首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 110K-calmodulin complex of intestinal microvilli is believed to be the link between the actin filaments comprising the core bundle and the surrounding cell membrane. Although not the first study describing a purification scheme for the 110K-calmodulin complex, a procedure for the isolation of stable 110K-calmodulin complex both pure and in high yield is presented; moreover, isolation is without loss of the associated calmodulin molecules since a previously determined ratio in isolated microvillar cytoskeletons of calmodulin to 110-kD polypeptide of 3.3:1 is preserved. We have found that removal of calmodulin from the complex by the calmodulin antagonists W7 or W13 results in precipitation of the 110-kD polypeptide with calmodulin remaining in solution. The interaction of 110K-calmodulin with beef skeletal muscle F-actin has been examined. Cosedimentation assays of 110K-calmodulin samples incubated with F-actin show the amount of 110K-calmodulin associating with F-actin to be ATP, calcium, and protein concentration dependent; however, relatively salt independent. In calcium, approximately 30% of the calmodulin remains in the supernatant rather than cosedimenting with the 110-kD polypeptide and actin. Electron microscopy of actin filaments after incubation with 110K-calmodulin in either calcium- or EGTA-containing buffers show polarized filaments often laterally associated. Each individual actin filament is seen to exhibit an arrowhead appearance characteristic of actin filaments after their incubation with myosin fragments, heavy meromyosin and subfragment 1. In some cases projections having a 33-nm periodicity are observed. This formation of periodically spaced projections on actin filaments provides further compelling evidence that the 110K-calmodulin complex is the bridge between actin and the microvillar membrane.  相似文献   

2.
The 110K-calmodulin complex isolated from intestinal microvilli is an ATPase consisting of one polypeptide chain of 110 kD in association with three to four calmodulin molecules. This complex is presumably the link between the actin filaments in the microvillar core and the surrounding cell membrane. To study its structural regions, we have partially cleaved the 110K-calmodulin complex with alpha-chymotrypsin; calmodulin remains essentially intact under the conditions used. As determined by 125I-calmodulin overlays, ion exchange chromatography, and actin-binding assays, a 90-kD digest fragment generated in EGTA remains associated with calmodulin. The 90K-calmodulin complex binds actin in an ATP-reversible manner and decorates actin filaments with an arrow-head appearance similar to that found after incubation of F-actin with the parent complex; binding occurs in either calcium- or EGTA-containing buffers. ATPase activity of the 90-kD digest closely resembles the parent complex. In calcium a digest mixture containing fragments of 78 kD, a group of three at approximately 40 kD, and a 32-kD fragment (78-kD digest mixture) is generated with alpha-chymotrypsin at a longer incubation time; no association of these fragments with calmodulin is observed. Time courses of digestions and cyanogen bromide cleavage indicate that the 78-kD fragment derives from the 90-kD peptide. The 78-kD mixture can also hydrolyze ATP. Furthermore, removal of the calmodulin by ion exchange chromatography from this 78-kD mixture had no effect on the ATPase activity of the digest, indicating that the ATPase activity resides on the 110-kD polypeptide. The 78 kD, two of the three fragments at approximately 40 kD, and the 32-kD fragments associate with F-actin in an ATP-reversible manner. Electron microscopy of actin filaments after incubation with the 78-kD digest mixture reveals coated filaments, although the prominent arrowhead appearance characteristic of the parent complex is not observed. These data indicate that calmodulin is not required either for the ATPase activity or the ATP-reversible binding of the 110K-calmodulin complex to F-actin. In addition, since all the fragments that bind F-actin do so in an ATP-reversible manner, the sites required for F-actin binding and ATP reversibility likely reside nearby.  相似文献   

3.
The epithelial layer lining the proximal convoluted tubule of mammalian kidney contains a brush border of numerous microvilli. These microvilli appear in structure to be very similar to the microvilli on epithelial cells of the small intestine. Microvilli found in both the small intestine and the proximal convoluted tubules in kidney have a core bundle of actin filaments bundled by the accessory proteins villin and fimbrin. Along the length of intestinal microvilli, lateral links can be observed to connect the core bundle of actin filaments to the membrane. These cross-bridges are comprised of a 110-kDa calmodulin complex which belongs to a class of single-headed myosin molecules, collectively referred to as myosin-1. We now report that an analogous calmodulin-binding polypeptide of 105 kDa has been identified in rat kidney cortex. The 105-kDa polypeptide is preferentially found in purified kidney brush borders, can be extracted with ATP, and co-elutes with calmodulin on gel filtration and anion exchange chromatography. Fractions containing the 105-kDa polypeptide exhibit a modest ATPase activity in buffer containing CaCl2. The partially purified 105-kDa polypeptide will bind iodinated calmodulin and will sediment with F-actin in buffer containing ethylene glycol-bis-(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) or Ca2+. The addition of ATP partially reverses this association with F-actin. These results indicate that myosin-1, in addition to its presence in intestinal brush borders, is present in the brush border of kidney. We also provide preliminary evidence to indicate that the 105-kDa polypeptide is not restricted to tissues possessing a brush border.  相似文献   

4.
The assembly of the intestinal microvillus cytoskeleton was examined during the differentiation of enterocytes along the crypt-villus axis in adult chicken duodenum using light and electron microscopic immunolocalization techniques. Using antibodies reactive with villin, fimbrin, and the heavy chain (hc) of brush border (BB) myosin I (110K-calmodulin complex) and rhodamine-conjugated phalloidin as a probe for F-actin, we determined that while actin, villin, and fimbrin were all localized apically along the entire axis, BB myosin I (hc) did not assume this localization until the crypt-villus transition zone. In addition to their localization at the BB surface, all four proteins were present at significant levels along the lateral margins of enterocytes along the entire crypt-villus axis, suggesting that these proteins may be involved in the organization and function of the basolateral membrane cytoskeleton as well. The pattern of expression of the microvillar core proteins along the crypt-villus axis in the adult was comparable to that seen in the intestine of the late stage chicken embryo and suggests that a common program for brush border assembly may be used in both modes of enterocyte differentiation.  相似文献   

5.
Fimbrin, previously recognized as a major structural protein of the microfilament core bundles of intestinal epithelial cell microvilli, has been purified to homogeneity and characterized. It is a nearly globular monomeric protein of apparent molecular weight 68,000 and has a single calcium binding site (Kd = 9 microM), for which magnesium ions compete. Fimbrin binds to F-actin and this interaction is characterized in detail. Under our optimal binding of conditions, fimbrin induces tightly packed F-actin bundles, similar to the bundles induced by villin, another microvillus structural protein. The formation of mixed fimbrin-villin-actin bundles provides a further step toward the full in vitro reconstitution of microvillus core filaments from its purified individual components. The reconstituted fimbrin-villin-actin bundles do not display the side arms characteristic of isolated microvillus cores. These results are discussed in terms of our current understanding of the organization of the microvillus core filaments and indicate that this structure contains two bundling proteins, villin and fimbrin. The results complement previous studies and now provide a minimal biochemical characterization of all four major actin-associated structural proteins so far identified in core filaments. Three of these (villin, fimbrin, and calmodulin) are calcium-binding proteins, emphasizing the concept of calcium control over submembranous microfilament organization.  相似文献   

6.
The actin bundle within each microvillus of the intestinal brush border (BB) is tethered laterally to the membrane by bridges composed of BB myosin I. Avian BB myosin I, formerly termed 110K-calmodulin, consists of a heavy chain with an apparent Mr of 110 kD and three to four molecules of calmodulin "light chains." Recent studies have shown that this complex shares many properties with myosin including mechanochemical activity. In this report, the isolation and characterization of a membrane fraction enriched in bound BB myosin I is described. This membrane fraction, termed microvillar membrane disks, was purified from ATP extracts of nonionic detergent-treated microvilli prepared from avian intestinal BBs. Ultrastructural analysis revealed that these membranes are flat, disk-shaped sheets with protrusions which are identical in morphology to purified BB myosin I. The disks exhibit actin-activated Mg-ATPase activity and bind and cross-link actin filaments in an ATP-dependent fashion. The mechanochemical activity of the membrane disks was assessed using the Nitella bead movement assay (Sheetz, M. P., and J. A. Spudich. 1983. Nature [Lond.]. 303:31-35). These preparations were shown to be free of significant contamination by conventional BB myosin. Latex beads coated with microvillar membrane disks move in a myosin-like fashion along Nitella actin cables at rates of 12-60 nm/s (average rate of 33 nm/s); unlike purified BB myosin I, the movement of membrane disk-coated beads was most reproducibly observed in buffers containing low Ca2+.  相似文献   

7.
The assembly of the intestinal microvillus cytoskeleton during embryogenesis in the chick was examined by immunochemical and light microscopic immunolocalization techniques. For these studies, affinity-purified antibodies reactive with three major cytoskeletal proteins of the adult intestinal microvillus, fimbrin, villin, and the 110-kD subunit of the 110K-calmodulin protein complex were prepared. Immunocytochemical staining of frozen sections of embryonic duodena revealed that all three proteins were present at detectable levels at the earliest stages examined, day 7-8 of incubation (Hamilton/Hamburger stages 25-30). Although initially all three proteins were diffusely distributed throughout the cytoplasm, there was a marked asynchrony in the accumulation of these core proteins within the apical domain of the enterocyte. Villin displayed concentrated apical staining by embryonic day 8 (stage 28), while the apical concentration of fimbrin was first observed at embryonic day 10 (stage 37). Diffuse staining of the enterocyte cytoplasm with the anti-110K was observed throughout development until a few days before hatch. By embryonic day 19-21 110K staining was concentrated at the cell periphery (apical and basolateral). The restricted apical localization characteristic of 110K in the adult brush border was not observed until the day of hatching. Immunoblot analysis of whole, solubilized embryonic duodena confirmed the presence of 110K, villin, and fimbrin throughout development and indicated substantial increases in all three proteins, particularly late in development. Immunoblot staining with anti-110K also revealed the presence of a high molecular mass (200 kD) immunoreactive species in embryonic intestine. This 200-kD form was absent from isolated embryonic enterocytes and may be a component of intestinal smooth muscle.  相似文献   

8.
The report that microvillar cores of isolated, demembranated brush borders retract into the terminal web in the presence of Ca(++) and ATP has been widely cited as an example of Ca(++)-regulated nonmuscle cell motility. Because of recent findings that microvillar core actin filaments are cross-linked by villin which, in the presence of micromolar Ca(++), fragments actin filaments, we used the techniques of video enhanced differential interference contrast, immunofluorescence, and phase contrast microscopy and thin-section electron microscopy (EM) to reexamine the question of contraction of isolated intestinal cell brush borders. Analysis of video enhanced light microscopic images of Triton- demembranated brush borders treated with a buffered Ca(++) solution shows the cores disintegrating with the terminal web remaining intact; membranated brush borders show the microvilli to vesiculate with Ca(++). Using Ca(++)/EGTA buffers, it is found that micromolar free Ca(++) causes core filament dissolution in membranated or demembranated brush borders, Ca(++) causes microvillar core solation followed by complete vesiculation of the microvillar membrane. The lengths of microvilli cores and rootlets were measured in thin sections of membranated and demembranated controls, in Ca(++)-, Ca(++) + ATP-, and in ATP-treated brush borders. Results of these measurements show that Ca(++) alone causes the complete solation of the microvillar cores, yet the rootlets in the terminal web region remain of normal length. These results show that microvilli do not retract into the terminal web in response to Ca(++) and ATP but rather that the microvillar cores disintegrate. NBD-phallicidin localization of actin and fluorescent antibodies to myosin reveal a circumferential band of actin and myosin in mildly permeabilized cells in the region of the junctional complex. The presence of these contractile proteins in this region, where other studies have shown a circumferential band of thin filaments, is consistent with the hypothesis that brush borders may be motile through the circumferential constriction of this “contractile ring,” and is also consistent with the observations that ATP-treated brush borders become cup shaped as if there had been a circumferential constriction.  相似文献   

9.
Summary Brush cells represent a population of epithelial cells with unknown function, which are scattered throughout the epithelial lining of both the respiratory system and the alimentary system. These cells are reliably distinguished from other epithelial cells only at the ultrastructural level by the presence of an apical tuft of stiff microvilli and extremely long microvillar rootlets that may project down to the perinuclear space. In the present study we show that brush cells can be identified in tissue sections even at the light microscopic level by immunostaining with antibodies against villin and fimbrin, two proteins that crosslink actin filaments to form bundles. In brush cells, villin and fimbrin are not only present in the actin filament core bundles of apical microvilli and their long rootlets but, in addition, both proteins are also associated with microvilli extending from the basolateral cell surface of the brush cells. Basolateral immunostaining specific for villin and fimbrin does not occur in any other epithelial cell type of the respiratory and alimentary tract. Thus immunostaining with antibodies against both proteins allows unequivocal identification of individual brush cells even in sectional planes that do not contain the brightly stained apical tuft of microvilli and their long rootlets.  相似文献   

10.
The intestinal epithelial cell brush border exhibits distinct localizations of the actin-binding protein components of its cytoskeleton. The protein interactions that dictate this subcellular organization are as yet unknown. We report here that tropomyosin, which is found in the rootlet but not in the microvillus core, can bind to and saturate the actin of isolated cores, and can cause the dissociation of up to 30% of the villin and fimbrin from the cores but does not affect actin binding by 110-kD calmodulin. Low speed sedimentation assays and ultrastructural analysis show that the tropomyosin-containing cores remain bundled, and that 110-kD calmodulin remains attached to the core filaments. The effects of tropomyosin on the binding and bundling activities of villin were subsequently determined by sedimentation assays. Villin binds to F-actin with an apparent Ka of 7 X 10(5) M-1 at approximate physiological ionic strength, which is an order of magnitude lower than that of intestinal epithelial cell tropomyosin. Binding of villin to F-actin presaturated with tropomyosin is inhibited relative to that to pure F-actin, although full saturation can be obtained by increasing the villin concentration. Villin also inhibits the binding of tropomyosin to F-actin, although not to the same extent. However, tropomyosin strongly inhibits bundling of F-actin by villin, and bundling is not recovered even at a saturating villin concentration. Since villin has two actin-binding sites, both of which are required for bundling, the fact that tropomyosin inhibits bundling of F-actin under conditions where actin is fully saturated with villin strongly suggests that tropomyosin's and one of villin's F-actin-binding sites overlap. These results indicate that villin and tropomyosin could compete for actin filaments in the intestinal epithelial cell, and that tropomyosin may play a major role in the regulation of microfilament structure in these and other cells.  相似文献   

11.
Actin filament arrays in in vivo microvillar bundles of rat intestinal enterocyte were re-evaluated using electron tomography (ET). Conventional electron microscope observation of semi-thin cross sections (300nm thick) of high-pressure freeze fixed and resin embedded brush border has shown a whirling pattern in the center of the microvilli instead of hexagonally arranged dots, which strongly suggests that the bundle consists of a non-parallel array of filaments. A depth compensation method for the ET was developed to estimate the actual structure of the actin bundle. Specimen shrinkage by beam irradiation during image acquisition was estimated to be 63%, and we restored the original thickness in the reconstruction. The depth compensated tomogram displayed the individual actin filaments within the bundles and it indicated that the actin filaments do not lie exactly parallel to each other: instead, they are twisted in a clockwise coil with a pitch of ~120°/μm. Furthermore, the lattice of actin filaments was occasionally re-arranged within the bundle. As the microvillar bundle mechanically interacts with the membrane and is thought to be compressed by the membrane's faint tensile force, we removed the shrouding membrane using detergents to eliminate the mechanical interaction. The bared bundles no longer showed the whirling pattern, suggesting that the bundle had released its coiled property. These findings indicate that the bundle has not rigid but elastic properties and a dynamic transformation in its structure caused by a change in the mechanical interaction between the membrane and the bundle.  相似文献   

12.
Actin-bundling proteins are identified as key players in the morphogenesis of thin membrane protrusions. Until now, functional redundancy among the actin-bundling proteins villin, espin, and plastin-1 has prevented definitive conclusions regarding their role in intestinal microvilli. We report that triple knockout mice lacking these microvillar actin-bundling proteins suffer from growth delay but surprisingly still develop microvilli. However, the microvillar actin filaments are sparse and lack the characteristic organization of bundles. This correlates with a highly inefficient apical retention of enzymes and transporters that accumulate in subapical endocytic compartments. Myosin-1a, a motor involved in the anchorage of membrane proteins in microvilli, is also mislocalized. These findings illustrate, in vivo, a precise role for local actin filament architecture in the stabilization of apical cargoes into microvilli. Hence, the function of actin-bundling proteins is not to enable microvillar protrusion, as has been assumed, but to confer the appropriate actin organization for the apical retention of proteins essential for normal intestinal physiology.  相似文献   

13.
The apical surface of transporting epithelia is specially modified to absorb nutrients efficiently by amplifying its surface area as microvilli. Each microvillus is supported by an underlying core of bundled actin filaments. Villin and fimbrin are two actin-binding proteins that bundle actin filaments in the intestine and kidney brush border epithelium. To better understand their function in the assembly of the cytoskeleton during epithelial differentiation, we examined the pattern of villin and fimbrin expression in the developing mouse using immunofluorescence and immunoelectron microscopy. Villin is first detected at day 5 in the primitive endoderm of the postimplantation embryo and is later restricted to the visceral endoderm. By day 8.5, villin becomes redistributed to the apical surface in the visceral endoderm, appearing in the gut at day 10 and concentrating in the apical cytoplasm of the differentiating intestinal epithelium 2-3 days later. In contrast, fimbrin is found in the oocyte and in all tissues of the early embryo. In both the visceral endoderm and gut epithelium, fimbrin concentrates at the apical surface 2-3 days after villin; this redistribution occurs when the visceral endoderm microvilli first contain organized microfilament bundles and when microvilli first begin to appear in the gut. These results suggest a common mechanism of assembly of the absorptive surface of two different tissues in the embryo and identify villin as a useful marker for the visceral endoderm.  相似文献   

14.
In the present study we have used immunogold labeling of ultrathin sections of the intact chicken and human intestinal epithelium to obtain further insight into the molecular structure of the brush-border cytoskeleton. Actin, villin, and fimbrin were found within the entire microvillus filament bundle, from the tip to the basal end of the rootlets, but were virtually absent from the space between the rootlets. This suggests that the bulk of actin in the brush border is kept in a polymerized and cross-linked state and that horizontally deployed actin filaments are virtually absent. About 70% of the label specific for the 110-kD protein that links the microvillus core bundle to the lipid bilayer was found overlying the microvilli. The remaining label was associated with rootlets and the interrootlet space, where some label was regularly observed in association with vesicles. Since the terminal web did not contain any significant amounts of tubulin and microtubules, the present findings would support a recently proposed hypothesis that the 110-kD protein (which displays properties of an actin-activated, myosin-like ATPase) might also be involved in the transport of vesicles through the terminal web. Label specific for myosin and alpha-actinin was confined to the interrootlet space and was absent from the rootlets. About 10-15% of the myosin label and 70-80% of the alpha-actinin label was observed within the circumferential band of actin filaments at the zonula adherens, where myosin and alpha-actinin displayed a clustered, interrupted pattern that resembles the spacing of these proteins observed in other contractile systems. This circular filament ring did not contain villin, fimbrin, or the 110-kD protein. Finally, actin-specific label was observed in close association with the cytoplasmic aspect of the zonula occludens, suggesting that tight junctions are structurally connected to the microfilament system.  相似文献   

15.
Actin filament bundles can shape cellular extensions into dramatically different forms. We examined cytoskeleton formation during wing hair morphogenesis using both confocal and electron microscopy. Hairs elongate with linear kinetics (approximately 1 microm/h) over the course of approximately 18 h. The resulting structure is vividly asymmetric and shaped like a rose thorn--elongated in the distal direction, curved in two dimensions with an oval base and a round tip. High-resolution analysis shows that the cytoskeleton forms from microvilli-like pimples that project actin filaments into the cytoplasm. These filaments become cross-linked into bundles by the sequential use of three cross-bridges: villin, forked and fascin. Genetic loss of each cross-bridge affects cell shape. Filament bundles associate together, with no lateral membrane attachments, into a cone of overlapping bundles that matures into an oval base by the asymmetric addition of bundles on the distal side. In contrast, the long bristle cell extension is supported by equally long (up to 400 microm) filament bundles assembled together by end-to-end grafting of shorter modules. Thus, bristle and hair cells use microvilli and cross-bridges to generate the common raw material of actin filament bundles but employ different strategies to assemble these into vastly different shapes.  相似文献   

16.
The association of microvillar microfilaments with the microvillar membrane actin-containing transmembrane complex of MAT-C1 13762 ascites tumor cell microvilli has been investigated by differential centrifugation, gel electrophoresis and electron microscopy of detergent extracts of the isolated microvilli. Several methods have been used to reduce breakdown and solubilization of the microfilament core actin during the detergent extractions for preparation of microvillar core microfilaments. Gel electrophoresis of differential centrifugation fractions demonstrated that over 70% of the total microvillus actin could be pelleted with microfilament cores at 10 000 g under extraction conditions which reduce filament breakdown. Transmission electron microscopy (TEM) of all of the core preparations showed arrays of microfilaments and small microfilament bundles. The major protein components of the microfilament cores, observed by sodium dodecyl sulfate (SDS) electrophoresis, were actin and alpha-actinin. Among the less prominent polypeptide components was a 58 000 Dalton polypeptide (58 K), previously identified as a member of the MAT-Cl transmembrane complex. This three-component complex contains, in addition to 58 K, actin associated directly and stably with a cell surface glycoprotein (Carraway, CAC, Jung, G & Carraway, K L, Proc. natl acad. sci. US 80 (1983) 430). Evidence that the apparent association of complex with the microfilament core was not due simply to co-sedimentation was provided by myosin affinity precipitation. These results provide further evidence that the transmembrane complex is a site for the interaction of microfilaments with the microvillar plasma membrane.  相似文献   

17.
The present study addressed the question as to whether the four different actin-associated proteins that are associated with the actin core bundle in intestinal microvilli (i.e. villin, fimbrin, myosin I and ezrin) are essential components of all microvilli of the body. The retina provides an excellent example of a tissue supplied with three different sets of microvilli, namely those of Müller's glial cells (Müller baskets), photoreceptors (calycal processes), and pigment epithelial cells. The main outcome of this study is that none of these microvilli contain all four actin-associated proteins present in intestinal microvilli. Müller cell microvilli contain villin, ezrin and myosin I (95 kDa isoform) but not fimbrin. Calycal processes of photoreceptors contain fimbrin but not villin, myosin I and ezrin. Finally, microvilli of pigment epithelial cells are positive for ezrin but not for villin, fimbrin and myosin I. Beoause of limited cross-reactivities of the antibodies to myosin I and ezrin, the myosin I data refer to the chicken retina whereas the findings with anti-ezrin were obtained with the rat retina. A further outcome of this study is that the actin filament core bundles in microvilli of chicken pigment epithelial cells are presumed to contain a crosslinking protein, which is not immunologically related to either villin, fimbrin or myosin I of the intestinal brush border.  相似文献   

18.
《The Journal of cell biology》1989,109(4):1711-1723
The sensory epithelium of the chick cochlea contains only two cell types, hair cells and supporting cells. We developed methods to rapidly dissect out the sensory epithelium and to prepare a detergent-extracted cytoskeleton. High salt treatment of the cytoskeleton leaves a "hair border", containing actin filament bundles of the stereocilia still attached to the cuticular plate. On SDS-PAGE stained with silver the intact epithelium is seen to contain a large number of bands, the most prominent of which are calbindin and actin. Detergent extraction solubilizes most of the proteins including calbindin. On immunoblots antibodies prepared against fimbrin from chicken intestinal epithelial cells cross react with the 57- and 65-kD bands present in the sensory epithelium and the cytoskeleton. It is probable that the 57-kD is a proteolytic fragment of the 65-kD protein. Preparations of stereocilia attached to the overlying tectorial membrane contain the 57- and 65-kD bands. A 400-kD band is present in the cuticular plate. By immunofluorescence, fimbrin is detected in stereocilia but not in the hair borders after salt extraction. The prominent 125 A transverse stripping pattern characteristic of the actin cross-bridges in a bundle is also absent in hair borders suggesting fimbrin as the component that gives rise to the transverse stripes. Because the actin filaments in the stereocilia of hair borders still remain as compact bundles, albeit very disordered, there must be an additional uncharacterized protein besides fimbrin that cross-links the actin filaments together.  相似文献   

19.
L M Coluccio  A Bretscher 《Biochemistry》1990,29(50):11089-11094
In intestinal microvilli, the 110K-calmodulin complex is the major component of the cross-bridges which connect the core bundle of actin filaments to the membrane. Our previous work showed that the 110-kDa polypeptide can be divided into three functional domains: a 78-kDa fragment that contains the ATPase activity and the ATP-reversible F-actin-binding site, a 12-kDa fragment required for binding calmodulin molecules, and a terminal 20-kDa domain of unknown function [Coluccio, L. M., & Bretscher, A. (1988) J. Cell Biol. 106, 367-374]. By analysis of limited alpha-chymotryptic cleavage products, we now show that the molecular organization is very similar to that described for the S1 fragment of myosin. The catalytic site was identified by photoaffinity labeling with [5,6-3H]UTP, and fragments binding F-actin were identified by cosedimentation assays. Cleavage of the 78-kDa fragment yielded major fragments of 32 and 45 kDa, followed by cleavage of the 45-kDa fragment to a 40-kDa fragment. Of these, only the 32-kDa fragment was labeled by [5,6-3H]UTP. Physical characterization revealed that the 45- and 32-kDa fragments exist as a complex that can bind F-actin, whereas the 40-kDa/32-kDa complex cannot bind actin. We conclude that the catalytic site is located in the 32-kDa fragment and the F-actin-binding site is present in the 45-kDa fragment; the ability to bind actin is lost upon further cleavage of the 45-kDa fragment to 40 kDa. Peptide sequence analysis revealed that the 45-kDa fragment lies within the molecule and suggests that the 32-kDa fragment is the amino terminus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The brush border, isolated from chicken intestine epithelial cells, contains the 95,000 relative molecular mass (M(r)) polypeptide, villin. This report describes the purification and characterization of villin as a Ca(++)-dependent, actin bundling/depolymerizing protein. Then 100,000 g supernatant from a Ca(++) extract of isolated brush borders is composed of three polypeptides of 95,000 (villin), 68,000 (fimbrin), and 42,000 M(r) (actin). Villin, following purification from this extract by differential ammonium sulfate precipitation and ion-exchange chromatography, was mixed with skeletal muscle F-actin. Electron microscopy of negatively stained preparations of these villin-actin mixtures showed that filament bundles were present. This viscosity, sedimentability, and ultrastructural morphology of filament bundles are dependent on the villin:actin molar ratio, the pH, and the free Ca(++) concentration in solution. At low free Ca(++) (less than 10(-6) M), the amount of protein in bundles, when measured by sedimentation, increased as the villin: actin molar ratio increased and reached a plateau at approximately a 4:10 ratio. This behavior correlates with the conversion of single actin filaments into filament bundles as detected in the electron microscope. At high free Ca(++) (more than 10(-6) M), there was a decrease in the apparent viscosity in the villin-actin mixtures to a level measured for the buffer. Furthermore, these Ca(++) effects were correlated with the loss of protein sedimented, the disappearance of filament bundles, and the appearance of short fragments of filaments. Bundle formation is also pH-sensitive, being favored at mildly acidic pH. A decrease in the pH from 7.6 to 6.6 results in an increase in sedimentable protein and also a transformation of loosly associated actin filaments into compact actin bundles. These results are consistent with the suggestions that villin is a bundling protein in the microvillus and is responsible for the Ca(++)-sensitive disassembly of the microvillar cytoskeleton. Thus villin may function in the cytoplasm as a major cytoskeletal element regulating microvillar shape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号