首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Manduca sexta allatotropin and allatostatin were the first corpora allata (CA) regulating neuropeptides identified from Lepidoptera. Recently, we cloned the allatotropin (Spofr-AT) and the allatostatin (Spofr-AS) genes from the fall armyworm Spodoptera frugiperda. Using one-step RT-PCR for semi-quantification of the gene expression, we now demonstrate that three mRNA isoforms of the Spofr-AT gene and the Spofr-AS gene are expressed in brain, digestive tract, and reproductive organs of larvae, pupae, and adults in a time- and tissue-specific manner. Expression rates in the brain and in various parts of the digestive tract prove the dual role of the peptides as brain/gut (neuro)peptides. The functional meaning of ovarian and testes expression of the genes is not yet clear, although myoregulatory properties of the peptides are probable. The tissue-specific localization of the prohormone expression, as demonstrated by whole mount in situ hybridization, confirms the overall distribution of the prohormones as shown by RT-PCR and supports the pleiotropic functions of the peptides.  相似文献   

2.
The allatostatin (AST) type A gene of the cricket Gryllus bimaculatus encodes a hormone precursor including at least 14 putative peptides with a common C-terminus Y/FXFGL/Iamide. By RT-PCR we have analyzed the expression of the allatostatin precursor in various tissues of 0-21 days old adult virgin and mated females. In 3-day-old virgin females, the gene is strongly expressed in the brain (oesophageal ganglion), the suboesophageal ganglion and the caecum, but to a lower extent in other parts of the digestive tract (ileum, midgut, colon), and in various other tissues such as the fat body, ovaries and female accessory reproductive glands. In the brain and ovaries of virgin females, the AST expression is rather constant throughout adult life, whereas in brains of mated animals, expression is low until day 7, but increases sharply from day 8 onwards to reach values triple those before day 7. In ovaries of mated animals AST gene expression is also age-dependent, with high expression rates during the first 4 days after imaginable moult, a second but smaller peak from day 15 to 21, and very low values in between. In the fat body of virgin crickets allatostatin expression is high during the first 9 days after ecdysis and declines thereafter, whereas in mated animals two peak values, day 1 and day 6, are observed, and a third peak in older animals.  相似文献   

3.
4.
Allatostatins are the largest family of known arthropod neuropeptides. To date more than 150 different arthropod type-A allatostatins have been identified and are characterized by the C-terminal signature, (Y/F)XFG(L/I)amide. Using specific allatostatin antisera, positive immunoreactivity has been identified within the central and peripheral nervous systems of the flatworm (platyhelminth) Procerodes littoralis and the roundworm (nematode) Panagrellus redivivus. Comparative analyses of the allatostatin-like immunoreactivity and that of other known helminth neuropeptides (FMRFamide-like peptides [FLPs]) indicate differences in the distribution of these peptide families. Specific differences in neuropeptide distribution have been noted within the pharyngeal innervation of flatworms and in the cephalic papillary neurons of nematodes. In arthropods, type-A allatostatins have functions that include potent myoactivity. In this study, seven members of the allatostatin superfamily induced concentration-dependent contractions of flatworm muscle fibres. Pharmacological studies indicate that these peptides do not interact with muscle-based FLP receptors. The type-A allatostatins, therefore, represent the second family of neuropeptides that induce muscle contraction in flatworms. Although the majority of arthropod type-A allatostatins examined did not affect the somatic body wall muscle or the ovijector of the pig nematode, Ascaris suum, two type-A allatostatins (GDGRLYAFGLamide and DRLYSFGLamide) exhibited significant inhibitory effects on the A. suum ovijector at 10 μM. These data suggest that allatostatin-like peptides and receptors occur in helminths. Further, although arthropod type-A allatostatins display inter-phyla activities, their receptors are less compelling as potential targets for broad-spectrum parasiticides (endectocides) than FLP receptors.  相似文献   

5.
6.
Double-stranded RNA (dsRNA) gene interference is an efficient method to silence gene expression in a sequence specific manner. Here we show, that dsRNA targeting the allatostatin (AS)-A type (FGL/I/V-amide) gene of Gryllus bimaculatus (Ensifera, Gryllidae) and Spodoptera frugiperda (Lepidoptera, Noctuidae) injected into freshly moulted larvae or adult crickets and moths produced a rapid and long-lasting reduction in the mRNA levels in various tissues. The effect lasted up to 7 days. Following dsRNA injection, the juvenile hormone (JH) titers in the hemolymph were clearly raised in both species. AS-dsRNA injection induced a reduced body weight in larval and adult crickets and the imaginal moult was incomplete. Silencing allatostatin type-A expression also reduced the egg and testes development in crickets, and the oviposition rate was drastically diminished in both species.  相似文献   

7.
The insect allatostatins are a diverse group of neuropeptides that obtained their names by their inhibitory actions on the corpora allata (two endocrine glands near the insect brain), where they block the biosynthesis of juvenile hormone (a terpenoid important for development and reproduction). Chemically, the allatostatins can be subdivided into three different peptide groups: the large group of A-type (cockroach-type) allatostatins, which have the common C-terminal sequence Y/FXFGLamide; the B-type (cricket-type) allatostatins, which have the C-terminal sequence W(X(6))Wamide in common; and a single allatostatin that we now call C-type allatostatin that was first discovered in the moth Manduca sexta, and which has a nonamidated C terminus, and a structure unrelated to the A- and B-type allatostatins. We have previously cloned the preprohormones for the A- and B-type allatostatins from Drosophila melanogaster. Here we report on the cloning of a Drosophila C-type allatostatin preprohormone (DAP-C). DAP-C is 121 amino acid residues long and contains one copy of a peptide sequence that in its processed form has the sequence Y in position 4) from the Manduca sexta C-type allatostatin. The DAP-C gene has three introns and four exons and is located at position 32D2-3 on the left arm of the second chromosome. Northern blots show that the gene is strongly expressed in larvae and adult flies, but less in pupae and embryos. In situ hybridizations of larvae show that the gene is expressed in various neurons of the brain and abdominal ganglia and in endocrine cells of the midgut. This is the first publication on the structure of a C-type allatostatin from insects other than moths and the first report on the presence of all three types of allatostatins in a representative of the insect order Diptera (flies).  相似文献   

8.
Allatoregulatory peptides either inhibit (allatostatins) or stimulate (allatotropins) juvenile hormone (JH) synthesis by the corpora allata (CA) of insects. However, these peptides are pleitropic, the regulation of JH biosynthesis is not their only function. There are currently three allatostatin families (A-, B-, and C-type allatostatins) that inhibit JH biosynthesis, and two structurally unrelated allatotropins. The C-type allatostatin, characterised by its blocked N-terminus and a disulphide bridge between its two cysteine residues, was originally isolated from Manduca sexta. This peptide exists only in a single from in Lepidoptera and is the only peptide that has been shown to inhibit JH synthesis by the CA in vitro in this group of insects. The C-type allatostatin also inhibits spontaneous contractions of the foregut. The A-type allatostatins, which exist in multiple forms in a single insect, have also been characterised from Lepidoptera. This family of peptides does not appear to have any regulatory effect on JH biosynthesis, but does inhibit foregut muscle contractions. Two structurally unrelated allatotropins stimulate JH biosynthesis in Lepidoptera. The first was identified in M. sexta (Manse-AT) and occurs in other moths. The second (Spofr AT2) has only been identified in Spodoptera frugiperda. Manduca sexta allatotropin also stimulates heart muscle contractions and gut peristalsis, and inhibits ion transport across the midgut of larval M. sexta. The C-terminal (amide) pentapeptide of Manse-AT is important for JH biosynthesis activity. The most active conformation of Manse-AS requires the disulphide bridge, although the aromatic residues also have a significant effect on biological activity. Both A- and C-type allatostatins and Manse-AT are localised in neurosecretory cells of the brain and are present in the corpora cardiaca, CA and ventral nerve cord, although variations in localisation exist in different moths and at different stages of development. The presence of Manse-AS and Manse-AT in the CA correlates with the biological activity of these peptides on JH biosynthesis. There is currently no explanation for the presence of A-type allatostatins in the CA. The three peptide types are also co-localised in neurosecretory cells of the frontal ganglion, and are present in the recurrent nerve that supplies the muscles of the gut, particularly the crop and stomodeal valve, in agreement with their role in the regulation of gut peristalsis. There is also evidence that they are expressed in the midgut and reproductive tissues.  相似文献   

9.
A peptide that strongly stimulates juvenile hormone (JH) biosynthesis in vitro by the corpora allata (CA) was purified from methanolic brain extracts of adult Spodoptera frugiperda. Using HPLC separation followed by Edman degradation and mass spectrometry, the peptide was identified as Manduca sexta allatotropin (Mas-AT). Treating the CA from adult S. frugiperda with synthetic Mas-AT (at 10(-6) M) caused an up to sevenfold increase in JH biosynthesis. The stimulation of JH synthesis was dose-dependent and reversible. Synthetic M. sexta allatostatin (Mas-AS) (10(-6) M) did not affect the spontaneous rate of JH secretion from CA of adult S. frugiperda, nor did any of the allatostatins of the Phe-Gly-Leu-amide peptide family tested. However, when CA had been activated by Mas-AT (10(-6) M), addition of synthetic Mas-AS (10(-6) M) reduced JH synthesis by about 70%. This allatostatic effect of Mas-AS on allatotropin-activated glands was also reversible. When CA were incubated in the presence of both Mas-AT (10(-6) M) and various concentrations of Mas-AS (from 10(-8) to 10(-5) M), the stimulation of JH-biosynthesis observed was inhibited in a dose-dependent manner. The experiments demonstrate a novel mechanism of allatostatin action. In S. frugiperda JH synthesis was inhibited only in those glands which had previously been activated by an allatotropin.  相似文献   

10.
A polyclonal antibody against the allatostatin BLAST-3 (AGSDGRLYSFGL-NH2) of the cockroach Blattella germanica (L.) (Dictyoptera, Blattellidae) has been raised and characterized, and an ELISA (enzyme-linked immunosorbent assay) for allatostatin quantification has been developed. Allatostatin contents in brain, midgut and haemolymph have been measured in females of B. germanica during the first gonadotropic cycle. Brain allatostatin content increases steadily from adult emergence to the formation of the first ootheca. The values range from 2 ng/brain on the day of adult emergence to 25 ng/brain when the insect forms the ootheca 8 days later. In the midgut, the pattern is similar but the values are about half those of the brain. Allatostatin concentrations in the haemolymph after HPLC separation are in the nanomolar range. The occurrence of allatostatins in the haemolymph suggests that these peptides can act through a humoral pathway, as well as via nerves. The allatostatin content of both brain and midgut are high while the female is transporting the ootheca, which suggests that these peptides could be related to the low metabolic status characterising the period of oothecal transport.  相似文献   

11.
The triple co-localisation of peptidergic material immunoreactive to antisera raised against allatostatins of the Y/FXFGL-NH2 type, Manduca sexta allatostatin (Mas-AS), and allatotropin has been demonstrated in a single pair of anterodorsal neurones in the frontal ganglion of the tomato moth, Lacanobia oleracea (Noctuidae). Another pair of posterior neurones contain only Y/FXFGL-NH2-type allatostatin immunoreactivity. The neurites of all four cells trifurcate, and axons project to the brain in the frontal connectives and to the foregut in the recurrent nerve. Axons from the anterior neurones, within the recurrent nerve, have prominent lateral branches supplying muscles of the crop, and axons from both anterior and posterior cells show profuse branching and terminal arborisations in the region of the stomodeal valve. The brain contributes Y/FXFGL-NH2-immunoreactive material, but not allatotropin or Mas-AS, to the recurrent nerve via NCC 1+2 and NCC 3. All three peptides have a reversible effect on the spontaneous (peristaltic) contractions of the foregut (crop) in vitro. Thus, both types of allatostatin are inhibitory at 10(-12) to 10(-7) M, whereas allatotropin is strongly myostimulatory at 10(-14) M. This is the first demonstration of the gut myoinhibitory effects of Mas-AS and, taken together with the effects of Y/FXFGL-NH2-type allatostatins and allatotropin, reveals a different functional aspect to that normally attributed to these three peptides, i.e. control of juvenile hormone synthesis by the corpus allatum.  相似文献   

12.
13.
Allatotropin (AT) is a 13-residue amidated neuropeptide, first isolated from pharate adult heads of the tobacco hornworm, Manduca sexta (Manse-AT), which strongly stimulates the biosynthesis of juvenile hormones (JH) in the corpora allata (CA) of adult moths. In Spodoptera frugiperda, a cDNA that encodes 134 amino acids, including an AT peptide, has been cloned. The S. frugiperda allatotropin mature peptide (Spofr-AT) [GFKNVEMMTARGFa] is identical to that isolated from M. sexta. The basic organization of the Spofr-AT precursor is similar to that of Agrius convolvuli, M. sexta, Pseudaletia unipuncta, and Bombyx mori with 83-93% amino acid sequence identity. The Spofr-AT gene is expressed in at least three mRNA isoforms with 134, 171 and 200 amino acids, differing from each other by alternative splicing.All allatostatins (AS) have an inhibitory action on the JH biosynthesis in the CA. A cDNA that encodes 125 amino acid residues including one copy of the Manse-AS peptide has been cloned from S. frugiperda (Spofr-AS; QVRFRQCYFNPISCF). The basic organization of the Spofr-AS precursor is similar to that of P. unipuncta with 85% amino acid sequence identity.Using one step RT-PCR for semi-quantification of the gene expression, we showed that the three mRNAs of the Spofr-AT gene and the Spofr-AS gene are expressed in brains of last instar larvae, prepupae, pupae, and adults of both sexes of S. frugiperda with variable intensity.  相似文献   

14.
A comparative study of the co-localisation of three different families of neuropeptides, viz. allatostatins of the Y/FXFGL-NH(2) type, Manduca sexta allatostatin (Mas-AS) and allatotropin, in the frontal ganglion of lepidopteran larvae has been carried out by means of immunocytochemistry and confocal laser scanning microscopy. The simultaneous application of three types of fluorochrome-conjugated antibodies reveals triple co-localisation in an anterodorsal pair of neurones in the frontal ganglion of the noctuids Heliothis virescens and Lacanobia oleracea. There is no evidence of differential axonal transport, since all parts of these neurones show complete co-localisation of all three peptides. Prominent axons of the ganglionic neurones project in the recurrent nerve to the foregut and stomodeal valve. Over the crop, lateral and sub-lateral branches follow the course of circular muscle fibres and terminate in varicosities. All three neuropeptides have previously been shown to be myoregulatory on the foregut; the Y/FXFGL-NH(2) allatostatins and Mas-AS are inhibitory, whereas allatotropin is excitatory. The morphological evidence of co-localisation of physiologically antagonistic peptides within the same terminals suggests that an extremely complex mechanism controls the contractile activities of the foregut. A posterodorsal pair of neurones in the frontal ganglion have prominent axons projecting via the frontal connectives to the brain and in the recurrent nerve to the stomodeal valve where extensive branching suggests control over the valve movements. Studies of another noctuid, Spodoptera frugiperda, and the sphingid, M. sexta, show interesting variations in the co-localisation phenomenon.  相似文献   

15.
Duve H  Johnsen AH  Scott AG  Thorpe A 《Peptides》2002,23(6):1039-1051
More than 40 peptides belonging to the -Y/FXFGL-NH(2) allatostatin superfamily have been isolated and identified from the central nervous system (CNS) of the tiger prawn, Penaeus monodon (Crustacea: Penaeidea). The peptides can be arranged in seven sub-groups according to the variable post-tyrosyl residue represented by Ala, Gly, Ser, Thr, Asn, Asp, and Glu. Two of the residues (Thr and Glu) have not been observed in this position previously in either insects or crustaceans. Also reported for the first time for allatostatins, two of the peptides are N-terminally blocked by a pyroglutamic acid residue. The yields of certain peptides with similar amino acid sequences to each other were, in some instances, very different. As an example, the yield of ANQYTFGL-NH(2) was 2pmol, compared with ASQYTFGL-NH(2), with a yield of 156 pmol. There are several possibilities to account for this. If, as in all species so far investigated, there is a single allatostatin gene in P. monodon, then it would appear that different sub-populations have contributed mutant forms of particular peptides to the extract. Another, less likely possibility is that this species has more than one allatostatin gene, producing a variable array of peptides albeit in different molar ratios. Several peptides were present apparently as a result of the loss of one or more residues at the N-terminus of a larger form, either due to N-terminal degradation or specific post-translational processing. The number of peptides identified exceeds that for any other insect or crustacean species previously investigated. None is identical to any of the 60-70 insect allatostatins so far identified, and only three are common to other crustaceans. Immunohistochemical study of the CNS of P. monodon, with the same antisera as used to monitor the purification, confirms the widespread nature and complexity of allatostatinergic neural pathways in arthropods. Thus, all neuromeres of the brain, and all except one of the ventral cord ganglia, possess allatostatin neurons and extensive areas of allatostatin-innervated neuropile. In addition to the cytological evidence that the allatostatins act as neurotransmitters, associated with tissues as varied as eyes and legs, their presence in neurohemal areas such as the sinus gland and the perineural sheath of the thoracic ganglia suggests a neuroendocrine function. As well as posing a challenge to physiologists assigning specific functions to the allatostatins, their extensive intra-species multiplicity, linked to their inter-species variability, also presents a complex problem to geneticists and evolutionists.  相似文献   

16.
17.
We identified a Drosophila melanogaster gene encoding a peptide that dramatically decreases spontaneous muscle contractions and, correspondingly, named the peptide flatline (FLT). This gene consisted of 4 exons and was cytologically localized to 32D2-3. Processing of a predicted 122 amino acid precursor would release pEVRYRQCYFNPISCF that differs from Manduca sexta allatostatin (Mas-AST) by one amino acid, Y4-->F4. FLT does not act as an allatostatin. In situ tissue hybridization further suggests FLT is a novel brain-gut peptide and specifically, the measured activity indicates that it is a potent myotropin. Despite its profound myotropic effect, pupae injected with FLT eclosed.  相似文献   

18.
19.
By using degenerate primers based on known mammalian somatostatin receptors and the recently identified Drosophila allatostatin receptors (AlstR), we have cloned a novel receptor for the neuropeptide, allatostatin, from the cockroach Periplaneta americana. The receptor exhibits about 60% amino acid identity in the transmembrane regions when compared to the two known AlstRs from Drosophila melanogaster. In addition, two cDNA fragments were obtained from the stick insect Carausius morosus, one of which is similar to Drosophila AlstR, whereas the other is more similar to mammalian somatostatin receptors. Functional expression in Xenopus oocytes shows that the Periplaneta-AlstR exhibits high affinity to endogenous cockroach allatostatin peptides. Studies with synthetic peptides demonstrate that agonistic activity is mediated by the conserved C-terminal pentapeptide YXFGL-amide; in this sequence, amidation of the C-terminus is obligatory to maintain affinity. Thus, our studies provide a molecular basis for understanding the widespread biological activities of the allatostatin peptides.  相似文献   

20.
The eEF1Alpha-2 gene (S1) encodes a tissue-specific isoform of peptide elongation factor-1A (eEF1A-1); its mRNA is expressed only in brain, heart, and skeletal muscle, tissues dominated by terminally differentiated, long-lived cells. Homozygous mutant mice exhibit muscle wasting and neurodegeneration, resulting in death around postnatal day 28. eEF1Alpha-2/S1 protein shares 92% identity with eEF1A-1; because specific antibodies for each were not available previously, it was difficult to study the developmental expression patterns of these two peptide elongation factors 1A in wasted and wild-type mice. We generated a peptide-derived antiserum that recognizes the eEF1Alpha-2/S1 isoform and does not cross-react with eEF1A-1. We characterized the expression profiles of eEF1A-1 and eEF1A-2/S1 during development in wild-type (+/+), heterozygous (+/wst), and homozygous (wst/wst) mice. In wild-type and heterozygous animals, eEF1A-2/S1 protein is present only in brain, heart, and muscle; the onset of its expression coincides with a concomitant decrease in the eEF1A-1 protein level. In wasted mutant tissues, even though eEF1A-2/S1 protein is absent, the scheduled decline of eEF1A-1 occurs nonetheless during postnatal development, as it does in wild-type counterparts. In the brain of adult wild-type mice, the eEF1A-2/S1 isoform is localized in neurons, whereas eEF1A-1 is found in non-neuronal cells. In neurons prior to postnatal day 7, eEF1A-1 is the major isoform, but it is later replaced by eEF1A-2/S1, which by postnatal day 14 is the only isoform present. The postdevelopmental appearance of eEF1A-2/S1 protein and the decline in eEF1A-1 expression in brain, heart, and muscle suggest that eEF1A-2/S1 is the adult form of peptide elongation factor, whereas its sister is the embryonic isoform, in these tissues. The absence of eEF1A-2/S1, as well as the on-schedule development-dependent disappearance of its sister gene, eEF1A, in wst/wst mice may result in loss of protein synthesis ability, which may account for the numerous defects and ultimate fatality seen in these mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号