首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li L  Borkovich KA 《Eukaryotic cell》2006,5(8):1287-1300
The filamentous fungus Neurospora crassa is able to utilize a wide variety of carbon sources. Here, we examine the involvement of a predicted G-protein-coupled receptor (GPCR), GPR-4, during growth and development in the presence of different carbon sources in N. crassa. Deltagpr-4 mutants have reduced mass accumulation compared to the wild type when cultured on high levels of glycerol, mannitol, or arabinose. The defect is most severe on glycerol and is cell density dependent. The genetic and physical relationship between GPR-4 and the three N. crassa Galpha subunits (GNA-1, GNA-2, and GNA-3) was explored. All three Galpha mutants are defective in mass accumulation when cultured on glycerol. However, the phenotypes of Deltagna-1 and Deltagpr-4 Deltagna-1 mutants are identical, introduction of a constitutively activated gna-1 allele suppresses the defects of the Deltagpr-4 mutation, and the carboxy terminus of GPR-4 interacts most strongly with GNA-1 in the yeast two-hybrid assay. Although steady-state cyclic AMP (cAMP) levels are normal in Deltagpr-4 strains, exogenous cAMP partially remediates the dry mass defects of Deltagpr-4 mutants on glycerol medium and Deltagpr-4 strains lack the transient increase in cAMP levels observed in the wild type after addition of glucose to glycerol-grown liquid cultures. Our results support the hypothesis that GPR-4 is coupled to GNA-1 in a cAMP signaling pathway that regulates the response to carbon source in N. crassa. GPR-4-related GPCRs are present in the genomes of several filamentous ascomycete fungal pathogens, raising the possibility that a similar pathway regulates carbon sensing in these organisms.  相似文献   

2.
Kim H  Wright SJ  Park G  Ouyang S  Krystofova S  Borkovich KA 《Genetics》2012,190(4):1389-1404
Here we characterize the relationship between the PRE-2 pheromone receptor and its ligand, CCG-4, and the general requirements for receptors, pheromones, G proteins, and mating type genes during fusion of opposite mating-type cells and sexual sporulation in the multicellular fungus Neurospora crassa. PRE-2 is highly expressed in mat a cells and is localized in male and female reproductive structures. Δpre-2 mat a females do not respond chemotropically to mat A males (conidia) or form mature fruiting bodies (perithecia) or meiotic progeny (ascospores). Strains with swapped identity due to heterologous expression of pre-2 or ccg-4 behave normally in crosses with opposite mating-type strains. Coexpression of pre-2 and ccg-4 in the mat A background leads to self-attraction and development of barren perithecia without ascospores. Further perithecial development is achieved by inactivation of Sad-1, a gene required for meiotic gene silencing. Findings from studies involving forced heterokaryons of opposite mating-type strains show that presence of one receptor and its compatible pheromone is necessary and sufficient for perithecial development and ascospore production. Taken together, the results demonstrate that although receptors and pheromones control sexual identity, the mating-type genes (mat A and mat a) must be in two different nuclei to allow meiosis and sexual sporulation to occur.  相似文献   

3.
Heterotrimeric G proteins are components of principal signaling pathways in eukaryotes. In higher organisms, alpha subunits of G proteins have been divided into four families, Gi, Gs, Gq, and G12. We previously identified a G alpha i homologue gna-1 in the filamentous fungus Neurospora crassa. Now we report that deletion of gna-1 leads to multiple phenotypes during the vegetative and sexual cycles in N. crassa. On solid medium, delta gna-1 strains have a slower rate of hyphal apical extension than wild type, a rate that is more pronounced under hyperosmotic conditions or in the presence of a cellophane overlay. delta gna-1 mutants accumulate less mass than wild-type strains, and their mass accumulation is not affected in the same way by exposure to light. delta gna-1 strains are defective in macroconidiation, possessing aerial hyphae that are shorter, contain abnormal swellings, and differentiate adherent macroconidia. During the sexual cycle, delta gna-1 strains are fertile as males. However, the mutants are female-sterile, producing small, aberrant female reproductive structures. After fertilization, delta gna-1 female structures do not enlarge and develop normally, and no sexual spores are produced. Thus, mutation of gna-1 results in sex-specific loss of fertility.  相似文献   

4.
BACKGROUND: Spindle positioning during an asymmetric cell division is of fundamental importance to ensure correct size of daughter cells and segregation of determinants. In the C. elegans embryo, the first spindle is asymmetrically positioned, and this asymmetry is controlled redundantly by two heterotrimeric Galpha subunits, GOA-1 and GPA-16. The Galpha subunits act downstream of the PAR polarity proteins, which control the relative pulling forces acting on the poles. How these heterotrimeric G proteins are regulated and how they control spindle position is still unknown. RESULTS: Here we show that the Galpha subunits are regulated by a receptor-independent mechanism. RNAi depletion of gpr-1 and gpr-2, homologs of mammalian AGS3 and Drosophila PINS (receptor-independent G protein regulators), results in a phenotype identical to that of embryos depleted of both GPA-16 and GOA-1; the first cleavage is symmetric, but polarity is not affected. The loss of spindle asymmetry after RNAi of gpr-1 and gpr-2 appears to be the result of weakened pulling forces acting on the poles. The GPR protein(s) localize around the cortex of one-cell embryos and are enriched at the posterior. Thus, asymmetric G protein regulation could explain the posterior displacement of the spindle. Posterior enrichment is abolished in the absence of the PAR polarity proteins PAR-2 or PAR-3. In addition, LIN-5, a coiled-coil protein also required for spindle positioning, binds to and is required for cortical association of the GPR protein(s). Finally, we show that the GPR domain of GPR-1 and GPR-2 behaves as a GDP dissociation inhibitor for GOA-1, and its activity is thus similar to that of mammalian AGS3. CONCLUSIONS: Our results suggest that GPR-1 and/or GPR-2 control an asymmetry in forces exerted on the spindle poles by asymmetrically modulating the activity of the heterotrimeric G protein in response to a signal from the PAR proteins.  相似文献   

5.
Neurospora crassa is a heterothallic filamentous fungus with two mating types, mat a and mat A. Its mating involves differentiation of female reproductive structures (protoperithecia) and chemotropic growth of female-specific hyphae (trichogynes) towards a cell of the opposite mating type in a pheromone-mediated process. In this study, we characterize the pre-1 gene, encoding a predicted G-protein-coupled receptor with sequence similarity to fungal pheromone receptors. pre-1 is most highly expressed in mat A strains under mating conditions, but low levels can also be detected in mat a strains. Analysis of pre-1 deletion mutants showed that loss of pre-1 does not greatly affect vegetative growth, heterokaryon formation or male fertility in either mating type. Protoperithecia from Deltapre-1 mat A mutants do not undergo fertilization; this defect largely stems from an inability of their trichogynes to recognize and fuse with mat a cells. Previous work has demonstrated that the Galpha subunit, GNA-1, and the Gbeta protein, GNB-1, are essential for female fertility in N. crassa. Trichogynes of Deltagna-1 and Deltagnb-1 mutants displayed severe defects in growth towards and fusion with male cells, similar to that of Deltapre-1 mat A strains. However, the female sterility defect of the Deltapre-1 mat A mutant could not be complemented by constitutive activation of gna-1, suggesting additional layers of regulation. We propose that PRE-1 is a pheromone receptor coupled to GNA-1 that is essential for the mating of mat A strains as females, consistent with a role in launching the pheromone response pathway in N. crassa.  相似文献   

6.
7.
8.
We have identified a gene encoding a heterotrimeric G protein gamma subunit, gng-1, from the filamentous fungus Neurospora crassa. gng-1 possesses a gene structure similar to that of mammalian Ggamma genes, consisting of three exons and two introns, with introns present in both the open reading frame and 5'-untranslated region. The GNG-1 amino acid sequence displays high identity to predicted Ggamma subunits from other filamentous fungi, including Giberella zeae, Cryphonectria parasitica, Trichoderma harzianum, and Magnaporthe grisea. Deletion of gng-1 leads to developmental defects similar to those previously characterized for Deltagnb-1 (Gbeta) mutants. Deltagng-1, Deltagnb-1, and Deltagng-1 Deltagnb-1 strains conidiate inappropriately in submerged cultures and are female sterile, producing aberrant female reproductive structures. Similar to previous results obtained with Deltagnb-1 mutants, loss of gng-1 negatively influences levels of Galpha proteins (GNA-1, GNA-2, and GNA-3) in plasma membrane fractions isolated from various tissues of N. crassa and leads to a significant reduction in the amount of intracellular cyclic AMP. In addition, we show that GNB-1 is essential for maintenance of normal steady-state levels of GNG-1, suggesting a functional interaction between GNB-1 and GNG-1. Direct evidence for a physical association between GNB-1 and GNG-1 in vivo was provided by coimmunoprecipitation.  相似文献   

9.
We show that pyruvate decarboxylase (PDC) 8- to 10-nm-diameter filaments, first described in vegetative cells of Neurospora crassa, are ubiquitously present in filamentous fungi. The cellular arrangement of these structures was examined over the entire sexual cycle of the ascomycetes N. crassa, N. tetraesperma, Podospora anserina, and Sordaria macrospora. PDC-filaments were found associated with the cortical microtubule array of asci and ascospores and absent from the vicinity of spindles and spindle pole bodies. Nocodazole-induced depolymerization of the cortical microtubules results in the loss of PDC-filaments. Moreover, a S. macrospora mutant defective in cortical MT distribution shows abnormal PDC organization. Neurospora asci generated on various metabolic conditions, which modify the presence and relative abundance of PDC-filaments in vegetative cells, have identical patterns of subcellular distribution of these structures. A N. crassa mutant (snowflake) that accumulates giant bundles of PDC-filaments during vegetative growth, shows normal distribution of the filaments during ascogenesis. Thus, the regulation conditioning the presence and supramolecular assembly of PDC-filaments in Neurospora differs between vegetative and sexual cells. Taken together, these results suggest that PDC in filamentous fungi may perform two functions, intervening as an enzyme in vegetative metabolism and as a structural protein associated with the cytoskeleton during sexual development.  相似文献   

10.
J L Harris  H B Howe  Jr    I L Roth 《Journal of bacteriology》1975,122(3):1239-1246
Stages in the development of perithecia of Neurospora crassa, designated by the time elapsed after crossing, were investigated with the scanning electron microscope, from protoperithecia through perithecia. The usual examination of external features of whole specimens with this instrument was augmented by a freeze-fracture technique which allowed the viewing of development internally as well. Rapid increases in perithecial size soon after crossing were followed by the appearance, in section, of a centrum, at first undifferentiated but subsequently developing ascogenous hyphae. The perithecial beak appeared as a compact mass easily distinguishable in whole specimens from the surrounding hyphae by means of texture as well as shape. Two ascospores were photographed during emergence from an ostiole, but ostioles were found more frequently closed than open.  相似文献   

11.
Heterotrimeric G proteins, consisting of α, β and γ subunits, mediate a variety of signaling pathways in eukaryotes. We have previously identified two genes, gna-1 and gna-2, that encode G protein α subunits in the filamentous fungus Neurospora crassa. Mutation of gna-1 results in female infertility and sensitivity to hyperosmotic media. In this study, we investigate the expression and functions of gna-2. Results from Western analysis and measurements of gna-2 promoter-lacZ fusion activity indicate that gna-2 is expressed during the vegetative and sexual cycle of N. crassa in both A and a mating types. Activating mutations predicted to abolish the GTPase activity of GNA-2 cause subtle defects in aerial hyphae formation and conidial germination. Extensive phenotypic analysis of Δgna-2 strains did not reveal abnormalities during vegetative or sexual development. In contrast, deletion of gna-2 in a Δgna-1 strain accentuates the Δgna-1 phenotypes. Δgna-1 Δgna-2 strains have a slower rate of hyphal apical extension than Δgna-1 strains on hyperosmotic media. Moreover, Δgna-1 Δgna-2 mutants have more pronounced defects in female fertility than Δgna-1 strains. We propose that gna-1 and gna-2 have overlapping functions and may constitute a gene family. This is the first report of G protein α subunits with overlapping functions in eukaryotic microbes.  相似文献   

12.
Son H  Min K  Lee J  Raju NB  Lee YW 《Fungal biology》2011,115(12):1290-1302
The homothallic ascomycete fungus Gibberella zeae is an important pathogen on major cereal crops. The objective of this study was to determine whether meiotic silencing occurs in G. zeae. Cytological studies demonstrated that GFP and RFP-fusion proteins were not detected during meiosis, both in heterozygous outcrosses and homozygous selfings. The deletion of rsp-1, a homologue used for studies on meiotic silencing of Neurospora crassa, triggered abnormal ascospores from selfing, but outcrosses between the mutant and wild-type strain resulted in some ascospores with mutant phenotype (low occurrence of ascus dominance). When the ectopic mutants that carried an additional copy of rsp-1 were selfed, they primarily produced ascospores with normal shape but a few ascospores (0.23 %) were abnormal, in which both endogenous and ectopically integrated genes contained numerous point mutations. The ectopic mutants showed low occurrence of ascus dominance in outcrosses with strains that carried the wild-type allele. Approximately 10 % of ascospores were abnormal but all of the single-ascospore isolates produced normal-shaped ascospores from selfing. However, no ascus dominance was observed when the mutants were outcrossed with a sad-1 deletion mutant, which lacks the putative RNA-dependent RNA polymerase essential for meiotic silencing in N. crassa. All results were consistent with those generated from an additional gene, roa, required for ascospore morphogenesis. This study demonstrated that G. zeae possesses a functional meiotic silencing mechanism which is triggered by unpaired DNA, as in N. crassa.  相似文献   

13.
14.
Raju NB  Metzenberg RL  Shiu PK 《Genetics》2007,176(1):43-52
In Neurospora crassa, pairing of homologous DNA segments is monitored during meiotic prophase I. Any genes not paired with a homolog, as well as any paired homologs of that gene, are silenced during the sexual phase by a mechanism known as meiotic silencing by unpaired DNA (MSUD). Two genes required for MSUD have been described previously: sad-1 (suppressor of ascus dominance), encoding an RNA-directed RNA polymerase, and sad-2, encoding a protein that controls the perinuclear localization of SAD-1. Inactivation of either sad-1 or sad-2 suppresses MSUD. We have now shown that MSUD is also suppressed by either of two Spore killer strains, Sk-2 and Sk-3. These were both known to contain a haplotype segment that behaves as a meiotic drive element in heterozygous crosses of killer x sensitive. Progeny ascospores not carrying the killer element fail to mature and are inviable. Crosses homozygous for either of the killer haplotypes suppress MSUD even though ascospores are not killed. The killer activity maps to the same 30-unit-long region within which recombination is suppressed in killer x sensitive crosses. We suggest that the region contains a suppressor of MSUD.  相似文献   

15.
The velvet factor of the homothallic fungus Aspergillus nidulans promotes sexual fruiting body formation. The encoding veA gene is conserved among fungi, including the ascomycete Neurospora crassa. There, the orthologous ve-1 gene encodes a deduced protein with high similarity to A. nidulans VeA. Cross-complementation experiments suggest that both the promoter and the coding sequence of N. crassa ve-1 are functional to complement the phenotype of an A. nidulans deletion mutant. Moreover, ve-1 expression in the heterologous host A. nidulans results in development of reproductive structures in a light-dependent manner, promoting sexual development in the darkness while stimulating asexual sporulation under illumination. Deletion of the N. crassa ve-1 locus by homologous gene replacement causes formation of shortened aerial hyphae accompanied by a significant increase in asexual conidiation, which is not light-dependent. Our data suggest that the conserved velvet proteins of A. nidulans and N. crassa exhibit both similar and different functions to influence development of these two ascomycetes.  相似文献   

16.
Aggregation of ascospores has been discovered in the yeast Dipodascopsis uninucleata. When this yeast is cultivated to reach the sexual reproductive stage, small ascospores are individually released from the tip of a sac-like ascus which then aggregate in orderly clusters. Acetylsalicylic acid (ASA) inhibited ascospore release and subsequent ordered aggregation process. We suggest that novel ASA-sensitive oxidised fatty acids (3 R-hydroxy-oxylipins) and small hooks located on the surface of these ascospores, are involved.  相似文献   

17.
A scheme has been devised for efficient isolation of recessive meiotic mutants of Neurospora crassa. These mutants were detected by their reduced fertility or by the abortion of ascospores. Their isolation involved the selection and screening of the strains arising from ascospores disomic (n + 1) for linkage group I (LG I), which bears the mating-type locus. These strains are self-fertile heterokaryons that contain two types of haploid nuclei of opposite mating types (A + a). Selfings of these strains are homozygous for genes on all linkage groups except LGI and therefore allow the expression of recessive mutants with an altered sexual cycle. Using this selection procedure, three classes of mutants were detected. In one class, mutants had an early block in perithecial development (class I), and in another mutants had altered perithecia, but apparently unaltered fertility (class III). No recessive mutants were observed and all mutants tested (eight of class I and two of class III) were expressed only when used as the maternal parent. A third mutant class displayed normal production of perithecia, but defective formation of asci (class IIA), or black ascospores (class IIB). Four of 13 class IIA mutants were analyzed, and two of them [asc(DL131) and asc (DL400)] were definitely recessive analysis of 10 of 13 class IIB mutants disclosed six recessive, mutually complementing mutants: ase(DL95), asc(DL243), asc(DL711), asc(DL879), asc(DL917m) and asc(DL961). Mutants asc(DL95), asc(DL243) and the previously studied mei-1 mutant (Smith 1975) complemented one another in crosses, but did not recombine. These may be alleles of the same gene, or they may comprise a gene cluster.  相似文献   

18.
A V Ferreira  Z An  R L Metzenberg  N L Glass 《Genetics》1998,148(3):1069-1079
The mating-type locus of Neurospora crassa regulates mating identity and entry into the sexual cycle. The mat A idiomorph encodes three genes, mat A-1, mat A-2, and mat A-3. Mutations in mat A-1 result in strains that have lost mating identity and vegetative incompatibility with mat a strains. A strain containing mutations in both mat A-2 and mat A-3 is able to mate, but forms few ascospores. In this study, we describe the isolation and characterization of a mutant deleted for mat (deltamatA), as well as mutants in either mat A-2 or mat A-3. The deltamatA strain is morphologically wild type during vegetative growth, but it is sterile and heterokaryon compatible with both mat A and mat a strains. The mat A-2 and mat A-3 mutants are also normal during vegetative growth, mate as a mat A strain, and produce abundant biparental asci in crosses with mat a, and are thus indistinguishable from a wild-type mat A strain. These data and the fact that the mat A-2 mat A-3 double mutant makes few asci with ascospores indicate that MAT A-2 and MAT A-3 are redundant and may function in the same pathway. Analysis of the expression of two genes (sdv-1 and sdv-4) in the various mat mutants suggests that the mat A polypeptides function in concert to regulate the expression of some sexual development genes.  相似文献   

19.
Three new species of Ophiostoma found on Japanese red pine are described as Ophiostoma pusillum sp. nov., O. botuliforme sp. nov., and O. nigrogranum sp. nov. Ophiostoma pusillum is characterized by oblong ascospores and a Hyalorhinocladiella anamorph. Ophiostoma botuliforme has ostioles covered with a hyaline gelatinous cap, allantoid ascospores, and a Pesotum anamorph with hyaline to pale brown stipes. Ophiostoma nigrogranum has hyaline ostiolar hyphae with rounded tips, allantoid ascospores, and sclerotium-like structures.Contribution no. 172, Laboratory of Plant Pathology and Mycology, Institute of Agriculture and Forestry, University of Tsukuba  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号