observed in undiluted cauda sperm samples and in samples diluted with physiological diluents with or without Ca++, among others. Hamster sperm were studied in further detail to determine if the motility inhibiting factor in hamster cauda lumen fluid had characteristics similar to those previously described in the rat. Cauda fluid protein concentrations and apparent viscoelasticity were also determined and related to cauda sperm motility in all species. The results demonstrated that all species studied except rabbits have immotile sperm in their native cauda fluid and that additional Ca++ is not a factor in the initiation of motility. Cauda sperm immotility is not always related to fluid viscosity, however, so other as yet unknown mechanisms must be called upon in some species. The vigorous motility of rabbit spermatozoa in their native fluid implies that a fundamental difference exists in the relationship between epididymis and spermatozoa in rabbits from that observed in other species.  相似文献   

12.
Rabbit polyclonal antibodies were raised against ram cauda epididymal sperm proteins solubilized by N-octyl-beta-D-glucopy-ranoside (anti-CESP) and against proteins of the fluid obtained from the cauda epididymidis (anti-CEF). The anti-CESP polyclonal antibody reacted with several bands from 17 to 111 kDa with different regionalization throughout the epididymis. The strongest epitopes at 17 kDa and 23 kDa were restricted to the cauda epididymidis. The anti-CEF polyclonal antibody reacted mainly with a 17-kDa and a 23-kDa compound in the cauda sperm extract. These cauda epididymal 17- and 23-kDa proteins disappeared after orchidectomy, but they reappeared in the same regions after testosterone supplementation, indicating that they were secreted by the epithelium. The fluid and membrane 17- and 23-kDa antigens had a low isoelectric point and were glycosylated. The fluid 17- and 23-kDa proteins had hydrophobic properties: they were highly enriched in the Triton X-114 detergent phase and could be extracted from the cauda epididymal fluid by a chloroform-methanol mixture. These proteins were further purified, and their N-terminal sequences did not match any protein in current databases. A polyclonal antibody against the fluid 17-kDa protein recognized the protein in the cauda epididymal sperm extract and immunolocalized it on the sperm flagellum membrane and at the luminal border of all cells in the cauda epididymal epithelium. These results indicated that secreted glycoproteins with hydrophobic properties could be directly integrated in a specific domain of the sperm plasma membrane.  相似文献   

13.
Intact chimpanzee caput and cauda epididymal sperm, sperm cell lysates, and caput and cauda epididymal fluid were radiolabeled by enzymatic iodination with lactoperoxidase and Na125 I and were compared by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Caput epididymal sperm showed nine labeled macromolecular components of 90, 64, 56, 48, 38, 31, 20, 18 and 16 Kd and cauda epididymal sperm showed eleven macromolecular components of 90, 64, 55, 47, 42, 33, 27, 18, 17, 15 and 11 Kd. Six of the components labeled on caput sperm (90, 64, 56, 48, 18 and 16 Kd) were detected in equal amounts of cauda sperm and two (38 and 20 Kd) were detected at greatly reduced labeling intensities. In the cauda epididymidis, four new components (33, 27, 17 and 11 Kd) became prominent features of the sperm surface. Analysis of labeled caput and cauda sperm cell lysates resolved components distinct from those detected on sperm surfaces. Electrophoresis of caput epididymal fluid showed five labeled components of 66, 56, 47, 41 and 37 Kd, while electrophoresis of cauda epididymal fluid showed eight labeled components of 92, 66, 56, 48, 31, 27, 24 and 11 Kd. Three components (66, 56 and 47 Kd) were present in both caput and cauda fluid, two (41 and 37 Kd) in caput fluid only, and five (92, 31, 27, 24 and 11 Kd) in cauda fluid only. Components of 37 Kd were labeled in caput fluid and on caput sperm but not on cauda sperm, whereas components of 27 Kd and 11 Kd were labeled in cauda fluid and on cauda sperm but not on caput sperm. These data show that chimpanzee sperm undergo extensive surface modifications during epididymal maturation and that some of these modifications may be related to exogenous proteins/glycoproteins in epididymal fluids.  相似文献   

14.
Sperm Proteome Maturation in the Mouse Epididymis   总被引:1,自引:0,他引:1  
In mammals, transit through the epididymis, which involves the acquisition, loss and modification of proteins, is required to confer motility and fertilization competency to sperm. The overall dynamics of maturation is poorly understood, and a systems level understanding of the complex maturation process will provide valuable new information about changes occurring during epididymal transport. We report the proteomes of sperm collected from the caput, corpus and cauda segments of the mouse epididymis, identifying 1536, 1720 and 1234 proteins respectively. This study identified 765 proteins that are present in sperm obtained from all three segments. We identified 1766 proteins that are potentially added (732) or removed (1034) from sperm during epididymal transit. Phenotypic analyses of the caput, corpus and cauda sperm proteomes identified 60 proteins that have known sperm phenotypes when mutated, or absent from sperm. Our analysis indicates that as much as one-third of proteins with known sperm phenotypes are added to sperm during epididymal transit. GO analyses revealed that cauda sperm are enriched for specific functions including sperm-egg recognition and motility, consistent with the observation that sperm acquire motility and fertilization competency during transit through the epididymis. In addition, GO analyses revealed that the immunity protein profile of sperm changes during sperm maturation. Finally, we identified components of the 26S proteasome, the immunoproteasome, and a proteasome activator in mature sperm.  相似文献   

15.
Clusterin (sulfated glycoprotein-2) is a heterodimeric glycoprotein synthesized and secreted by rat Sertoli cells. An antigenically similar form is synthesized and secreted by the epididymis. The goal of this study was to define the epididymal regions in which clusterin is present and the regions in which clusterin is secreted and interacts with developing spermatozoa. Seminiferous tubule (STF), caput, corpus, and cauda fluids were collected by micropuncture and/or microperfusion and two-dimensional Western blot analysis was performed with a polyclonal antibody directed against Sertoli cell clusterin. Clusterin was found in both STF and epididymal fluid. STF contained predominantly the clusterin heavy chain (45 kd); however, a 70 Kd heterodimer was present under nonreducing conditions. Two subunits of clusterin with lower molecular weights (41 kd, heavy chain; 32 kd, light chain) and higher isoelectric points were present in the luminal fluid of all epididymal regions. The intraluminal levels of the heavy and light chains decreased from caput to cauda. Analysis by two-dimensional gel electrophoresis of proteins secreted directly into the epididymal luminal fluid revealed that clusterin was secreted by caput epithelium and not by the corpus and cauda epithelium. Western blots of membrane extracts from testicular, caput, and cauda spermatozoa revealed that testicular clusterin was associated with testicular sperm and epididymal clusterin with predominantly caput sperm. Our findings suggest that clusterin is secreted into the caput epididymal lumen, where it binds to sperm and then dissociates from sperm to be endocytosed by cells of the distal epididymal epithelium.  相似文献   

16.
Spermatozoa, fluids, and principal cells from different regions of the epididymis were characterized by two-dimensional electrophoresis. Rete testis fluid was collected after 36-h efferent duct ligation, and cauda epididymal fluid was collected by retrograde perfusion through the vas deferens. Spermatozoa were collected after their exudation from minced caput and corpus epididymal tissue. Principal cells were recovered after enzymatic disaggregation and centrifugal elutriation of epididymides. Two-dimensional polyacrylamide gel electrophoresis was used to prepare protein profiles of all samples. Comparison of the proteins found in rete testis fluid versus those found in cauda epididymal fluid revealed a dramatic change in composition, including the loss, addition, or retention of specific proteins as well as changes in the relative concentrations of certain proteins. Prominent cauda epididymal fluid proteins, possibly contributed by the epididymal epithelium, were detected at 16, 23, and 34 kDa. After epididymal transit, a considerable decrease was observed in the number of aqueous-soluble sperm proteins. Differences in the protein composition of epididymal epithelial principal cells from the caput versus corpus epididymidis were also noted, suggesting that functional differences exist for these epididymal regions. Of particular interest was the occurrence of a prominent protein of approximately 20-23 kDa found in all sperm samples, in fluids, and in caput and corpus principal cells. However, this protein was absent in cauda epididymal sperm after 36-h efferent duct ligation. The rapid loss of this protein from sperm after efferent duct ligation suggests that this surgical intervention may affect spermatozoa residing within the epididymis.  相似文献   

17.
The role of secretory epididymal factors on sperm survival and storage in bovine cauda epididymides is poorly understood. Thus, the effects of bovine epididymal epithelium fluid (BEEF) on frozen-thawed bovine sperm motility have been evaluated in vitro. Sperm motion parameters were assessed by computer-assisted sperm analysis. Compared with serum bovine proteins, BEEF efficiently sustained bovine sperm motility after a 6-h incubation period. The positive effect of BEEF on sperm motility was even more apparent using a fractionated BEEF extract (>10 kDa, 2 mg/ml). This beneficial effect was abolished when the BEEF active fraction was heat treated before incubation. A minimal 2-h BEEF preincubation period was necessary to maintain sperm motility activity and to protect sperm against oxidative injury caused by 150 microM hydrogen peroxide. The proteins from the BEEF >10-kDa fractions were biotinylated to identify the proteins that bind to the sperm surface. Five specific sperm-surface-binding proteins were revealed by Western blot analysis probed with avidin-horseradish peroxidase conjugate. These proteins were digested with trypsin for identification by matrix-assisted laser desorption ionization time-of-flight peptide mass spectrometric analyzer. Under reducing conditions, 5 bovine proteins were identified: the beta (36-kDa spot) and alpha (38-kDa spot) chains of clusterin, the beta-adrenergic receptor kinase 2 (48-kDa spot), and the antithrombin-III and the fibrinogen gamma-B chains, both corresponding to a doublet of about 50-52 kDa. These proteins are known to be present at the sperm surface in other species and could play a role in sperm protection in vivo. These results provide new insights to explain how secretory epididymal proteins sustain sperm motility during storage in vitro.  相似文献   

18.
Highly purified plasma membranes, isolated by an aqueous two-phase polymer method from goat epididymal spermatozoa, were found to possess a kinase activity that causes phosphorylation of serine and threonine residues of several endogenous plasma membrane proteins. Cyclic AMP, cyclic GMP, Ca(2+)-calmodulin, phosphatidylserine-diolein, polyamines and heparin had no appreciable effect on this kinase. Autoradiographic analysis showed that the profile of the phosphorylation of membrane proteins by this endogenous cAMP-independent protein kinase underwent marked modulation during the transit of spermatozoa through the epididymis. In caput sperm plasma membrane, 18, 21, 43, 52, 74 and 90 kDa proteins were phosphorylated, whereas, in the corpus and cauda epididymal spermatozoa, a differential phosphorylation pattern was observed with respect to the 90, 74, 21 and 18 kDa proteins. The rate of phosphorylation of the 74 kDa protein decreased markedly during the early phase of sperm maturation (caput to distal corpus epididymides) whereas there was little change in kinase activity in sperm plasma membrane. In contrast, the rates of phosphorylation of the 18 and 21 kDa proteins increased during the terminal phase (distal corpus to distal cauda epididymides) of sperm maturity, although the kinase activity of membrane decreased significantly during this phase. The modulation of the phosphorylated states of these specific membrane proteins may play an important role in the maturation of epididymal spermatozoa.  相似文献   

19.
Ijiri TW  Merdiushev T  Cao W  Gerton GL 《Proteomics》2011,11(20):4047-4062
Sperm need to mature in the epididymis to become capable of fertilization. To understand the molecular mechanisms of mouse sperm maturation, we conducted a proteomic analysis using saturation dye labeling to identify proteins of caput and cauda epididymal sperm that exhibited differences in amounts or positions on two-dimensional gels. Of eight caput epididymal sperm-differential proteins, three were molecular chaperones and three were structural proteins. Of nine cauda epididymal sperm-differential proteins, six were enzymes of energy metabolism. To validate these proteins as markers of epididymal maturation, immunoblotting and immunofluorescence analyses were performed. During epididymal transit, heat shock protein 2 was eliminated with the cytoplasmic droplet and smooth muscle γ-actin exhibited reduced fluorescence from the anterior acrosome while the signal intensity of aldolase A increased, especially in the principal piece. Besides these changes, we observed protein spots, such as glutathione S-transferase mu 5 and the E2 component of pyruvate dehydrogenase complex, shifting to more basic isoelectric points, suggesting post-translational changes such dephosphorylation occur during epididymal maturation. We conclude that most caput epididymal sperm-differential proteins contribute to the functional modification of sperm structures and that many cauda epididymal sperm-differential proteins are involved in ATP production that promotes sperm functions such as motility.  相似文献   

20.
During epididymal transit, spermatozoa acquire selected proteins secreted by epithelial cells. We recently showed that P25b, a protein with predictive properties for bull fertility, is transferred from prostasome-like particles present in the cauda epididymal fluid (PLPCd) to the sperm surface. To further characterize the interactions between PLPCd and epididymal spermatozoa, PLPCd were prepared by ultracentrifugation of bull epididymal fluid, then surface-exposed proteins were biotinylated and coincubated in different conditions with caput epididymal spermatozoa. Western blot analysis revealed that only selected proteins are transferred from PLPCd to spermatozoa. MALDI-TOF analysis revealed that these transferred proteins are closely related. The pattern of distribution of the PLPCd transferred varied from one sperm cell to the other, with a bias toward the acrosomal cap. This transfer appeared to be temperature sensitive, being more efficient at 32-37 degrees C than at 22 degrees C. Transfer of PLPCd proteins to spermatozoa was also pH dependant, the optimal pH for transfer being 6.0-6.5. The effect of divalent cations on PLPCd protein transfer to caput spermatozoa was investigated. Whereas Mg(2+) and Ca(2+) have no effect on the amount of proteins remaining associated with spermatozoa following coincubation, Zn(2+) had a beneficial effect. These results are discussed with regard to the function of PLPCd in epididymal sperm maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号