首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The dissociation curves of histone H1 from chromatin in interphase and metaphase nuclei from Physarum polycephalum have been determined using CaCl2 as dissociating agent. H1 is less strongly bound to metaphase chromosomes than to interphase chromatin. However, no differences could be detected in the binding of Hl to early S, late S or G2 phase chromatin. The number of CaCl2 molecules involved in binding one H1 molecule to chromatin was reduced from 5 in interphase to 4 in metaphase. The non-electrostatic contribution to the free-energy of binding was small in both cases. A comparison of the binding properties of H1 to sheared chromatin, native chromatin and metaphase chromosomes suggests that the electrostatic binding functions of H1 are completely satisfied within the nucleosome and that further electrostatic interactions are not involved in folding the nucleosomal fibre into the 300 A "solenoid" or the more tightly folded metaphase chromosome.  相似文献   

2.
李晓雪  李桂英  邢苗 《遗传学报》2003,30(5):479-484
采用免疫电镜技术对多头绒泡菌(Physarum polycephalum)是否含有类CyclinA蛋白以及该蛋白在有丝分裂周期各时相的定位进行了研究;并以抗CyclinA抗体封闭细胞内源类CyclinA蛋白的方法,探讨类CyclinA蛋白在多头绒泡菌细胞周期中的作用。免疫电镜结果表明,经抗CyclinA抗体标记的实验组细胞中的金颗粒密度明显高于对照组,说明多头绒泡菌细胞中含有类CyclinA蛋白。实验组样品中,细胞核的金颗粒密度很高,而细胞质的金颗粒密度与对照组的相仿,说明多头绒泡菌细胞中的类CyclinA蛋白是核蛋白。细胞核的金颗粒密度在S期最高,G2期的次之,早中期时明显降低,中期和中期以后与对照组的相近。这种金颗粒密度的变化反映了类CyclinA蛋白在细胞周期中的含量变化。以抗CyclinA抗体分别处理S期和G2期的多头绒泡菌细胞,处理后的细胞分别停滞在原来的时相,细胞核形态变得不规则,核内有空洞现象。处于有丝分裂前期的多头绒泡菌细胞经抗CyclinA抗体处理后,细胞核出现畸变。抗体处理结果说明类CyclinA蛋白是参与多头绒泡菌细胞周期多个转换过程调控的种重要蛋白,主要在S期/G2期和G2期/M期的转换以及走出有丝分裂期的进程中发挥作用。  相似文献   

3.
Once during each cell cycle, mitotic spindle poles arise by separation of newly duplicated centrosomes. We report here the involvement of phosphorylation of the centrosomal protein centrin in this process. We show that centrin is phosphorylated at serine residue 170 during the G(2)/M phase of the cell cycle. Indirect immunofluorescence staining of HeLa cells using a phosphocentrin-specific antibody reveals intense labeling of mitotic spindle poles during prophase and metaphase of the cell division cycle, with diminished staining of anaphase and no staining of telophase and interphase centrosomes. Cultured cells undergo a dramatic increase in centrin phosphorylation following the experimental elevation of PKA activity, suggesting that this kinase can phosphorylate centrin in vivo. Surprisingly, elevated PKA activity also resulted intense phosphocentrin antibody labeling of interphase centrosomes and in the concurrent movement of individual centrioles apart from one another. Taken together, these results suggest that centrin phosphorylation signals the separation of centrosomes at prophase and implicates centrin phosphorylation in centriole separation that normally precedes centrosome duplication.  相似文献   

4.
Phosphorylation of BRCA1 tumor suppressor protein is regulated during the cell cycle and in response to DNA damage. Several Ser/Thr kinases have been implicated in BRCA1 phosphorylation, including ATM/ATR, cdk2, and hChk2 kinases. In this study, phospho-Ser-specific antibodies recognizing Ser-988, -1423, -1497, and -1524 residues of BRCA1 were employed to study BRCA1 phosphorylation during the S and G2/M phases under conditions of DNA damage. We observed that IR (ionizing radiation) treatment induced phosphorylation of Ser-988/Ser-1524 during the S phase and of Ser-988/Ser-1423 during the G2/M phase. UV treatment induced phosphorylation of Ser-988 during the S phase and of Ser-1423 during the G2/M phase. Phosphorylation of serines 1423 and -1524 was not induced in HCC1937 breast cancer cells, which contain mutant BRCA1 protein. Confocal microscopy revealed that unphosphorylated BRCA1 localizes on chromosomes from metaphase through telophase, whereas Ser-988-phosphorylated BRCA1 resides in the inner chromosomal structure, centrosome, and the cleavage furrow during prophase through telophase. We also found that Ser-988-phosphorylated BRCA1 relocalizes to the perinuclear region when cells are subjected to IR or UV radiation in the S phase. These results reinforce a model wherein phosphorylation of specific residues of BRCA1 after DNA damage affects its localization and function.  相似文献   

5.
Microtubule-interacting proteins have been studied in the lower eukaryote Physarum polycephalum. We show for the first time 1) the presence in Physarum amoebal crude extracts of at least six polypeptides that bind specifically to amoebal microtubules, 2) the binding between these proteins and mammalian microtubules, 3) the heat stability of two of these polypeptides (125 and 235 kDa), 4) the functional properties of a fraction containing a heat-soluble 125 kDa polypeptide, and 5) the phosphorylation of the 125 kDa polypeptide during two distinct periods of the cell cycle in Physarum synchronous plasmodia, first at late S/early G2 phase and second at late G2/prophase.  相似文献   

6.
Cell division in mammalian cells is regulated by Aurora kinases. The activity of Aurora A is indispensable for correct function of centrosomes and proper spindle formation, while Aurora B for chromosome biorientation and separation. Aurora B is also responsible for the phosphorylation of histone H3 serine 10 (H3S10Ph) from G2 to metaphase. Data concerning the Aurora B activity and H3S10Ph in embryonic cells are limited to primordial and maturing oocytes and advanced pronuclei in zygotes. In the present study we have analyzed H3S10Ph in 1- and 2-cell mouse embryos. We show that H3S10 remains phosphorylated at anaphase and telophase of the second meiotic division, as well as during the anaphase and telophase of the first and second embryonic mitoses. At late G1 H3S10 is dephosphorylated and subsequently phosphorylated de novo at late S phase of the first and second cell cycle. These results show that the H3S10 phosphorylation/dephosphorylation cycle in embryonic cells is different than in somatic cells. The behaviour of thymocyte G0 nuclei introduced into ovulated oocytes and early 1-cell parthenogenotes confirms that kinases responsible for de novo H3S10 phosphorylation, most probably Aurora B, are active until G1 of the first cell cycle of mouse embryo. The inhibition of Aurora kinases by ZM447439 caused abnormalities both in the first and second mitoses. However, the disturbances in each division differed, suggesting important differences in the control of these mitoses. In ZM447439-treated mitotic zygotes Mad2 protein remained continuously present on kinetochores, what confirmed that spindle checkpoint remained active.  相似文献   

7.
以自然同步化的多头绒泡菌(Physarum polycephalum L.)为材料,经抗cyclin B1抗体的免疫印迹和免疫电镜实验观察结果表明,多头绒泡菌中含有类cyclin B1蛋白,该蛋白的含量和细胞内位置在细胞周期进程中存在着动态变化:类cyclin B1蛋白在S期开始合成并在细胞质中积累,G2晚期开始进入细胞核,该蛋白在细胞质和细胞核中含量逐渐增加,有丝分裂中期时达最大值,后末期时骤然消失.在G2晚期到有丝分裂中期期间,类cyclin B1蛋白既是细胞核蛋白又是细胞质蛋白,细胞质是类cyclin B1蛋白的主要存在区域,细胞核中的类cyclin B1蛋白主要结合于染色体和核仁区域.  相似文献   

8.
H1 histones are progressively phosphorylated during the cell cycle. The number of phosphorylated sites is zero to three in late S phase and increases to five or six in late G2 phase and M phase. It is assumed that this phosphorylation modulates chromatin condensation and decondensation, but its specific role remains unclear. Recently, it was shown that the somatic H1 histone subtype H1.5 becomes pentaphosphorylated during mitosis, with phosphorylated threonine 10 being the last site to be phosphorylated. We have generated an antiserum specific for human H1.5 phosphorylated at threonine 10. Immunofluorescence labeling of HeLa cells with this antiserum revealed that the phosphorylation at this site appears in prometaphase and disappears in telophase, and that this hyperphosphorylated form of H1.5 is mainly chromatin-bound in metaphase when chromatin condensation is maximal. In search of the kinase responsible for the phosphorylation at this site, we found that threonine 10 of H1.5 can be phosphorylated by glycogen synthase kinase-3 in vitro, but not by cyclin-dependent kinase 1/cyclin B and cyclin-dependent kinase 5/p35, respectively. Furthermore, addition of specific glycogen synthase kinase-3 inhibitors led to a reduction in phosphorylation at this site both in vivo and in vitro.  相似文献   

9.
Nuclei from naturally synchronous plasmodia of Physarum polycephalum were assayed for histone deacetylase activity. The substrate for the assay was a peptide comprising the amino terminal region (residues 1–23) of calf thymus histone H4. The deacetylase activity per nucleus remained constant during S phase and early G2 phase and then doubled in a linear fashion during mid and late G2 phase reaching its maximum level at metaphase. The data imply that H4 acetylation is linked to prior chromatin structural changes.  相似文献   

10.
Thr 3 was one of the newly characterized phosphorylation sites on histone H3. However, the functional significance of histone H3 Thr 3 phosphorylation during mitosis is unclear. In this study, SDS-PAGE and Western blotting analysis showed that histone H3 Thr 3 was phosphorylated specially during mitosis in MCF-10A and ECV-304 cells. Using indirect immunofluorescence labeling and laser confocal microscopy, we demonstrated that histone H3 Thr 3 phosphorylation occurred from prophase to anaphase and dephosphorylated completely in telophase. Remarkably, Thr 3 phosphorylated histone H3 mostly concentrated at centromeric chromatin at metaphase, which was distinct with Ser 10 phosphorylation aggregated at the telomere, but similar to that characteristic of Thr 11 phosphorylated H3 which is largely restricted to the centromeric chromatin. Using chromatin immunoprecipitation (ChIP) assay, we provided direct evidence that the Thr 3 phosphorylated H3 is associated with centromeric DNA at metaphase. These findings suggested that at metaphase Thr 3 phosphorylated histone H3 may also participate in kinetochore assembly to promote faithful chromosome segregation and serve as another recognition code for kinetochore proteins.  相似文献   

11.
In this study, indirect immunofluorescence labeling was used to examine the cellular dynamic distribution of Thr11 phosphorylated H3 at mitosis in MCF-7 cells. The Thr11 phosphorylation was observed beginning at prophase at centromeres. Upon progression of mitosis, fluorescence signal was enhanced in the central region of the metaphase plate and maintained till anaphase at centromeres. During telophase, the fluorescent signal of Thr11 phosphorylated H3 disappears from centromeres, but the signal appears again at the midbody during cytokinesis, which suggests that the modified histones may take part in the formation of the midbody and play a crucial role in cytokinesis. Chromatin immunoprecipitation (ChIP) was used to confirm that Thr11 phosphorylated H3 is specifically associated with centromere DNA at prophase to metaphase, which is coincident with the results observed by immunofluorescence. In conclusion, there was a precise spatial and temporal correlation between H3 phosphorylation of Thr11 and stages of chromatin condensation. The timing of Thr11 phosphorylation and dephosphorylation in mitosis were similar to that reported for Ser10 phosphorylation of H3. The Thr11 phosphorylated H3 localized at centromeres during mitosis, which was different from the Ser10 phosphorylated H3 localized at telomere regions and Thr3 phosphorylated H3 localized along the chromosome arms. The results suggest that the Thr11 phosphorylation of histone H3 may play a specific role which was different from Ser10 and Thr3 phosphorylation in mitosis.  相似文献   

12.
13.
The orderly progression of eukaryotic cells from interphase to mitosis requires the close coordination of various nuclear and cytoplasmic events. Studies from our laboratory and others on animal cells indicate that two activities, one present mainly in mitotic cells and the other exclusively in G1-phase cells, play a pivotal role in the regulation of initiation and completion of mitosis, respectively. The purpose of this study was to investigate whether these activities are expressed in the slime mold Physarum polycephalum in which all the nuclei traverse the cell cycle in natural synchrony. Extracts were prepared from plasmodia in various phases of the cell cycle and tested for their ability to induce germinal vesicle breakdown and chromosome condensation after microinjection into Xenopus laevis oocytes. We found that extract of cells at 10-20 min before metaphase consistently induced germinal vesicle breakdown in oocytes. Preliminary characterization, including purification on a DNA-cellulose affinity column, indicated that the mitotic factors from Physarum were functionally very similar to HeLa mitotic factors. We also identified a number of mitosis-specific antigens in extracts from Physarum plasmodia, similar to those of HeLa cells, using the mitosis-specific monoclonal antibodies MPM-2 and MPM-7. Interestingly, we also observed an activity in Physarum at 45 min after metaphase (i.e., in early S phase since it has no G1) that is usually present in HeLa cells only during the G1 phase of the cell cycle. These are the first studies to show that maturation-promoting factor activity is present in Physarum during mitosis and is replaced by the G1 factor (or anti-maturation-promoting factor) activity in a postmitotic stage. A comparative study of these factors in this slime mold and in mammalian cells would be extremely valuable in further understanding their function in the regulation of eukaryotic cell cycle and their evolutionary relationship to one another.  相似文献   

14.
BACKGROUND: Regulation of the major transitions in the cell cycle, such as G1/S, G2/M, and metaphase to anaphase, are increasingly well understood. However, we have a poor understanding of the timing of events within each phase of the cell cycle, such as S phase or early mitosis. Two extreme models of regulation are possible. A "regulator-controlled model" in which the order of events is governed by the activation of a series of cytoplasmic regulators, such as kinases, phosphatases, or proteases; or a "substrate-controlled model" in which temporal regulation is determined by the differential responses of the cellular machinery to a common set of activators. RESULTS: We have tried to distinguish between these two models by examining the timing of both biochemical and morphological events in Xenopus egg extracts during mitosis. Several proteins respond with different delays to the activation of Cdc2. We have found that the timing of phosphorylation is largely unchanged when these proteins are exposed to extracts that have been in mitosis for various periods of time. Similarly, when Xenopus interphase nuclei are added to extracts at different times after the G2/M transition, they undergo all the expected morphological changes in the proper sequence and with very similar kinetics. CONCLUSIONS: Our results suggest that during early mitosis (from prophase to metaphase) the timing of biochemical events (such as phosphorylation) and morphological events (such as structural changes in the nucleus) is at least partly controlled by the responses of the substrates themselves to a common set of signals.  相似文献   

15.
以自然同步化的多头绒泡菌(Physarum polycephalumL.)为材料,经抗cyclinB1抗体的免疫印迹和免疫电镜实验观察结果表明,多头绒泡菌中含有类cyclinB1蛋白,该蛋白的含量和细胞内位置在细胞周期进程中存在着动态变化。类cyclinB1蛋白在S期开始合成并在细胞质中积累,G2晚期开始进入细胞核,该蛋白在细胞质和细胞核中含量逐渐增加。有丝分裂中期时达最大值。后末期时骤然消失,在G2晚期到有丝分裂中期期间,类cyclinB1蛋白既是细胞核蛋白又是细胞质蛋白,细胞质是类cyclinB1蛋白的主要存在区域,细胞核中的类cyclinB1蛋白主要结合于染色体和核仁区域。  相似文献   

16.
p34cdc2 protein kinase is a universal regulator of M-phase in eukaryotic cell cycle. To investigate the regulation of meiotic and mitotic cell cycle in mammals, we examined the changes in phosphorylation states of p34cdc2 and its histone H1 kinase activity in mouse oocytes and embryos. We showed that p34cdc2 has three different migrating bands (referred to as upper, middle and lower bands) on SDS-PAGE followed by immunoblotting with anti-PSTAIR antibody, and that the upper and middle bands are phosphorylated forms since these two bands shifted to the lower one by alkaline phosphatase treatment. In meiotic cell cycle, only germinal vesicle (GV) stage oocytes had the three forms. The phosphorylated forms decreased gradually in oocytes up to 2 h after isolation from follicles, and thereafter the phosphorylation states did not change significantly until metaphase II. However, the histone H1 kinase activity oscillated, being activated at the first and second metaphase in meiosis and inactivated at the time of the first polar body extrusion. These results suggest that changes in phosphorylation states of p34cdc2 triggered its activation at the first metaphase, but not inactivation and reactivation at the first and second metaphase, respectively. In mitotic cell cycle, phosphorylated forms appeared at 4 h after insemination, increased greatly just before metaphase, and were dephosphorylated in metaphase. Histone H1 kinase activity was high only at metaphase. This kinase activation is probably triggered by dephosphorylation of p34cdc2.  相似文献   

17.
Although the regulatory network of G2/M phase transition has been intensively studied in mammalian cell lines, the identification of morphological and molecular markers to identify G2/M phase transition in vivo remains elusive. In this study, we found no obvious morphological changes between the S phase and G2 phase in mice intestinal epithelial cells. The G2 phase could be identified by Brdu incorporation resistance, marginal and scattered foci of histone H3 phosphorylated at Ser10 (pHH3), and relatively intact Golgi ribbon. Prophase starts with nuclear transformation in situ, which was identified by a series of prophase markers including nuclear translocation of cyclinB1, fragmentation of the Golgi complex, and a significant increase in pHH3. The nucleus started to move upwards in the late prophase and finally rounded up at the apical surface. Then, metaphase was initiated as the level of pHH3 peaked. During anaphase and telophase, pHH3 sharply decreased, while Ki67 was obviously bound to chromosomes, and PCNA was distributed throughout the whole cell. Based on the aforementioned markers and Brdu pulse labeling, it was estimated to take about one hour for most crypt cells to go through the G2 phase and about two hours to go through the G2-M phase. It took much longer for crypt base columnar (CBC) stem cells to undergo G2-prophase than rapid transit amplifying cells. In summary, a series of sequentially presenting markers could be used to indicate the progress of G2/M events in intestinal epithelial cells and other epithelial systems in vivo.  相似文献   

18.
CENP-A locates at nucleosome as histone H3-like proteins, and is phosphorylated during mitosis. We investigated the dynamic distribution of p-CENP-A to explore the details of its function. We found that p-CENP-A was phosphorylated at late prophase, and the signal of p-CENP-A arranged at equatorial plate along with nucleosomes at metaphase, but moved to midbody at later phase of mitosis. The phosphorylation modification of CENP-A shares some characters of H3, but has different temporal patterns during mitosis. Our results suggested that the CENP-A might have similar functions as H3, but with different patterns for their different binging materials. Dengwen Li and Ruming Liu had contributed equally to this paper.  相似文献   

19.
20.
Activation of Cdc2-cyclin B (or M phase-promoting factor (MPF)) at the prophase/metaphase transition proceeds in two steps: dephosphorylation of Cdc2 and phosphorylation of cyclin B. We here investigated the regulation of cyclin B phosphorylation using the starfish oocyte model. Cyclin B phosphorylation is not required for Cdc2 kinase activity; both the prophase complex dephosphorylated on Cdc2 with Cdc25 and the metaphase complex dephosphorylated on cyclin B with protein phosphatase 2A display high kinase activities. An in vitro assay of cyclin B kinase activity closely mimics in vivo phosphorylation as shown by phosphopeptide maps of in vivo and in vitro phosphorylated cyclin B. We demonstrate that Cdc2 itself is the cyclin B kinase; cyclin B phosphorylation requires Cdc2 activity both in vivo (sensitivity to vitamin K3, a Cdc25 inhibitor) and in vitro (copurification with Cdc2-cyclin B, requirement of Cdc2 dephosphorylation, and sensitivity to chemical inhibitors of cyclin-dependent kinases). Furthermore, cyclin B phosphorylation occurs as an intra-M phase-promoting factor reaction as shown by the following: 1) active Cdc2 is unable to phosphorylate cyclin B associated to phosphorylated Cdc2, and 2) cyclin B phosphorylation is insensitive to enzyme/substrate dilution. We conclude that, at the prophase/metaphase transition, cyclin B is mostly phosphorylated by its own associated Cdc2 subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号