首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Estrogens can stimulate the proliferation of estrogen-responsive breast cancer cells by increasing their proliferative response to insulin-like growth factors. The mechanism underlying the increased proliferation could involve the induction of components of the insulin-like growth factor signal transduction pathway by estrogen. In this study we have examined the regulation of the expression of insulin receptor substrate-1, a major intracellular substrate of the type I insulin-like growth factor receptor tyrosine kinase. Estradiol increased insulin receptor substrate-1 mRNA and protein levels at concentrations consistent with a mechanism involving the estrogen receptor. Insulin receptor substrate-1 was not induced significantly by the antiestrogens tamoxifen and ICI 182,780, but they inhibited the induction of insulin receptor substrate-1 by estradiol. Analysis of tyrosine-phosphorylated insulin receptor substrate-1 showed that the highest levels were found in cells stimulated by estradiol and insulin-like growth factor-I, whereas low levels were found in the absence of estradiol irrespective of whether type I insulin-like growth factor ligands were present. Insulin receptor substrate-2, -3, and -4 were not induced by estradiol. These results suggest that estrogens and antiestrogens may regulate cell proliferation by controlling insulin receptor substrate-1 expression, thereby amplifying or attenuating signaling through the insulin-like growth factor signal transduction pathway.  相似文献   

2.
The murine non-fusing muscle cell line contains distinct receptors for insulin and insulin-like growth factors. Pretreatment of myocytes with insulin for 20 h at 37 degrees C inhibits the binding of [125I]iodoinsulin by 60% without affecting the binding of [125I]iodoinsulin-like growth factor I. The ED50 values for down-regulation of the insulin and insulin-like growth factor receptor by their respective ligands are 1 nM and 3 nM, respectively. Insulin, (Thr-59)-insulin-like growth factor I and multiplication-stimulating activity stimulate 2-[3H]deoxyglucose transport in myocytes with ED50 values of 5 nM, 5.6 nM and 33 nM, respectively. In order to determine whether (Thr-59)-insulin-like growth factor I stimulates 2-[3H]deoxyglucose transport in myocytes via its own receptor or the insulin receptor, we determined the activity of these peptides after down-regulation of the insulin receptor. The rate of 2-[3H]deoxyglucose transport in myocytes pretreated with insulin (5 nM) is elevated but returns to control levels by 1 h after the washout of insulin. The dose-response curve for insulin-stimulated 2-[3H]deoxyglucose transport is shifted to the right (ED50 greater than 100 nM) immediately after insulin washout but is normal by 1 h after insulin washout. In contrast, the dose-response curve for (Thr-59)-insulin-like growth factor I is unchanged in insulin-pretreated cells immediately after insulin washout. These data show that (Thr-59)-insulin-like growth factor I stimulates 2-[3H]deoxyglucose transport in myocytes by acting through an insulin-like growth factor receptor and not through the insulin receptor. Since multiplication-stimulating activity is 6-fold less active than (Thr-59)-insulin-like growth factor, they both may be acting through a type 1 insulin-like growth factor receptor.  相似文献   

3.
Insulin-like growth factors I and II (IGF-I and II) and insulin are chemotactic agents for the human melanoma cell line A2058. As shown in this report, the motility receptor mediating this response is the heterodimeric type I IGF receptor. These three factors are able to compete with 125I-labeled IGF-I for binding to the cell surface with IC50 values equal to approximately 2 (IGF-I), approximately 150 (IGF-II), and approximately 300 nM (insulin). Cross-linking of 125I-IGF-I to the cell surface with disuccinimidyl suberate followed by analysis with sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography reveals a 130-kDa protein (reduced) consistent with the alpha component of a type I receptor and a 38-kDa protein which does not bind insulin, and thus could be another IGF-I cell surface binding protein. The anti-IGF-I receptor monoclonal antibody (alpha IR-3) also competes with labeled IGF-I in binding experiments. In contrast, a control monoclonal antibody, matched to alpha IR-3 with respect to IgG subclass, has no significant effect on IGF-I binding. While alpha IR-3 inhibits the motility induced by IGF-I, IGF-II, and insulin, pertussis toxin (0.01-1.0 micrograms/ml) has no significant effect on the motility induced by the insulin-like growth factors or insulin on this cell line. Therefore, the type I IGF receptor appears to mediate a highly potent pertussis toxin-insensitive motility response to IGF-I, IGF-II, and insulin. In contrast, motility induced by the autocrine motility factor, a cytokine produced by the A2058 cells, is not affected by alpha IR-3 but is extremely sensitive to pertussis toxin. When mixtures of autocrine motility factor and IGF-I are employed to induce chemotaxis, the resulting motility is greater than that induced by either agent alone. These data indicate that motility in this melanoma cell line can be initiated through multiple receptors that stimulate the cells by separate transduction pathways. This capability to respond to multiple stimuli could enhance the metastatic potential.  相似文献   

4.
We have recently reported that the expression of an in vitro mutated, kinase-defective insulin receptor (A/K1018) leads to cellular insulin resistance when expressed in Rat 1 fibroblasts. That is, despite the presence of normal numbers of activatable native insulin receptors in the host cell, the A/K1018 receptors prevent the normal receptors from phosphorylating endogenous substrates and from signalling insulin action, perhaps by competing for limiting amounts of these substrates. We report here that insulin-like growth factor I-stimulated phosphorylation of two endogenous substrate proteins, pp220 and pp170, is also inhibited in cells expressing A/K1018 receptors. Because insulin-like growth factor I stimulation of glucose uptake is not inhibited in cells with A/K1018 receptors while pp220 and pp170 phosphorylation is inhibited, it is unlikely that either pp220 or pp170 are involved in mediating the stimulation of glucose transport. In contrast, insulin-like growth factor I-mediated stimulation of mitogenesis is inhibited in cells with A/K1018 receptors. Thus, pp170 or pp220 could be involved in mitogenic signalling. We also report that both H2O2 and tetradecanoylphorbolacetate stimulate glucose transport normally in cells with A/K1018 receptors. Phorbol esters also lead to the phosphorylation of both normal and A/K1018 receptors on serine and/or threonine. This argues that phorbol esters or H2O2 bypass the normal proximal steps in signalling insulin action.  相似文献   

5.
Insulin binds to its specific cell surface receptor in cultured human fibroblasts and also stimulates the conversion of glycogen synthase from the glucose-6-phosphate (G-6-P) dependent to the G-6-P independent form. Although these two processes are tightly coupled in most target tissues for insulin action, in the fibroblast a variety of findings question the relationship of these two events to one another. In human fibroblasts the amount of insulin required to displace half of the 125I-insulin bound to the insulin receptor is 4 ng/ml (6.6 X 10(-10)M), but the activation of glycogen synthase is not maximal until 1-10 micrograms/ml with an ED50 of 30 ng/ml insulin. Antibodies directed against the insulin receptor, which activate glycogen synthase in both fat and muscle, do not stimulate the activation of glycogen synthase in the fibroblast. Fab fragments from anti-insulin receptor antibody compete for insulin binding, but do not inhibit the insulin-stimulated rise in independent activity. The insulin-like growth factor, MSA, which is 1% as potent as insulin in stimulating glucose oxidation in rat fat cells and in inhibiting 125I-insulin binding to human fibroblasts, is 25% as potent as insulin in stimulating glycogen synthase. Proinsulin is 2-10% as potent as insulin, but behaves as a "partial agonist" of insulin action in the fibroblast, i.e. proinsulin is able to elicit only 60% of the maximal response of insulin in the glycogen synthase assay, even at high concentrations. Finally, cell lines from patients with clearly defective insulin receptors exhibit normal insulin dose response curves for the activation of glycogen synthase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Modification of plasma membrane fatty acyl composition has resulted in major changes in insulin binding and insulin action in several cell types. In the present study, endothelial cells, which in vivo are directly bathed by the changing fatty acid and insulin environment of the bloodstream, were grown in media enriched in specific saturated, monounsaturated and polyunsaturated fatty acids. These media conditions resulted in major and specific alteration in fatty acyl unsaturation of both neutral lipids and phospholipids of the endothelial cells. Despite the extensive fatty acyl changes, the lipid-modified cells demonstrated no change in the binding of insulin or the insulin-like growth factor, multiplication stimulating activity, and little alteration in insulin-induced down-regulation of the insulin receptor, or in cell processing of insulin. We suggest that the insulin receptor of the endothelial cell responds in a different manner than other cell types to similar alterations of membrane fatty acyl composition.  相似文献   

7.
The receptors for insulin and insulin-like growth factor I (IGF-I) have in common a high sequence homology and diverse overlapping functions, (e.g., the stimulation of acute metabolic events and the induction of cell growth.). In the present study, we have compared the potential of insulin and IGF-I receptors in stimulating glucose transport activity, glucose transporter gene expression, DNA-synthesis, and expression of proto-oncogene c-fos in 3T3-L1 adipocytes which express high levels of both receptors. Binding of both hormones to their own receptors was highly specific as compared with binding to the respective other receptor (insulin receptor: KD = 3.6 nM, KI of IGF-I greater than 500 nM; IGF-I receptor, KD = 1.1 nM, KI of insulin = 191 nM). Induction of proto-oncogene c-fos mRNA by insulin and IGF-I paralleled their respective receptor occupancy and was thus induced by both hormones via their own receptor (EC50 of insulin, 3.7; IGF-I, 3.9 nM). Similarly, both insulin and IGF-I increased DNA synthesis (EC50 of insulin, 5.8 nM; IGF-I, 4.0 nM), glucose transport activity (EC50 of insulin, 1.7 nM; IGF-I, 1.4 nM), and glucose transporter (GLUT4) mRNA levels in concentrations corresponding with their respective receptor occupancy. These data indicate that in 3T3-L1 cells the alpha-subunits of insulin and IGF-I receptors have an equal potential to stimulate a metabolic and a mitogenic response.  相似文献   

8.
Insulin-like growth factor I receptors in retinal rod outer segments   总被引:3,自引:0,他引:3  
We have previously reported that the GDP-bound alpha-subunit of the GTP-binding protein transducin, present in outer segments of retinal rod cells (ROS), serves as a high affinity in vitro substrate (Km = 1 microM) for the insulin receptor kinase. The present study demonstrates that transducin also serves as in vitro substrate for an endogenous IGF-I receptor kinase isolated from ROS membranes. The presence of insulin-like growth factor I (IGF-I) receptors in ROS is evident from the high affinity and specific binding of 125I-IGF-I to ROS membranes (Kd = 3 nM) which contain 110 fmol of IGF-I binding sites/mg of membrane protein. Furthermore, cross-linking of 125I-IGF-I labels the 135-kDa alpha-subunit of this receptor. 125I-Insulin binding capacity to ROS membranes is less than 5% that of IGF-I. The IGF-I-stimulated tyrosine kinase activity in solubilized and partially purified receptors from ROS autophosphorylates its own 95-kDa beta-subunits as well as other substrates like transducin. Insulin, which is 200-fold less potent than IGF-I in competing for 125I-IGF-I binding, is only 5-fold less potent than IGF-I in stimulating the receptor kinase activity. This suggests that insulin is much more potent than IGF-I in coupling ligand binding with kinase activation. The previously reported presence of IGF-I in the vitreous, together with our present studies, strongly suggest that the IGF-I receptor kinase, through phosphorylation of endogenous proteins like transducin, could play a role in mediating transmembrane signal transduction in ROS.  相似文献   

9.
Abstract

Tracheal smooth muscle cells (TSMCs) were isolated from dog trachea in order to analyze the direct effects of growth factors and hormones on cell proliferation and muscarinic receptor (mAchR) expression. Dissection and dissociation of tracheal smooth muscle tissue with a collagenase I, deoxyribonuclease I and elastase IV mixture resulted in high yield and viability of TSMCs. A screen of growth factors, hormones, and serum concentration for the stimulation of cell growth, reveald that insulin-like growth factor, basic fibroblast growth factor, epidermal growth factor, insulin, transferrin, or hydrocortisone alone at the concentration used was not necessary or sufficient to stimulate growth of TSMCs in the primary culture with DMEM/F-12 containing 1% FBS. The regulation of cell surface mAchR expression in response to serum and cell growth in primary culture of TSMCs has been examined. In the presence of 1% serum, TSMCs withdraw from the cell cycle and express high levels of cell surface mAchRs. Exposure of quiescent TSMCs to 10% serum results in a loss of surface mAchRs. In addition, insulin-like growth factor, insulin or transferrin could stimulate the expression of mAchRs on TSMCs cultured in DMEM/F-12 containing 1% FBS. The results demonstrated that low serum concentration culture system may provide a useful model to elucidate the expression of mAchRs in the culture of TSMCs.  相似文献   

10.
Insulin receptor substrate 1 (IRS-1) mediates the activation of a variety of signaling pathways by the insulin and insulin-like growth factor 1 receptors by serving as a docking protein for signaling molecules with SH2 domains. We and others have shown that in response to insulin stimulation IRS-1 binds GRB2/Sos and have proposed that this interaction is important in mediating Ras activation by the insulin receptor. Recently, it has been shown that the interleukin (IL)-4 receptor also phosphorylates IRS-1 and an IRS-1-related molecule, 4PS. Unlike insulin, however, IL-4 fails to activate Ras, extracellular signal-regulated kinases (ERKs), or mitogen-activated protein kinases. We have reconstituted the IL-4 receptor into an insulin-responsive L6 myoblast cell line and have shown that IRS-1 is tyrosine phosphorylated to similar degrees in response to insulin and IL-4 stimulation in this cell line. In agreement with previous findings, IL-4 failed to activate the ERKs in this cell line or to stimulate DNA synthesis, whereas the same responses were activated by insulin. Surprisingly, IL-4's failure to activate ERKs was not due to a failure to stimulate the association of tyrosine-phosphorylated IRS-1 with GRB2/Sos; the amounts of GRB2/Sos associated with IRS-1 were similar in insulin- and IL-4-stimulated cells. Moreover, the amounts of phosphatidylinositol 3-kinase activity associated with IRS-1 were similar in insulin- and IL-4-stimulated cells. In contrast to insulin, however, IL-4 failed to induce tyrosine phosphorylation of Shc or association of Shc with GRB2. Thus, ERK activation correlates with Shc tyrosine phosphorylation and formation of an Shc/GRB2 complex. Thus, ERK activation correlates with Shc tyrosine phosphorylation and formation of an Shc/GRB2 complex. Previous studies have indicated that activation of ERks in this cell line is dependent upon Ras since a dominant-negative Ras (Asn-17) blocks ERK activation by insulin. Our findings, taken in the context of previous work, suggest that binding of GRB2/Sos to Shc may be the predominant mechanism whereby insulin as well as cytokine receptors activate Ras.  相似文献   

11.
Insulin-like growth factors stimulate chemotaxis in human melanoma cells   总被引:7,自引:0,他引:7  
Insulin and insulin-like growth factors stimulate motility in the highly metastatic human melanoma cell line, A2058. Insulin-like growth factor-I (IGF-I) is the most potent with a maximal response at a concentration of 10 nM compared to the activities of insulin and insulin-like growth factor-II (IGF-II) which peak at 300-400 nM. Using checkerboard analysis, the responses to IGF-I and insulin are predominantly chemotactic, although insulin had a significant chemokinetic component. Pertussis toxin does not inhibit the response to any of these polypeptides. However, in previous studies, it was shown that the motile response to autocrine motility factor from these same A2058 cells was markedly inhibited by pertussis toxin. 125I-labelled IGF-I binds saturably and specifically to the A2058 cells. Scatchard analysis indicates a high binding affinity (Kd approximately 3 x 10(-10) M) and an estimated 5000 receptors/cell. These studies indicate that in addition to their mitogenic properties, certain growth factors may profoundly enhance metastasis of tumor cells by their ability to induce motility.  相似文献   

12.
A single insulin-like growth factor which constitutes part of a defined serum-free medium is sufficient to stimulate DNA synthesis and mitosis in mammalian lens epithelial cells. Rabbit lenses were cultured in KEI-4, a medium which mimics rabbit aqueous humor, or in KEI-4 containing insulin growth factor I (IGF I), insulin growth factor II (IGF II) or somatomedin C. The magnitude of DNA synthesis and mitosis was evaluated on whole mount preparations of the epithelium at various times of culture. IGF I and II, the most highly purified of the insulin-like growth factors, and somatomedin C were equipotent lens mitogens, were active at the ng level, were more mitogenic toward lens epithelial cells than insulin, and initiated cell proliferation throughout the normally amitotic central region of the lens epithelium. The time course of the mitotic response elicited by the insulin-like growth factors was identical to that noted in lenses cultured in medium supplemented with serum or insulin. The present results, coupled with those of other investigators, suggest that insulin-like factors may regulate cell division in the mammalian lens in vivo.  相似文献   

13.
The expression of epidermal growth factor receptor (EGFR) is an important diagnostic marker for triple-negative breast cancer (TNBC) cells, which lack three hormonal receptors: estrogen and progesterone receptors as well as epidermal growth factor receptor 2. EGFR transactivation can cause drug resistance in many cancers including TNBC, but the mechanism underlying this phenomenon is poorly defined. Here, we demonstrate that insulin treatment induces EGFR activation by stimulating the interaction of EGFR with insulin-like growth factor receptor 1 (IGF-1R) in the MDA-MB-436 TNBC cell line. These cells express low levels of EGFR, while exhibiting high levels of IGF-1R expression and phosphorylation. Low-EGFRexpressing MDA-MB-436 cells show high sensitivity to insulinstimulated cell growth. Therefore, unexpectedly, insulin stimulation induced EGFR transactivation by regulating its interaction with IGF-1R in low-EGFR-expressing TNBC cells. [BMB Reports 2015; 48(6): 342-347]  相似文献   

14.
The present studies examined the hormonal regulation of 5 alpha-reductase activity in cultured immature rat Leydig cells. Within the testis 5 alpha-reductase was concentrated in the interstitial cell compartment, and among interstitial cells, the enzyme was localized primarily in Band 3 of Percoll density gradients, which contains the majority of Leydig cells. Among various factors reported previously to stimulate testicular 5 alpha-reductase activity when administered in vivo to immature rats (LH/hCG, FSH, luteinizing hormone releasing hormone or prolactin), only LH/hCG directly stimulated 5 alpha-reductase activity of cultured immature Band 3 cells. Neither growth hormone which was reported previously to stimulate hepatic 5 alpha-reductase activity, nor insulin, insulin-like growth factor-I, or epidermal growth factor, which have been reported to modulate Leydig cell function, had any effect on 5 alpha-reductase activity of Band 3 cells. These studies suggest that the major factor directly stimulating 5 alpha-reductase activity in Leydig cells during early maturation is LH. However, it is possible that other factors acting indirectly may modulate the maturational rise in 5 alpha-reductase activity.  相似文献   

15.
We have tested whether growth factors added to serum-deprived BALB/c 3T3 fibroblasts alter the casein kinase II activity measured in cell extracts. A rapid phosphocellulose chromatography method was developed that provides a 40-fold partial purification of casein kinase II activity assayed with the specific substrate peptide Arg-Arg-Glu-Glu-Glu-Thr-Glu-Glu-Glu. Using this technique, kinase activity is stimulated 1.6-2.5-fold when isolated from fibroblasts treated with insulin or insulin-like growth factor I (IGF-I). The activated kinase activity exhibits the specific properties of casein kinase II such as the ability to utilize [gamma-32P]GTP as phosphate donor and marked inhibition by low concentrations of heparin. Activation of casein kinase II appears specific for these hormones because epidermal growth factor and platelet-derived growth factor have no effect on the kinase activity when added to fibroblasts under conditions where they markedly stimulate [3H]thymidine incorporation into DNA. Increases of casein kinase II activity by insulin and IGF-I were detected within 1 min of their addition to cell cultures. IGF-I is more potent in stimulating casein kinase II than insulin in mouse fibroblasts. These results demonstrate that casein kinase II is a selective target for insulin and IGF-I action in BALB/c fibroblasts, consistent with the hypothesis that this kinase plays a role in cellular signaling by these hormones.  相似文献   

16.
The immunoglobulin fraction prepared from the serum of a rabbit immunized with purified type II insulin-like growth factor (IGF) receptor from rat placenta was tested for its specificity in inhibiting receptor binding of 125I-IGF II and for its ability to modulate IGF II action on rat hepatoma H-35 cells. The specific binding of 125I-IGF II to plasma membrane preparations from several rat cell types and tissues was inhibited by the anti-IGF II receptor Ig. Affinity cross-linking of 125I-IGF II to the Mr = 250,000 type II IGF receptor structure in rat liver membranes was blocked by the anti-receptor Ig, while no effect on affinity labeling of insulin receptor with 125I-insulin or IGF I receptor with 125I-IGF I or 125I-IGF II was observed. The specific inhibition of ligand binding to the IGF II receptor by anti-receptor Ig was species-specific such that mouse receptor was less potently inhibited and human receptor was unaffected. Rat hepatoma H-35 cells contain insulin and IGF II receptor, but not IGF I receptor, and respond half-maximally to insulin at 10(-10) M and to IGF II at higher concentrations with increased cell proliferation (Massague, J., Blinderman, L.A., and Czech, M.P. (1982) J. Biol. Chem. 257, 13958-13963). Addition of anti-IGF II receptor Ig to intact H-35 cells inhibited the specific binding of 125I-IGF II to the cells by 70-90%, but had no detectable effect on 125I-insulin binding. Significantly, under identical conditions anti-IGF II receptor Ig was without effect on IGF II action on DNA synthesis at both submaximal and maximal concentrations of IGF II. This finding and the higher concentrations of IGF II required for growth promotion in comparison to insulin strongly suggest that the Mr = 250,000 receptor structure for IGF II is not involved in mediating this physiological response. Rather, at least in H-35 cells, the insulin receptor appears to mediate the effects of IGF II on cell growth. Consistent with this interpretation, anti-insulin receptor Ig but not anti-IGF II receptor Ig mimicked the ability of growth factors to stimulate DNA synthesis in H-35 cells. We conclude that the IGF II receptor may not play a role in transmembrane signaling, but rather serves some other physiological function.  相似文献   

17.
Insulin-like growth factor types 1 and 2 (IGF-1; IGF-2) and insulin-like peptides are all members of the insulin superfamily of peptide hormones but bind to several distinct classes of membrane receptor. Like the insulin receptor, the IGF-1 receptor is a heterotetrameric receptor tyrosine kinase, whereas the IGF-2/ mannose 6-phosphate receptor is a single transmembrane domain protein that is thought to function primarily as clearance receptors. We recently reported that IGF-1 and IGF-2 stimulate the ERK1/2 cascade by triggering sphingosine kinase-dependent "transactivation" of G protein-coupled sphingosine-1-phosphate receptors. To determine which IGF receptors mediate this effect, we tested seven insulin family peptides, IGF-1, IGF-2, insulin, and insulin-like peptides 3, 4, 6, and 7, for the ability to activate ERK1/2 in HEK293 cells. Only IGF-1 and IGF-2 potently activated ERK1/2. Although IGF-2 was predictably less potent than IGF-1 in activating the IGF-1 receptor, they were equipotent stimulators of ERK1/2. Knockdown of IGF-1 receptor expression by RNA interference reduced the IGF-1 response to a greater extent than the IGF-2 response, suggesting that IGF-2 did not signal exclusively via the IGF-1 receptor. In contrast, IGF-2 receptor knockdown markedly reduced IGF-2-stimulated ERK1/2 phosphorylation, with no effect on the IGF-1 response. As observed previously, both the IGF-1 and the IGF-2 responses were sensitive to pertussis toxin and the sphingosine kinase inhibitor, dimethylsphingosine. These data indicate that endogenous IGF-1 and IGF-2 receptors can independently initiate ERK1/2 signaling and point to a potential physiologic role for IGF-2 receptors in the cellular response to IGF-2.  相似文献   

18.
19.
NSILA-s (nonsuppressible insulin-like activity, soluble in acid ethanol) is a serum peptide that has insulin-like and growth-promoting activities. We have demonstrated previously that liver plasma membranes possess separate receptors for NSILA-s and insulin and have characterized the insulin receptor in detail. In the present study we have characterized the properties and specificity of the NSILA-s receptor and compared them to those of the insulin receptor in the same tissue. Both 125I-NSILA-s and 125I-insulin bind rapidly and reversibly to their receptors in liver membranes; maximal NSILA-s binding occurs at 20 degrees while maximal insulin binding is seen at 1-4 degrees. The pH optimum for NSILA-s binding is broad (6.0 to 8.0), in contrast to the very sharp pH optimum (7.5 to 8.0) for insulin binding. Both receptors exhibit a high degree of specificity. With the insulin receptor, NSILA-s and insulin analogues compete for binding in proportion to their insulin-like potency: insulin greater than proinsulin greater than NSILA-s. With the NSILA-s receptor, NSILA-s is most potent and the order is reversed: NSILA-s greater than proinsulin greater than insulin. Furthermore, six preparations of NSILA-s which varied 70-fold in biological activity competed for 125I-NSILA-s binding in order of their potencies. NSILA-s which had been inactivated biologically by reduction and aminoethylation and growth hormone were less than 1/100,000 as potent as the most purified NSILA-s preparation. Purified preparations of fibroblast growth factor, epidermal growth factor, nerve growth factor, and somatomedins B and C were less than 1% as effective as NSILA-s in competing for the 125I-NSILA-s suggesting that these factors act through other receptors. In contrast, somatomedin A was 10% as active as NSILA-s and multiplication-stimulating activity was fully as active as NSILA-s in competing for the NSILA-s receptor. Analysis of the data suggests that there are approximately 50 times more insulin receptors than NSILA-s receptors per liver cell, while the apparent affinity of NSILA-s receptors is somewhat higher than that of the insulin receptor.  相似文献   

20.
Analysis of the proliferative response of WI-38 cells to nine mitogens, which in various specific combinations stimulate DNA synthesis in these cultures, delineated three classes of mitogens. Class I includes epidermal growth factor (EGF), fibroblasts growth factor (FGF), platelet-derived growth factor (PDGF), and thrombin (THR); Class II includes insulin-like growth factor I (IGF-I), multiplication stimulating activity (MSA) (the rat homolog of human IGF-II), and insulin; and Class III includes hydrocortisone (HC) or the synthetic analog dexamethasone (DEX). In cultures arrested at low density, members of each of the three classes act synergistically in stimulating DNA synthesis. Any Class I mitogen in combination with any Class II and either Class III mitogen stimulated DNA synthesis of levels observed in 10% serum-supplemented medium. At least some (EGF, FGF, PDGF) and possibly all (THR) of the Class I mitogens are known to act through separate receptor systems. Our experiments using blocking antibodies to the IGF-I receptor confirm that the Class II mitogens all act by binding to IGF-I receptors. Use of the inhibitory synthetic glucocorticoid analog RU 486 confirmed that the Class III mitogens act via the glucocorticoid receptor. Thus, growth factor-induced DNA synthesis in WI-38 cells is apparently mediated by the glucocorticoid receptor (Class III), the IGF-I receptor (Class II), and most interestingly any one of several Class I growth factor receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号