首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fifteen different classically generated and mapped mutations at the tryptophan synthetase locus in Neurospora crassa have been characterized to the level of the primary sequence of the gene. This sequence analysis has demonstrated that intragenic recombination is accurate to order mutations within one open reading frame. While classic genetic analysis correctly ordered the mutations, the position of mutations characterized by gene sequence analysis was more accurate. A leaky mutation was found to have a wild-type primary sequence. The presence of unique polymorphisms in the primary sequence of the trp-3 gene from strain 861 confirms that it has a unique history relative to the other strains studied. Most strains that were previously shown to be immunologically nonreactive with antibody preparations raised against tryptophan synthetase protein were shown to have nonsense mutations. This work defines 14 alleles of the N. crassa trp-3 gene.  相似文献   

2.
A tryptophan auxotroph of Neurospora crassa, trp-5, has been characterized as a mutant with a deficient tryptophanyl-transfer ribonucleic acid (tRNA) synthetase (EC 6.1.1.2) activity. When assayed by tryptophanyl-tRNA formation, extracts of the mutant have less than 5% of the wild-type specific activity. The adenosine triphosphate-pyrophosphate exchange activity is at about half the normal level. In the mutant derepressed levels of anthranilate synthetase and tryptophan synthetase were associated with free tryptophan pools equal to or higher than those found in the wild type. We conclude that a product of the normal tryptophanyl-tRNA synthetase, probably tryptophanyl-tRNA, rather than free tryptophan, participates in the repression of the tryptophan biosynthetic enzymes.  相似文献   

3.
Interallelic Complementation at the sh Locus in Maize at the Enzyme Level   总被引:5,自引:0,他引:5  
Chourey PS  Nelson OE 《Genetics》1979,91(2):317-325
EMS-induced sh mutants and their heterozygotes were examined for the enzyme, sucrose synthetase, which has previously been shown to be coded by the Sh locus. Complementing heterozygotes have a wild-type phenotype, but show no hybrid protein band after starch gel electrophoresis. The existence of a heteromeric complex, however, is inferred from the two-fold elevation in sucrose cleavage activity in the complementing heterozygotes as compared to the mutant homozygotes. The observations on complementation described here are unique, as the elevation in the activity of this reversible enzyme is noticed only in one direction (viz, sucrose cleavage) of the reaction and not the other (sucrose synthesis).  相似文献   

4.
The anthranilate synthetase of Clostridium butyricum is composed of two nonidentical subunits of unequal size. An enzyme complex consisting of both subunits is required for glutamine utilization in the formation of anthranilic acid. Formation of anthranilate will proceed in the presence of partially pure subunit I provided ammonia is available in place of glutamine. Partially pure subunit II neither catalyzes the formation of anthranilate nor possesses anthranilate-5-phosphoribosylpyrophosphate phosphoribosyltransferase activity. The enzyme complex is stabilized by high subunit concentrations and by the presence of glutamine. High KCl concentrations promote dissociation of the enzyme into its component subunits. The synthesis of subunits I and II is coordinately controlled with the synthesis of the enzymes mediating reactions 4 and 5 of the tryptophan pathway. When using gel filtration procedures, the molecular weights of the large (I) and small (II) subunits were estimated to be 127,000 and 15,000, respectively. Partially pure anthranilate synthetase subunits were obtained from two spontaneous mutants resistant to growth inhibition by 5-methyltryptophan. One mutant, strain mtr-8, possessed an anthranilate synthetase that was resistant to feedback inhibition by tryptophan and by three tryptophan analogues: 5-methyl-tryptophan, 4- and 5-fluorotryptophan. Reconstruction experiments carried out by using partially purified enzyme subunits obtained from wild-type, mutant mtr-8 and mutant mtr-4 cells indicate that resistance of the enzyme from mutant mtr-8 to feedback inhibition by tryptophan or its analogues was the result of an alteration in the large (I) subunit. Mutant mtr-8 incorporates [(14)C]tryptophan into cell protein at a rate comparable with wild-type cells. Mutant mtr-4 failed to incorporate significant amounts of [(14)C]tryptophan into cell protein. We conclude that strain mtr-4 is resistant to growth inhibition by 5-methyltryptophan because it fails to transport the analogue into the cell. Although mutant mtr-8 was isolated as a spontaneous mutant having two different properties (altered regulatory properties and an anthranilate synthetase with altered sensitivity to feedback inhibition), we have no direct evidence that this was the result of a single mutational event.  相似文献   

5.
The regulatory properties of three key enzymes in the phenylalanine biosynthetic pathway, 3-deoxy-D-arabino-heptulosonate 7-phosphate synthetase (DAHP synthetase) [EC 4.1.2.15], chorismate mutase [EC 5.4.99.5], and prephenate dehydratase [prephenate hydro-lyase (decarboxylating), EC 4.2.1.51] were compared in three phenylalanine-excreting mutants and the wild strain of Brevibacterium flavum. Regulation of DAHP synthetase by phenylalanine and tyrosine in these mutants did not change at all, but the specific activities of the mutant cell extracts increased 1.3- to 2.8-fold, as reported previously (1). Chorismate mutase activities in both the wild and the mutant strains were cumulatively inhibited by phenylalanine and tyrosine and recovered with tryptophan, while the specific activities of the mutants increased 1.3- to 2.8-fold, like those of DAHP synthetase. On the other hand, the specific activities of prephenate dehydratase in the mutant and wild strains were similar, when tyrosine was present. While prephenate dehydratase of the wild strain was inhibited by phenylalanine, tryptophan, and several phenylalanine analogues, the mutant enzymes were not inhibited at all but were activated by these effectors. Tyrosine activated the mutant enzymes much more strongly than the wild-type enzyme: in mutant 221-43, 1 mM tyrosine caused 28-fold activation. Km and the activation constant for tyrosine were slightly altered to a half and 6-fold compared with the wild-type enzyme, respectively, while the activation constants for phenylalanine and tryptophan were 500-fold higher than the respective inhibition constants of the wild-type enzyme. The molecular weight of the mutant enzyme was estimated to be 1.2 x 10(5), a half of that of the wild-type enzyme. The molecular weight of the mutant enzyme was estimated to be 1.2 X 10(5) a half of that of the wild type enzyme, while in the presence of tyrosine, phenylalanine, or tryptophan, it increased to that of the wild-type enzyme. Immediately after the mutant enzyme had been activated by tyrosine and then the tyrosine removed, it still showed about 10-fold higher specific activity than before the activation by tyrosine. However, on standing in ice the activity gradually fell to the initial level before the activation by tyrosine. Ammonium sulfate promoted the decrease of the activity. On the basis of these results, regulatory mechanisms for phenylalanine biosynthesis in vivo as well as mechanisms for the phenylalanine overproduction in the mutants are discussed.  相似文献   

6.
Hylton C  Smith AM 《Plant physiology》1992,99(4):1626-1634
A mutation at the rb locus of pea (Pisum sativum L.) alters the shape, reduces the starch content, and increases the lipid and sucrose contents of the seed. These effects are probably all consequences of a reduction of up to 40-fold in the maximum catalytic activity of ADP glucose pyrophosphorylase in the developing embryo of the mutant relative to the wild type. We have investigated how the mutation brings about this reduction in activity. The purified enzyme from mutant embryos has a specific activity about 10-fold lower than that from wild-type embryos, and it is much more sensitive to the effectors inorganic phosphate and 3-phosphoglycerate than the wild-type enzyme. Both wild-type and mutant enzymes consist of polypeptides of around 50 kilodaltons. One of the polypeptides of the purified wild-type enzyme is missing from the mutant enzyme. We deduce that in the wild-type embryo this protein may interact with other subunits to confer a high specific activity and a low susceptibility to effectors on the enzyme.  相似文献   

7.
Glutamate dehydrogenase from Clostridium symbiosum displays unusual kinetic behaviour at high pH when compared with other members of this enzyme family. Structural and sequence comparisons with GDHs from other organisms have indicated that the Asp residue at position 114 in the clostridial enzyme may account for these differences. By replacing this residue by Asn, a mutant protein has been created with altered functional properties at high pH. This mutant protein can be efficiently overexpressed in Escherichia coli, and several criteria, including mobility in non-denaturing electrophoresis, circular dichroism (CD) spectra and initial crystallisation studies, suggest a folding and an assembly comparable to those of the wild-type protein. The D114N mutant enzyme shows a higher optimum pH for activity than the wild-type enzyme, and both CD data and activity measurements show that the distinctive time-dependent reversible conformational inactivation seen at high pH in the wild-type enzyme is abolished in the mutant.  相似文献   

8.
Both uncomplexed subunits of the anthranilate synthetase-phosphoribosyltransferase enzyme complex from Salmonella typhimurium have an absolute requirement for divalent metal ions which can be satisfied by Mg2+, Mn2+, or Co2+. The metal ion kinetics for uncomplexed anthranilate synthetase give biphasic double-reciprocal plots and higher apparent Km values than those for anthranilate synthetase in the enzyme complex. In contrast, the apparent Km values for phosphoribosyltransferase are the same whether the enzyme is uncomplexed or complexed with anthranilate synthetase. This suggests that the metal ion sites on anthranilate synthetase, but not those on phosphoribosyltransferase, are altered upon formation of the enzyme complex. These results and the results of studies reported by others, suggest that complex formation between anthranilate synthetase and phosphoribosyltransferase leads to marked alterations at the active site of the former, but not the latter enzyme. Uncomplexed anthranilate synthetase can be stoichiometrically labeled with Co(III) under conditions which lead to inactivation of 75% of its activity. A comparison of the effects of anthranilate and tryptophan on phosphoribosyltransferase activity in the uncomplexed and complexed forms shows that anthranilate, but not tryptophan, inhibits the uncomplexed enzyme. The complexed phosphoribosyltransferase shows substrate inhibition by anthranilate binding to the phosphoribosyltransferase subunits. In contrast, in a tryptophan-hypersensitive variant complex, anthranilate inhibits phosphoribosyltransferase activity by acting on the anthranilate synthetase subunits. The data are interpreted to mean that there are two classes of binding sites for anthranilate, one on each type of subunit, which may participate in the regulation of anthranilate synthetase and phosphoribosyltransferase under different conditions.  相似文献   

9.
NAD+-specific glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.12) from Escherichia coli was purified to homogeneity by a relatively simple procedure involving affinity chromatography on agarose–hexane–NAD+ and repeated crystallization. Rabbit antiserum directed against this protein produced one precipitin line in double-diffusion studies against the pure enzyme, and two lines against crude extracts of wild-type E. coli strains. Both precipitin lines represent the interaction of antibody with determinants specific for glyceraldehyde 3-phosphate dehydrogenase. Nine independent mutants of E. coli lacking glyceraldehyde 3-phosphate dehydrogenase activity all possessed some antigenic cross-reacting material to the wild-type enzyme. The mutants could be divided into three groups on the basis of the types and amounts of precipitin lines observed in double-diffusion experiments; one group formed little cross-reacting material. The cross-reacting material in crude cell-free extracts of several of the mutant strains were also tested for alterations in their affinity for NAD+ and their phosphorylative activity. The cumulative data indicate that the protein in several of the mutant strains is severely altered, and thus that glyceraldehyde 3-phosphate dehydrogenase is unlikely to have an essential, non-catalytic function such as buffering nicotinamide nucleotide or glycolytic-intermediate concentrations. Others of the mutants tested have cross-reacting material which behaved like the wild-type enzyme for the several parameters studied; the proteins from these strains, once purified, might serve as useful analogues of the wild-type enzyme.  相似文献   

10.
The wild-type lac repressor of Escherichia coli is a tetrameric protein which contains two tryptophanyl residues per subunit at positions 190 and 209. Solute perturbation studies of the tryptophan fluorescence of the repressor were performed using a polar but uncharged quencher, acrylamide, to prevent possible bias caused by ionic quenchers. The results indicate that the two tryptophan residues have different accessibilities to the quencher. In addition, contrary to a previous report, the accessibility of these tryptophan residues is not altered by isopropyl-β-d-thiogalactoside (IPTG) binding to the repressor. Similar studies with mutant lac repressor containing only a single tryptophan either at positions 190 or 209 suggest that tryptophan 209 is located in a region which is perturbed by inducer binding. That the two tryptophanyl residues have heterogeneous environments was further confirmed by nanosecond fluorescence spectroscopy which showed the wild-type lac repressor exhibiting two excited-state lifetimes, τ1 = 5.3 ns and τ2 = 10 ns. In the presence of 10?3m IPTG, only a single lifetime of 6 ns was observed for the wild-type repressor suggesting that the inducer perturbs the tryptophan residue with the longer lifetime but not the one with the shorter lifetime. This is in accord with the observation that the mutant repressor containing only tryptophan 190 (the Tyr-209 repressor) has a single lifetime of 4.5 ns which is not altered by IPTG binding. The surprising finding that the mutant repressor which contains only tryptophan 209 (the Tyr-190 repressor) shows two excited-state lifetimes has been interpreted to indicate that the repressor either does not exhibit fourfold symmetry in its subunit arrangement or is present in two different conformational states.  相似文献   

11.
Based on sequence alignment of selected Cl? dependent and independent glycoside hydrolase family 13 enzymes, two invariant residues (Arg201 and Asn347) and one tyrosine (Tyr365) that might be responsible for the binding of Bacillus licheniformis trehalose-6-phosphate hydrolase (BlTreA) to chloride ion were identified. The role of these three residues was further explored by mutational and biophysical analyses. The mutant enzymes (R201Q/E/K, N327Q/D/K, and Y365A/R) and BlTreA were individually overexpressed in Escherichia coli M15 host cells and purified by one-step nickel affinity chromatography on Ni-NTA resin. The purified BlTreA and Y365A had a specific activity of 236.9 and 47.6 U/mg protein, respectively. The remaining enzymes lost their hydrolase activity completely even in the presence of high salt. With the exception of Y365A, all mutant enzymes did not have the ability to bind fluoride, chloride and nitrate anions. Structural analyses showed that the circular dichroism spectra of the mutant proteins were consistent with those of BlTreA. However, wild-type and mutant enzymes displayed a slight difference in the profiles of intrinsic tryptophan fluorescence. Collectively, these results clearly indicate that Arg201 and Agr327 residues might play an essential role in chloride binding of BlTreA.  相似文献   

12.
A new autosomal mutation, rudimental (ral), which causes rudimentary-shaped wings in Drosophila melanogaster, has been isolated following ethyl methanesulfonate (EMS) mutagenesis. The wing phenotype of rudimental is identical to that of the X-linked rudimentary (r) mutation, which affects the first three enzymes in the pyrimidine biosynthetic pathway. The autosomal mutant maps very close to ebony (3–70.7) at 70.42 on the right arm of chromosome 3. Analysis of the enzyme activities of orotate phosphoribosyltransferase (OPRTase) and orotidylate decarboxylase (ODCase) indicates that the rala26a allele has less than wild-type activity for both enzymes. This result is discussed in light of the fact that the OPRTase and ODCase activities are part of an enzyme complex, as are the carbamyl phosphate synthetase (CPSase), aspartate transcarbamylase (ATCase) and dihydroorotase (DHOase) activities, which are encoded by the complex rudimentary locus. We suggest that rudimental is also a complex locus.  相似文献   

13.
TheNAM2 gene ofSaccharomyces cerevisiae encodes the mitochondrial leucyl tRNA synthetase (mLRS), which is necessary for the excision of the fourth intron of the mitochondrialcytb gene (bI4) and the fourth intron of the mitochondrialcoxI gene (aI4), as well as for mitochondrial protein synthesis. Some dominant mutant alleles of the gene are able to suppress mutations that inactivate the bI4 maturase, which is essential for the excision of the introns aI4 and bI4. Here we report mutagenesis studies which focus on the splicing and suppressor functions of the protein. Small deletions in the C-terminal region of the protein preferentially reduce the splicing, but not the synthetase activity; and all the C-terminal deletions tested abolish the suppressor activity. Mutations which increase the volume of the residue at position 240 in the wild-type mLRS without introducing a charge, lead to a suppressor activity. The mutant 238C, which is located in the suppressor region, has a reduced synthetase activity and no detectable splicing activity. These data show that the splicing and suppressor functions are linked and that the suppressor activity of the mutant alleles results from a modification of the wild-type splicing activity.  相似文献   

14.
The activity of tryptophan synthetase in crude extracts from Saccharomyces cerevisiae is stable if the cells are cultured in a complex medium, but extremely unstable if they are cultured in a minimal medium. The difference is not the result of different inherent properties of the enzyme formed in the two cultures. Rather, there are at least two kinds of macromolecular factors that influence the stability, one inactivating tryptophan synthetase and the other protecting against this inactivation. The abundance of these factors varies with the composition of the culture medium, which accounts for the differences observed.  相似文献   

15.
SulA is induced in Escherichia coli by the SOS response and inhibits cell division through interaction with FtsZ. To determine which region of SulA is essential for the inhibition of cell division, we constructed a series of N-terminal and C-terminal deletions of SulA and a series of alanine substitution mutants. Arginine at position 62, leucine at 67, tryptophan at 77 and lysine at 87, in the central region of SulA, were all essential for the inhibitory activity. Residues 3–27 and the C-terminal 21 residues were dispensable for the activity. The mutant protein lacking N-terminal residues 3–47 was inactive, as was that lacking the C-terminal 34 residues. C-terminal deletions of 8 and 21 residues increased the growth-inhibiting activity in lon + cells, but not in lon ? cells. The wild-type and mutant SulA proteins were isolated in a form fused to E. coli maltose-binding protein, and tested in vitro for sensitivity to Lon protease. Lon degraded wild-type SulA and a deletion mutant lacking the N-terminal 93 amino acids, but did not degrade the derivative lacking 21 residues at the C-terminus. Futhermore, the wild-type SulA and the N-terminal deletion mutant formed a stable complex with Lon, while the C-terminal deletion did not. MBP fused to the C-terminal 20 residues of SulA formed a stable complex with, but was not degraded by Lon. When LacZ protein was fused at its C-terminus to 8 or 20 amino acid residues from the C-terminal region of SulA the protein was stable in lon + cells. These results indicate that the C-terminal 20 residues of SulA permit recognition by, and complex formation with, Lon, and are necessary, but not sufficient, for degradation by Lon.  相似文献   

16.
This paper reports that the glutathione (GSH)-deficient mutant, cad2–1 , of Arabidopsis is deficient in the first enzyme in the pathway of GSH biosynthesis, γ-glutamylcysteine synthetase (GCS). The mutant accumulates a substrate of GCS, cysteine, and is deficient in the product, γ-glutamylcysteine. In vitro enzyme assays showed that the cad2–1 mutant has 40% of wild-type levels of GCS activity but is unchanged in the activity of the second enzyme in the pathway, GSH synthetase. The CAD2 locus maps to chromosome 4 and is tightly linked to a gene, GSHA , identified by a previously isolated cDNA. A genomic clone of GSHA complements both the phenotypic and biochemical deficiencies of the cad2–1 mutant. The nucleotide sequence of the gene has been determined and, in the mutant, this gene contains a 6 bp deletion within an exon. These data demonstrate that the CAD2 gene encodes GCS. The cad2–1 mutation is close to the conserved cysteine which is believed to bind the substrate glutamate and the specific inhibitor L-buthionine-[S,R] sulfoximine (BSO). Both root growth and GCS activity of the cad2–1 mutant was less sensitive than the wild-type to inhibition by BSO, indicating that the mutation may alter the affinity of the inhibitor binding site.  相似文献   

17.
Summary A temperature-sensitive mutant of Escherichia coli was identified as having an altered alanyl-tRNA synthetase. Specific activity of wild type and mutant cell-free extracts showed no difference in the hydroxamate assay; the charging activity, however, was more than 10 fold lower for mutant extract protein. Wild type alanyl-tRNA synthetase has been purified 344 fold, the mutant enzyme was enriched 45 fold. With these preparations the following results were obtained:Sedimentation analysis in sucrose gradients indicates a molecular weight of the mutant enzyme of half the size of the wild type enzyme. Analytical gel filtration yields an approximate size for the native enzyme of 165000 and for the mutant enzyme material of 95,000. The mutant alanyl-tRNA synthetase differs from the wild type enzyme by a 10 fold increase in the k mfor tRNA; no true difference in the k m-values for the other substrates was detected. Temperature studies indicate an unusual low temperature-optimum for the charging reaction of both enzymes, whereas hydroxamate fromation capacity increases linearly up to almost 50°C. High temperature treatment of the native enzyme selectively affects the aminoacylation reaction but not the activation step; no effect of such treatment of the mutant enzyme was detected. It is proposed that the mutation causes the enzyme to dissociate and that the resulting subunits possess and altered tRNA binding site.  相似文献   

18.
Mutant alleles at the maternal effect locus dorsal cause a dorsalization of the Drosophila embryo. In extreme mutants, the embryos develop exclusively structures which derive from the dorsal-most region in normal eggs, in less strong phenotypes in addition to dorsal structures, structures normally derived from a dorso-lateral to lateral egg region are formed. Injection of cytoplasm from wild-type embryos into mutant embryos partially restores the dorso-ventral pattern in that injected embryos develop additional structures never formed in uninjected control embryos or embryos injected with mutant cytoplasm. The phenotype of injected embryos resembles that of weaker alleles at the dorsal locus indicating that the wild-type cytoplasm partially rescues the mutant phenotype. The response of the mutant embryos is restricted to the site of injection and occurs only when cytoplasm is injected into the ventral and not into the dorsal side of mutant embryos. The rescuing activity appears to be equally distributed in cleavage stage wild-type embryos, whereas, in syncytial blastoderm embryos, cytoplasm from the ventral side is about twice as effective as that taken from the dorsal side.  相似文献   

19.
1. Anthranilate synthetase activity in crude extracts from tissue cultures of Daucus carota L. (carrot), Nicotiana tabacum L. (tobacco; cv. Wisconsin 38 and xanthi), Glycine max Merr. (soybean) and Oryza sativa L. (rice) was completely inhibited by l -tryptophan (5 to 50 μM). Mutant carrot and tobacco lines, capable of growth in the presence of 5-methyltryptophan, required 500 to more than 1000 μM tryptophan for complete inhibition of enzyme activity, respectively. 2. Except for the mutant tobacco line, the concentrations of free tryptophan in all tissue cultures tested were greater than the levels necessary to completely inhibit the respective anthranilate synthetase activities in vitro. These findings would indicate that much of the free tryptophan is compartmentalized away from the regulatory enzyme, anthranilate synthetase. This could implicate compartmentalization of the inhibitor as a biosynthetic control mechanism. 3. During the growth of normal and mutant carrot tissues the anthranilate synthetase enzyme must be at least 7.8 and 10.8% active, respectively, in order to accumulate the amount of tryptophan found in the tissues. 4. Of the substrates and cofactors required for anthranilate synthetase activity in vitro, Mg2+ and glutamine were present at near optimal levels in the carrot and tobacco tissues, but chorismate was found to be significantly below the optimal concentrations.  相似文献   

20.
A positive selection procedure has been devised for isolating mutant strains of Salmonella typhimurium with altered glutamine synthetase activity. Mutants are derived from a histidine auxotroph by selecting for ability to grow on D-histidine as the sole histidine source. We hypothesize that the phenotype may be based on a regulatory increase in the activities of the D-histidine racemizing enzymes, but this has not been established. Spontaneous glutamine-requiring mutants isolated by the above selection procedure have two types of alterations in glutamine synthetase activity. Some have less than 10% of parent activity. Others have significant glutamine synthetase activity, but the enzyme have an altered response to divalent cations. Activity in mutants of the second type mimics that of highly adenylylated wild-type enzyme, which is believed to be in-active in vivo. Glutamine synthetase from one such mutant is more heat labile than wild-type enzyme, indicating that it is structurally altered. Mutations in all strains are probably in the glutamine synthetase structural gene (glnA). They are closely linked on the Salmonella chromosome and lie at about min 125. The mutants have normal glutamate dehydrogenase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号