首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The hammerhead ribozyme is able to cleave RNA in a sequence-specific manner. These ribozymes are usually designed with four basepairs in helix II, and with equal numbers of nucleotides in the 5′ and 3′ hybridizing arms that bind the RNA substrate on either side of the cleavage site. Here guidelines are given for redesigning the ribozyme so that it is small, but retains efficient cleavage activity. First, the ribozyme may be reduced in size by shortening the 5′ arm of the ribozyme to five or six nucleotides; for these ribozymes, cleavage of short substrates is maximal. Second, the internal double-helix of the ribozyme (helix II) may be shortened to one or no basepairs, forming a miniribozyme or minizyme, respectively. The sequence of the shortened helix+loop II greatly affects cleavage rates. With eight or more nucleotides in both the 5′ and the 3′ arms of a miniribozyme containing an optimized sequence for helix+loop II, cleavage rates of short substrates are greater than for analogous ribozymes possessing a longer helix II. Cleavage of genelength RNA substrates may be best achieved by miniribozymes.  相似文献   

2.
Inhibition of gene expression by catalytic RNA (ribozymes) requires that ribozymes efficiently cleave specific sites within large target RNAs. However, the cleavage of long target RNAs by ribozymes is much less efficient than cleavage of short oligonucleotide substrates because of higher order structure in the long target RNA. To further study the effects of long target RNA structure on ribozyme cleavage efficiency, we determined the accessibility of seven hammerhead ribozyme cleavage sites in a target RNA that contained human immunodeficiency virus type 1 (HIV-1) vif - vpr . The base pairing-availability of individual nucleotides at each cleavage site was then assessed by chemical modification mapping. The ability of hammerhead ribozymes to cleave the long target RNA was most strongly correlated with the availability of nucleotides near the cleavage site for base pairing with the ribozyme. Moreover, the accessibility of the seven hammerhead ribozyme cleavage sites in the long target RNA varied by up to 400-fold but was directly determined by the availability of cleavage sites for base pairing with the ribozyme. It is therefore unlikely that steric interference affected hammerhead ribozyme cleavage. Chemical modification mapping of cleavage site structure may therefore provide a means to identify efficient hammerhead ribozyme cleavage sites in long target RNAs.  相似文献   

3.
Dynamic interactions between hammerhead ribozymes and RNA substrates were measured using the surface plasmon resonance (SPR) technology. Two in vitro transcribed substrates (non-cleavable and cleavable) were immobilised on streptavidin-coated dextran matrices and subsequently challenged with non-related yeast tRNA or two hammerhead ribozymes, both of which had previously been shown to exhibit functional binding and cleavage of complementary target RNAs. The target-binding domain of one of the ribozymes was fully complementary to a 16-ribonucleotide stretch on the immobilised substrates, while the other ribozyme had a nine-ribonucleotide complementarity. The two ribozymes could readily be differentiated with regard to affinity. Cleavage could be measured, using the ribozyme with full target complementarity to the cleavable substrate. In contrast, the ribozyme with lower affinity lacked cleavage activity. We suggest that SPR will be useful for investigations of ribozyme-substrate interactions.  相似文献   

4.
The efficacy of intracellular binding of hammerhead ribozyme to its cleavage site in target RNA is a major requirement for its use as a therapeutic agent. Such efficacy can be influenced by several factors, such as the length of the ribozyme antisense arms and mRNA secondary structures. Analysis of various IL-2 hammerhead ribozymes having different antisense arms but directed to the same site predicts that the hammerhead ribozyme target site is present within a double-stranded region that is flanked by single-stranded loops. Extension of the low cleaving hammerhead ribozyme antisense arms by nucleotides that base pair with the single-stranded regions facilitated the hammerhead ribozyme binding to longer RNA substrates (e.g. mRNA). In addition, a correlation between the in vitro and intracellular results was also found. Thus, the present study would facilitate the design of hammerhead ribozymes directed against higher order structured sites. Further, it emphasises the importance of detailed structural investigations of hammerhead ribozyme full-length target RNAs.  相似文献   

5.
Long RNA substrates are inefficiently cleaved by hammerhead ribozymes in trans. Oligonucleotide facilitators capable of affecting the ribozyme activity by interacting with the substrates at the termini of the ribozyme provide a possibility to improve ribozyme mediated cleavage of long RNA substrates. We have examined the effect of PNA as facilitator in vitro in order to test if even artificial compounds have facilitating potential. Effects of 12mer PNA- (peptide nucleic acid), RNA- and DNA-facilitators of identical sequence were measured with three substrates containing either 942, 452 or 39 nucleotides. The PNA facilitator enhances the ribozyme activity with both, the 942mer and the 452mer substrate to a slightly smaller extent than RNA and DNA facilitators. This effect was observed up to PNA facilitator:substrate ratios of 200:1. The enhancement becomes smaller as the PNA facilitator:substrate ratio exceeds 200:1. With the 39mer substrate, the PNA facilitator decreases the ribozyme activity by more than 100-fold, even at PNA facilitator:substrate ratios of 1:1. Although with long substrates the effect of the PNA facilitator is slightly smaller than the effect of identical RNA or DNA facilitators, PNA may be a more practical choice for potential applications in vivo because PNA is much more resistant to degradation by cellular enzymes.  相似文献   

6.
Influenza A virus genome segment 7 encodes protein M1, which is the matrix protein playing crucial role in the virus life cycle. Any antiviral strategy that aims at reducing, in particular, the expression of this genome segment should, in principle, reduce the infectivity of the virus. We developed a specific antiviral approach at the molecular level and designed several novel 10–23 DNAzymes (Dz) and hammerhead ribozymes (Rz), specifically targeted to cleave at the conserved domains of the influenza virus M1 RNA. We sought to use antisense molecules with the hope that it will facilitate the ribozyme-mediated cleavage. We observed that the Mg2+-dependent sequence-specific cleavage of M1 RNA was achieved by both the Dz and Rz in a dose-dependent manner. This combination of catalytic Dz and Rz with antisense molecules, in principle, resulted in more effective gene suppression, inhibited the whole virus replication in host cell, and thus could be exploited for therapeutic purposes.  相似文献   

7.
We obtained a partial sequence of mouse calretinin mRNA from cDNA clones, and designed hammerhead ribozymes to cleave positions within it. With a view to optimising hammerhead ribozymes for eliminating the mRNA in vivo, we varied the length and sequence of the three duplex 'arms' and measured the cleavage of long RNA substrates in vitro at 37 degrees C (as well as 50 degrees C). Precise cleavage occurred, but it could only go to completion with a large excess of ribozyme. The evidence suggests that the rate-limiting step with a large target is not the cleavage, but the formation of the active ribozyme: substrate complex. The efficiency varied unpredictably according to the target site, the length of the substrate RNA, and the length of the ribozyme; secondary structure in vitro may be responsible. We particularly investigated the degree of sequence-specificity. Some mismatches could be tolerated, but shortening of the total basepairing with the substrate to less than 14 bp drastically reduced activity, implying that interaction with weakly-matched RNAs is unlikely to be a serious problem in vivo. These results suggest that specific and complete cleavage of a mRNA in vivo should be possible, given high-level expression of a ribozyme against a favourable target site.  相似文献   

8.
9.
Facilitators are oligonucleotides capable of affecting hammerhead ribozyme activity by interacting with the substrate at the termini of the ribozyme. Facilitator effects were determined in vitro using a system consisting of a ribozyme with 7 nucleotides in every stem sequence and two substrates with inverted facilitator binding sequences. The effects of 9mer and 12mer RNA as well as DNA facilitators which bind either adjacent to the 3'- or 5'-end of the ribozyme were investigated. A kinetic model was developed which allows determination of the apparent dissociation constant of the ribozyme-substrate complex from single turnover reactions. We observed a decreased dissociation constant of the ribozyme-substrate complex due to facilitator addition corresponding to an additional stabilization energy of delta delta G=-1.7 kcal/mol with 3'-end facilitators. The cleavage rate constant was increased by 3'-end facilitators and decreased by 5'-end facilitators. Values for Km were slightly lowered by all facilitators and kcat was increased by 3'-end facilitators and decreased by 5'-end facilitators in our system. Generally the facilitator effects increased with the length of the facilitators and RNA provided greater effects than DNA of the same sequence. Results suggest facilitator influences on several steps of the hammerhead reaction, substrate association, cleavage and dissociation of products. Moreover, these effects are dependent in different manners on ribozyme and substrate concentration. This leads to the conclusion that there is a concentration dependence whether activation or inhibition is caused by facilitators. Conclusions are drawn with regard to the design of hammerhead ribozyme facilitator systems.  相似文献   

10.
11.
Most researchers who intend to suppress a particular gene are interested primarily in the application of ribozyme technology rather than its mechanistic details. This article provides some background information and describes a straightforward strategy to generate and test a special design of a ribozyme: the asymmetric hammerhead ribozyme. This version of a hammerhead ribozyme carries at its 5' end the catalytic domain and at its 3' end a relatively long antisense flank that is complementary to the target RNA. Asymmetric hammerhead ribozymes can be constructed via polymerase chain reaction amplification, and rules are provided on how to select the DNA oligonucleotides required for this reaction. In addition to details on construction, we describe how to test asymmetric hammerhead ribozymes for association with the target RNA in vitro, so that RNA constructs can be selected and optimized for fast hybridization with their target RNA. This test can allow one to minimize association problems caused by the secondary structure of the target RNA. Additionally, we describe the in vitro cleavage assay and the determination of the cleavage rate constant. Testing for efficient cleavage is also a prerequisite for reliable and successful application of the technology. A carefully selected RNA will be more promising when eventually used for target suppression in living cells.  相似文献   

12.
Stathmin is a major cytosolic phosphoprotein that plays an important role in the control of cellular proliferation by regulating the dynamics of the microtubules that make up the mitotic spindle. Because stathmin is expressed at high levels in all human cancers, it is an attractive molecular target for anticancer interventions. We had shown previously that antisense stathmin inhibition results in marked abrogation of the transformed phenotype of leukemic cells in vitro and in vivo. Unlike the antisense approach, ribozymes can catalytically cleave several molecules of target RNA. This may provide a more efficient strategy for downregulating genes, such as stathmin, that are expressed at very high levels in cancer cells. We designed several antistathmin hammerhead ribozymes and tested their cleavage activity against short synthetic stathmin RNA substrates. In vitro cleavage studies demonstrated site-specific cleavage of stathmin RNA that was dependent on ribozyme concentration and duration of exposure to ribozyme. The most active antistathmin ribozyme was capable of cleaving >90% stathmin RNA in a catalytic manner, cleaving multiple substrate molecules per ribozyme molecule. We also demonstrated that the designed antistathmin ribozymes are capable of selectively cleaving native stathmin RNA in a mixture of total RNA isolated from leukemic cells. These antistathmin ribozymes may provide a novel and effective form of gene therapy that may be applicable to a wide variety of human cancers.  相似文献   

13.
Ribozymes are RNA molecules with enzymatic activity that can cleave target RNA molecules in a sequence specific manner. To date, various types of ribozyme have been constructed to cleave other RNAs and such trans-acting ribozymes include hammerhead, hairpin and HDV ribozymes. External guide sequence (EGS) can also induce the suppression of a gene-expression by taking advantage of cellular RNase P. Here we compared the activities of various functional RNA cleavers both in vitro and in vivo. The first purpose of this comparison was intended to determine the best ribozyme motif with the highest activity in cells. The second purpose is to know the correlation between the activities of ribozymes in vitro and in vivo. Our results indicated that the intrinsic cleavage activity of ribozymes is not the sole determinant that is responsible for the activity of a ribozyme in cultured cells.  相似文献   

14.
Trans-cleaving hammerhead ribozymes with long target-specific antisense sequences flanking the catalytic domain share some features with conventional antisense RNA and are therefore termed 'catalytic antisense RNAs'. Sequences 5' to the catalytic domain form helix I and sequences 3' to it form helix III when complexed with the target RNA. A catalytic antisense RNA of more than 400 nucleotides, and specific for the human immunodeficiency virus type 1 (HIV-1), was systematically truncated within the arm that constituted originally a helix I of 128 base pairs. The resulting ribozymes formed helices I of 13, 8, 5, 3, 2, 1 and 0 nucleotides, respectively, and a helix III of about 280 nucleotides. When their in vitro cleavage activity was compared with the original catalytic antisense RNA, it was found that a helix I of as little as three nucleotides was sufficient for full endonucleolytic activity. The catalytically active constructs inhibited HIV-1 replication about four-fold more effectively than the inactive ones when tested in human cells. A conventional hammerhead ribozyme having helices of just 8 nucleotides on either side failed to cleave the target RNA in vitro when tested under the conditions for catalytic antisense RNA. Cleavage activity could only be detected after heat-treatment of the ribozyme substrate mixture which indicates that hammerhead ribozymes with short arms do not associate as efficiently to the target RNA as catalytic antisense RNA. The requirement of just a three-nucleotide helix I allows simple PCR-based generation strategies for asymmetric hammerhead ribozymes. Advantages of an asymmetric design will be discussed.  相似文献   

15.
16.
17.
小型核酶的结构和催化机理   总被引:5,自引:1,他引:4  
自然界存在的小型核酶主要有锤头型核酶、发夹型核酶、肝炎δ病毒(HDV)核酶和VS核酶.锤头型核酶由3个短螺旋和1个广义保守的连接序列组成;发夹型核酶的催化中心由两个肩并肩挨着的区域构成;HDV核酶折叠成包含五个螺旋臂(P1~P4)的双结结构;VS核酶由五个螺旋结构组成,这些螺旋结构通过两个连接域连接起来.小型核酶的催化机理与其分子结构密切相关.金属离子或特定碱基都可作为催化反应的关键成分.锤头型核酶的催化必须有金属离子(尤其是二价金属离子)参与,而发夹型核酶则完全不需要金属离子.基因组HDV核酶进行催化时要有金属离子和特定碱基互相配合.  相似文献   

18.
19.
We have carried out an in vitro selection to obtain an allosteric hairpin ribozyme, which has cleavage activity in the presence of an exogenous short oligonucleotide as a regulator. Random sequences were inserted in a region corresponding to the hairpin loop of the ribozyme. After 12 rounds of selection, DNA templates were cloned. Of a total of 34 clones, 18 contained the same sequence, and the obtained hairpin ribozymes showed the cleavage activity specifically in the presence of the regulator oligonucleotide. All of the clones contained sequences complementary to the regulator oligonucleotide. The ribozymes with high cleavage activities gained characteristic hairpin loops at the random domain, which were similar to each other. In the absence of the oligonucleotide, the loop domain within the allosteric ribozyme probably forms a slipped hairpin loop, and the complementary sequence, with the regulator oligonucleotide located at the single stranded loop, would allow easy access of the oligonucleotide. The binding of the regulator oligonucleotide triggers a structural change of the hairpin loop to form an active conformation. Furthermore, we constructed an allosteric hammerhead ribozyme by introducing the characteristic hairpin loop. The modified hammerhead ribozyme was also changed to an allosteric ribozyme, which was activated by the addition of the regulator oligonucleotide. The characteristic hairpin loop, which was proved to be regulated by an exogenous oligonucleotide in this report, may be used to control RNA functions in various fields.  相似文献   

20.
Several catalytic antisense RNAs directed against different regions of the genomic or antigenomic RNA of Sendai virus were constructed. All RNAs contained the same catalytic domain based on hammerhead ribozymes but some had deletions or mutations resulting in imperfect helices I and III. Pre-annealed substrate/ribozyme complexes were used to determine the rates of the cleavage process for the different ribozymes under single-turnover conditions. It was found that the sequence context surrounding the cleavable motif influenced the cleavage efficiencies. Deletions or mutations of nucleotides 2.1 or 15.1 and 15.2 according to the numbering system for hammerhead ribozymes of Hertel et al. destroyed catalytic activity. Deletions of nucleotide 2.2 or additional nucleotides in the helix I-forming region of the ribozyme did not destruct, but only reduced the cleavage efficiencies. Similar results were observed for a deletion of nucleotide 15.3. Simultaneous deletions within helices I and III resulted in alternative cleavage sites. The potential consequences for the specificity of the ribozyme reaction are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号