首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chemotactic migration of macrophages is critical for the recruitment of leukocytes to inflamed tissues. Macrophages use a specialized adhesive structure called a podosome to migrate. Podosome formation requires the Wiskott-Aldrich syndrome protein (WASP), which is a product of the gene defective in an X-linked inherited immunodeficiency disorder, the Wiskott-Aldrich syndrome. Macrophages from WASP-deficient Wiskott-Aldrich syndrome patients lack podosomes, resulting in defective chemotactic migration. However, the molecular basis for podosome formation is not fully understood. I have shown that the WASP interacting protein (WIP), a binding partner of WASP, plays an important role in podosome formation in macrophages. I showed that WASP bound WIP to form a complex at podosomes and that the knockdown of WIP impairs podosome formation. When WASP binding to WIP was blocked, podosome formation was also impaired. When WASP expression was reduced by small interfering RNA transfection, the amount of the complex of WASP with WIP decreased, resulting in reduced podosome formation. Podosomes were restored by reconstitution of the WASP-WIP complex in WASP knockdown cells. These results indicate that the WASP-WIP complex is required for podosome formation in macrophages. When podosome formation was reduced by blocking WASP binding to WIP, transendothelial migration of macrophages, the most crucial process in macrophage trafficking, was impaired. These results suggest that a complex of WASP with WIP plays a critical role in podosome formation, thereby mediating efficient transendothelial migration of macrophages.  相似文献   

2.
3.
Wiskott-Aldrich Syndrome protein (WASP) is the product of the gene mutated in children with Wiskott-Aldrich Syndrome (WAS). It is a predominantly cytoplasmic protein, expressed only in haematopoietic cells. It binds in vivo to the adaptor proteins Nck and Grb2, to the cytoplasmic protein-tyrosine kinase Fyn and to the small Rho-like GTPase Cdc42, which is required for formation of filopodia in fibroblasts and macrophages. WASP also interacts, directly or indirectly, with the actin cytoskeleton. Together with studies of a closely related, ubiquitously expressed protein named N-WASP, these findings suggest that WASP is a component of signalling pathways that control reorganisation of the actin cytoskeleton in haematopoietic cells in response to external stimuli. In support of this idea, haematopoietic cells from WAS patients show defects in cytoskeletal organisation that compromise their ability to polarise and to migrate in response to physiological stimuli. These defects could account for many of the clinical features of WAS. WAS is now a candidate for gene therapy based on the delivery of a wild-type WASP gene to autologous haematopoietic stem cells. In addition, recent studies of cell defects in WAS patients suggest that it may prove possible, in time, to rescue WAS cells using more conventional drug therapies.  相似文献   

4.
In higher organisms, mononucleated myoblasts fuse to form multinucleated myotubes. During this process, myoblasts undergo specific changes in cell morphology and cytoarchitecture. Previously, we have shown that the actin regulator Kette (Hem-2/Nap-1) is essential for myoblast fusion. In this study, we describe the role of the evolutionary conserved Wiskott-Aldrich syndrome protein that serves as a regulator for the Arp2/3 complex for myoblast fusion. By screening an EMS mutagenesis collection, we discovered a new wasp allele that does not complete fusion during myogenesis. Interestingly, this new wasp3D3-035 allele is characterized by a disruption of fusion after precursor formation. The molecular lesion in this wasp allele leads to a stop codon preventing translation of the CA domain. Usually, the WASP protein exerts its function through the Arp2/3-interacting CA domain. Accordingly, a waspDeltaCA that is expressed in a wild-type background acts as dominant-negative during the fusion process. Furthermore, we show that the myoblast fusion phenotype of kette mutant embryos can be suppressed by reducing the gene dose of wasp3D3-035. Thus, Kette antagonizes WASP function during myoblast fusion.  相似文献   

5.
Protein-tyrosine kinases and Rho GTPases regulate many cellular processes, including the reorganization and dynamics of the actin cytoskeleton. The Wiskott-Aldrich syndrome protein (WASP) and its homolog neuronal WASP (N-WASP) are effectors of the Rho GTPase Cdc42 and provide a direct link between activated membrane receptors and the actin cytoskeleton. WASP and N-WASP are also regulated by a large number of other activators, including protein-tyrosine kinases, phosphoinositides, and Src homology 3-containing adaptor proteins, and can therefore serve as signal integrators inside cells. Here we show that Cdc42 and the Src family kinase Lck cooperate at two levels to enhance WASP activation. First, autoinhibition in N-WASP decreases the efficiency (kcat/Km) of phosphorylation and dephosphorylation of the GTPase binding domain by 30- and 40-fold, respectively, and this effect is largely reversed by Cdc42. Second, Cdc42 and the Src homology 3-Src homology 2 module of Lck cooperatively stimulate the activity of phosphorylated WASP, with coupling energy of approximately 2.4 kcal/mol between the two activators. These combined effects provide mechanisms for high specificity in WASP activation by coincident GTPase and kinase signals.  相似文献   

6.
7.
Wiskott-Aldrich syndrome (WAS) is an X-linked disorder characterized by eczema, thrombocytopenia and increased susceptibility of infections, with mutations of the WAS gene being responsible for WAS and X-linked thrombocytopenia. Herein, two novel mutations of WAS at T336C on exon 3, and at 1326-1329, a G deletion on exon 10, resulting in L101P missense mutation and frameshift mutation 444 stop, respectively, are reported. The affected patients with either mutation showed severe suppression of WAS protein (WASP) levels, T cell proliferation, and CFSE-labeled T cells division. Because WASP L101 have not shown direct nuclear Overhauser effect (NOE) contact with the WASP-interacting protein (WIP) in NMR spectroscopy, molecular modeling was performed to evaluate the molecular effect of WASP P101 to WIP peptide. It is presumed that P101 induced a conformational change in the Q99 residue of WASP and made the side chain of Q99 move away from the WIP peptide, resulting in disruption of the hydrogen bond between Q99 WASP and Y475 WIP. A possible model for the molecular pathogenesis of WAS has been proposed by analyzing the interactions of WASP and WIP using a molecular modeling study.  相似文献   

8.
Resistance (R) proteins in plants confer specificity to the innate immune system. Most R proteins have a centrally located NB-ARC (nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4) domain. For two tomato (Lycopersicon esculentum) R proteins, I-2 and Mi-1, we have previously shown that this domain acts as an ATPase module that can hydrolyze ATP in vitro. To investigate the role of nucleotide binding and hydrolysis for the function of I-2 in planta, specific mutations were introduced in conserved motifs of the NB-ARC domain. Two mutations resulted in autoactivating proteins that induce a pathogen-independent hypersensitive response upon expression in planta. These mutant forms of I-2 were found to be impaired in ATP hydrolysis, but not in ATP binding, suggesting that the ATP- rather than the ADP-bound state of I-2 is the active form that triggers defense signaling. In addition, upon ADP binding, the protein displayed an increased affinity for ADP suggestive of a change of conformation. Based on these data, we propose that the NB-ARC domain of I-2, and likely of related R proteins, functions as a molecular switch whose state (on/off) depends on the nucleotide bound (ATP/ADP).  相似文献   

9.
The myosin filaments of striated muscle contain a family of enigmatic myosin-binding proteins (MyBP), MyBP-C and MyBP-H. These modular proteins of the intracellular immunoglobulin superfamily contain unique domains near their N termini. The N-terminal domain of cardiac MyBP-C, the MyBP-C motif, contains additional phosphorylation sites and may regulate contraction in a phosphorylation dependent way. In contrast to the C terminus, which binds to the light meromyosin portion of the myosin rod, the interactions of this domain are unknown. We demonstrate that fragments of MyBP-C containing the MyBP-C motif localise to the sarcomeric A-band in cardiomyocytes and isolated myofibrils, without affecting sarcomere structure. The binding site for the MyBP-C motif resides in the N-terminal 126 residues of the S2 segment of the myosin rod. In this region, several mutations in beta-myosin are associated with FHC; however, their molecular implications remained unclear. We show that two representative FHC mutations in beta-myosin S2, R870H and E924K, drastically reduce MyBP-C binding (Kd approximately 60 microM for R870H compared with a Kd of approximately 5 microM for the wild-type) down to undetectable levels (E924K). These mutations do not affect the coiled-coil structure of myosin. We suggest that the regulatory function of MyBP-C is mediated by the interaction with S2, and that mutations in beta-myosin S2 may act by altering the interactions with MyBP-C.  相似文献   

10.
The Wiskott-Aldrich syndrome (WAS), an X-linked immunodeficiency disease caused by mutation in the recently isolated gene encoding WAS protein (WASP), is known to be associated with extensive clinical heterogeneity. Cumulative mutation data have revealed that WASP genotypes are also highly variable among WAS patients, but the relationship of phenotype with genotype in this disease remains unclear. To address this issue we characterized WASP mutations in 24 unrelated WAS patients, including 18 boys with severe classical WAS and 6 boys expressing mild forms of the disease, and then examined the degree of correlation of these as well as all previously published WASP mutations with disease severity. By analysis of these compiled mutation data, we demonstrated clustering of WASP mutations within the four most N-terminal exons of the gene and also identified several sites within this region as hotspots for WASP mutation. These characteristics were observed, however, in both severe and mild cases of the disease. Similarly, while the cumulative data revealed a predominance of missense mutations among the WASP gene lesions observed in boys with isolated thrombocytopenia, missense mutations were not exclusively associated with milder WAS phenotypes, but also comprised a substantial portion (38%) of the WASP gene defects found in patients with severe disease. These findings, as well as the detection of identical WASP mutations in patients with disparate phenotypes, reveal a lack of phenotype concordance with genotype in WAS and thus imply that phenotypic outcome in this disease cannot be reliably predicted solely on the basis of WASP genotypes. Received: 30 May 1996 / Revised: 16 July 1996  相似文献   

11.
Shigella , the causative agent of bacillary dysentery, is capable of directing its movement within host cells by forming an actin comet tail. The VirG (IcsA) pro-tein expressed at one pole of the bacterium recruits neural Wiskott–Aldrich syndrome protein (N-WASP), a member of the WASP family, which in turn stimulates actin-related protein (Arp) 2/3 complex-mediated actin polymerization. As all the WASP family proteins induce actin polymerization by recruiting Arp2/3 complex, we investigated their involvement in Shigella motility. Here, we show that VirG binds to N-WASP but not to the other WASP family proteins. Using a series of chimeras obtained by swapping N-WASP and WASP domains, we demonstrated that the specificity of VirG to interact with N-WASP lies in the N-terminal region containing the pleckstrin homology (PH) domain and calmodulin-binding IQ motif of N-WASP. A conformational change in N-WASP was important for the VirG–N-WASP interaction, as elimination of the C-terminal acidic region, which is responsible for the intramolecular interaction with the central basic region of N-WASP, affected the specific binding to VirG. We observed that, in haematopoietic cells such as macrophages, polymorphonuclear leucocytes (PMNs) and platelets, WASP was predominantly expressed, whereas the expression of N-WASP was greatly suppressed. Indeed, unlike Listeria , Shigella was unable to move in macrophages at all, although the movement was restored as N-WASP was expressed ectopically. Thus, our findings demonstrate that N-WASP is a specific ligand of VirG, which determines the host cell type allowing actin-based spreading of Shigella .  相似文献   

12.
We have shown previously that tyrosine phosphorylation of Wiskott-Aldrich syndrome protein (WASP) is important for diverse macrophage functions including phagocytosis, chemotaxis, podosome dynamics, and matrix degradation. However, the specific tyrosine kinase mediating WASP phosphorylation is still unclear. Here, we provide evidence that Hck, which is predominantly expressed in leukocytes, can tyrosine phosphorylate WASP and regulates WASP-mediated macrophage functions. We demonstrate that tyrosine phosphorylation of WASP in response to stimulation with CX3CL1 or via Fcγ receptor ligation were severely reduced in Hck−/− bone marrow-derived macrophages (BMMs) or in RAW/LR5 macrophages in which Hck expression was silenced using RNA-mediated interference (Hck shRNA). Consistent with reduced WASP tyrosine phosphorylation, phagocytosis, chemotaxis, and matrix degradation are reduced in Hck−/− BMMs or Hck shRNA cells. In particular, WASP phosphorylation was primarily mediated by the p61 isoform of Hck. Our studies also show that Hck and WASP are required for passage through a dense three-dimensional matrix and transendothelial migration, suggesting that tyrosine phosphorylation of WASP by Hck may play a role in tissue infiltration of macrophages. Consistent with a role for this pathway in invasion, WASP−/− BMMs do not invade into tumor spheroids with the same efficiency as WT BMMs and cells expressing phospho-deficient WASP have reduced ability to promote carcinoma cell invasion. Altogether, our results indicate that tyrosine phosphorylation of WASP by Hck is required for proper macrophage functions.  相似文献   

13.
Proteins of the Wiskott-Aldrich Syndrome protein (WASp) family connect signaling pathways to the actin polymerization-driven cell motility. The ubiquitous homolog of WASp, N-WASp, is a multidomain protein that interacts with the Arp2/3 complex and G-actin via its C-terminal WA domain to stimulate actin polymerization. The activity of N-WASp is enhanced by the binding of effectors like Cdc42-guanosine 5'-3-O-(thio)triphosphate, phosphatidylinositol bisphosphate, or the Shigella IcsA protein. Here we show that the SH3-SH2-SH3 adaptor Grb2 is another activator of N-WASp that stimulates actin polymerization by increasing the amount of N-WASp. Arp2/3 complex. The concentration dependence of N-WASp activity, sedimentation velocity and cross-linking experiments together suggest that N-WASp is subject to self-association, and Grb2 enhances N-WASp activity by binding preferentially to its active monomeric form. Use of peptide inhibitors, mutated Grb2, and isolated SH3 domains demonstrate that the effect of Grb2 is mediated by the interaction of its C-terminal SH3 domain with the proline-rich region of N-WASp. Cdc42 and Grb2 bind simultaneously to N-WASp and enhance actin polymerization synergistically. Grb2 shortens the delay preceding the onset of Escherichia coli (IcsA) actin-based reconstituted movement. These results suggest that Grb2 may activate Arp2/3 complex-mediated actin polymerization downstream from the receptor tyrosine kinase signaling pathway.  相似文献   

14.
The importance of the SH3 domain of Hck in kinase regulation, substrate phosphorylation, and ligand binding has been established. However, few in vivo ligands are known for the SH3 domain of Hck. In this study, we used mass spectrometry to identify approximately 25 potential binding partners for the SH3 domain of Hck from the monocyte cell line U937. Two major interacting proteins were the actin binding proteins Wiskott-Aldrich syndrome protein (WASP) and WASP-interacting protein (WIP). We also focused on a novel interaction between Hck and ELMO1, an 84-kDa protein that was recently identified as the mammalian ortholog of the Caenorhabditis elegans gene, ced-12. In mammalian cells, ELMO1 interacts with Dock180 as a component of the CrkII/Dock180/Rac pathway responsible for phagocytosis and cell migration. Using purified proteins, we confirmed that WASP-interacting protein and ELMO1 interact directly with the SH3 domain of Hck. We also show that Hck and ELMO1 interact in intact cells and that ELMO1 is heavily tyrosine-phosphorylated in cells that co-express Hck, suggesting that it is a substrate of Hck. The binding of ELMO1 to Hck is specifically dependent on the interaction of a polyproline motif with the SH3 domain of Hck. Our results suggest that these proteins may be novel activators/effectors of Hck.  相似文献   

15.
Reactive oxygen species (ROS) generation is linked to dynamic actin cytoskeleton reorganization, which is involved in tumor cell motility and metastasis. Thus, inhibition of ROS generation and actin polymerization in tumor cells may represent an effective anticancer strategy. However, the molecular basis of this signaling pathway is currently unknown. Here, we show that the Ecklonia cava-derived antioxidant dieckol downregulates the Rac1/ROS signaling pathway and inhibits Wiskott-Aldrich syndrome protein (WASP)-family verprolin-homologous protein 2 (WAVE2)-mediated invasive migration of B16 mouse melanoma cells. Steady-state intracellular ROS levels were higher in malignant B16F10 cells than in parental, nonmetastatic B16F0 cells. Elevation of ROS by H2O2 treatment increased migration and invasion ability of B16F0 cells to level similar to that of B16F10 cells, suggesting that intracellular ROS signaling mediates the prometastatic properties of B16 mouse melanoma cells. ROS levels and the cell migration and invasion ability of B16 melanoma cells correlated with Rac1 activation and WAVE2 expression. Overexpression of dominant negative Rac1 and depletion of WAVE2 by siRNA suppressed H2O2-induced cell invasion of B16F0 and B16F10 cells. Similarly, dieckol attenuates the ROS-mediated Rac1 activation and WAVE2 expression, resulting in decreased migration and invasion of B16 melanoma cells. In addition, we found that dieckol decreases association between WAVE2 and NADPH oxidase subunit p47phox. Therefore, this finding suggests that WAVE2 acts to couple intracellular Rac1/ROS signaling to the invasive migration of B16 melanoma cells, which is inhibited by dieckol.  相似文献   

16.
C S Chow  D M Coen 《Journal of virology》1995,69(11):6965-6971
The herpes simplex virus DNA polymerase is a heterodimer consisting of a catalytic subunit and the protein UL42, which functions as a processivity factor. It has been hypothesized that UL42 tethers the catalytic subunit to the DNA template by virtue of DNA binding activity (J. Gottlieb, A. I. Marcy, D. M. Coen, and M. D. Challberg, J. Virol. 64:5976-5987, 1990). Relevant to this hypothesis, we identified two linker insertion mutants of UL42 that were unable to bind to a double-stranded-DNA-cellulose column but retained their ability to bind the catalytic subunit. These mutants were severely impaired in the stimulation of long-chain-DNA synthesis by the catalytic subunit in vitro. In transfected cells, the expressed mutant proteins localized to the nucleus but were nonetheless deficient in complementing the growth of a UL42 null virus. Thus, unlike many other processivity factors, UL42 appears to require an intrinsic DNA binding activity for its function both in vitro and in infected cells. Possible mechanisms for the activity of UL42 and its potential as a drug target are discussed.  相似文献   

17.
We cloned and characterized the rat homologue of the Wiskott-Aldrich syndrome protein (WASP)-interacting protein (WIP). Rat WIP shows 86% amino acid sequence identity to human WIP. Northern analyses revealed two major mRNA species of 5.0 and 3.8 kb, which were ubiquitously expressed, though predominantly in spleen and lung. Minor species of 2.4, 1.8, 1.4, and 1.1 kb were also detected in some tissues and cell lines. Thus, WIP is subject to tissue-specific alternative splicing. WIP bound to N-WASP in vivo, as revealed by co-immunoprecipitation. Expression of WIP in rat fibroblasts revealed a clear co-localization with actin stress fibers. However, expression in tumor cells lacking actin cables did not restore these structures. Interestingly, co-expression of WIP and N-WASP resulted in redistribution of N-WASP, abrogating its dominant nuclear expression and leading to co-localization with WIP in the perinuclear area and with actin in membrane protrusions. Moreover, stress fibers and, concomitantly, the associated WIP were largely dissolved. Very similar effects were seen upon epidermal growth factor stimulation of serum-starved cells. Our results suggest that WIP might be involved in transmitting mitogenic signals to cytoskeletal functions, perhaps by modulating the subcellular localization of N-WASP. Interaction of N-WASP with WIP may in turn lead to mobilization of actin from stress fibers and nucleation of new actin filaments in filopodia.  相似文献   

18.
The actin-related protein 2 and 3 (Arp2/3) complex is a seven-subunit protein complex that nucleates actin filaments at the cell cortex. Despite extensive cross-linking, crystallography, genetic and biochemical studies, the contribution of each subunit to the activity of the complex remains largely unclear. In this study we characterized the function of the 40-kDa subunit, ARPC1/Arc40, of the yeast Arp2/3 complex. We showed that this subunit is indeed a stable component of the Arp2/3 complex, but its highly unusual electrophoretic mobility eluded detection in previous studies. Recombinant Arc40 bound the VCA domain of Wiskott-Aldrich syndrome protein family activators at a K(d) of 0.45 mum, close to that of the full complex with VCA (0.30 microm), and this interaction was dependent on the conserved tryptophan at the COOH terminus of VCA. Using a newly constructed Delta arc40 yeast strain, we showed that loss of Arc40 severely reduced the binding affinity of the Arp2/3 complex with VCA as well as the nucleation activity of the complex, suggesting that Arc40 contains an important contact site of the Arp2/3 complex with VCA. The Delta arc40 cells exhibited reduced growth rate, loss of actin patches, and accumulation of cables like actin aggregates, phenotypes typical of other subunit nulls, suggesting that Arc40 functions exclusively within the Arp2/3 complex.  相似文献   

19.
Mucopolysaccharidosis IIIC (MPS IIIC, or Sanfilippo C syndrome) is a lysosomal storage disorder caused by the inherited deficiency of the lysosomal membrane enzyme acetyl-coenzyme A: alpha -glucosaminide N-acetyltransferase (N-acetyltransferase), which leads to impaired degradation of heparan sulfate. We report the narrowing of the candidate region to a 2.6-cM interval between D8S1051 and D8S1831 and the identification of the transmembrane protein 76 gene (TMEM76), which encodes a 73-kDa protein with predicted multiple transmembrane domains and glycosylation sites, as the gene that causes MPS IIIC when it is mutated. Four nonsense mutations, 3 frameshift mutations due to deletions or a duplication, 6 splice-site mutations, and 14 missense mutations were identified among 30 probands with MPS IIIC. Functional expression of human TMEM76 and the mouse ortholog demonstrates that it is the gene that encodes the lysosomal N-acetyltransferase and suggests that this enzyme belongs to a new structural class of proteins that transport the activated acetyl residues across the cell membrane.  相似文献   

20.
Retinoid X receptor (RXR) serves as a promiscuous heterodimerization partner for many nuclear receptors through the identity box, a 40-amino acid subregion within the ligand binding domain. In this study, we randomly mutated two specific residues within the human RXRalpha identity box region previously identified as important determinants in heterodimerization (i.e. Ala(416) and Arg(421)). Interestingly, most of these mutants still retained wild type interactions with thyroid hormone receptor (TR), retinoic acid receptor, peroxisome proliferator-activated receptor alpha, small heterodimer partner, and constitutive androstane receptor. However, RXR-A416D and R421L were specifically impaired for interactions with TR, whereas RXR-A416K lost both TR and retinoic acid receptor interactions. Accordingly, RXR-A416D did not support T3 transactivation in mammalian cells, whereas RXR-A416K was not supportive of transactivation by retinoids or T3. These results provide a basis upon which to further design mutant RXRs highly selective in heterodimerization, potentially useful tools to probe nuclear receptor function in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号