首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
N. Ronald Morris 《Cell》1976,8(3):357-363
The structure of chromatin from Aspergillus nidulans was studied using micrococcal nuclease and DNAase I. Limited digestion with micrococcal nuclease revealed a nucleosomal repeat of 154 base pairs for Aspergillus and 198 base pairs for rat liver. With more extensive digestion, both types of chromatin gave a similar quasi-limit product with a prominent fragment at 140 base pairs. The similarity of the two limit digests suggests that the structure of the 140 base pair nucleosome core is conserved. This implies that the difference in nucleosome repeat lengths between Aspergillus and rat liver is caused by a difference in the length of the DNA between two nucleosome cores. Digestion of Aspergillus chromatin with DNAase I produced a pattern of single-stranded fragments at intervals of 10 bases which was similar to that produced from rat liver chromatin.  相似文献   

3.
4.
The subunit structure of chromatin from Physarum polycephalum.   总被引:4,自引:4,他引:0       下载免费PDF全文
Nucleosome DNA repeat lengths in Physarum chromatin, determined by nuclease digestion experiments, are shorter than those observed in most mammalian chromatin and longer than those reported for chromatin of certain other lower eukaryotes. After digestion with staphylococcal nuclease for short periods of time an average repeat length of 190 base pairs is measured. After more extensive digestion an average repeat length of 172 base pairs is measured. Upon prolonged digestion DNA is degraded to an average monomer subunit length of 160 base pairs, with only a small amount of DNA found in lengths of 130 base pairs or smaller. Mathematical analysis of the data suggests that the Physarum nucleosome DNA repeat comprises a protected DNA segment of about 159 base pairs with a nuclease-accessible interconnecting segment which ranges from 13 to 31 base pairs. The spacing data are compatible with measurements from electron micrographs of Physarum chromatin.  相似文献   

5.
Assuming that variation of nuclease sensitivity along nucleosomal DNA can basically be attributed to orientations of sugar--phosphate bonds relative to histone core, the pitch of chromatin DNA is estimated to be 10.33--10.40 base pairs. This is in accordance both with the known measured average distance between cleavage sites (10.3--10.4 base pairs) and with published data on variation of relative sensitivities of these sites to nuclease attack. The variation can be explained solely as a result of the systematic change of orientation of sugar--phosphate bonds of sensitive sites without additional suggestions about local steric hindrances by histone molecules. According to the analysis locations of sites least sensitive to nuclease attack should not depend on kind of endonuclease though the stagger could differ. We conclude that the nucleosome core particle is axially symmetrical. The results strongly support the suggestion that DNA is wrapped around the histone octamer smoothly, without interruption of base-stacking interactions.  相似文献   

6.
Abstract: Nuclei from the cerebral cortices of animals of different ages were separated into neuronal and neuroglial populations. Nuclei from cerebellar neurons were also studied. Using the enzyme micrococcal nuclease as a probe for chromatin structure, we found that the DNA from both neuronal preparations showed a decreased susceptibility to digestion during aging, although the onset of this alteration varies. In addition, both neuronal populations showed dramatic increases in the nucleosome spacing of the chromatin. Cerebral neuronal chromatin has a repeat length (nucleosome core and linker region) of 164 base pairs at 22 days and 11 months, 186 base pairs at 24 months, and 199 base pairs at 30 months. Cerebellar neuronal chromatin has a repeat of 188 base pairs at both 22 days and 11 months, 208 base pairs at 24 months, and 243 base pairs at 30 months. Neuroglial chromatin, on the other hand, showed no change in either accessibility to nuclease or repeat length.  相似文献   

7.
Subunit structure of simian-virus-40 minichromosome.   总被引:34,自引:0,他引:34  
Electron microscopic evidence indicates that Simian virus 40 (SV40) minichromosomes extracted from infected cells consist of 20 +/- 2 nucleosomes, each containing 190 -- 200 base pairs of DNA. About 50% of the nucleosomes are not close together, but connected by segments of DNA of irregular lengths which correspond to about 15% of the viral genome, irrespective of the ionic strength. Micrococcal nuclease digestion studies show that there is about 200 base pairs of DNA in the biochemical unit of SV40 chromatin. Therefore, the visible internucleosomal DNA of the SV40 minichromosome does not arise from an unfolding of a fraction of the 190 - 200 base pairs of DNA initially wound in the nucleosome. These results support the chromatin model which proposes that the same DNA length is contained in the nucleosome and the biochemical unit. Results from extensive micrococcal nuclease digestion suggest that an SV40 nucleosome consists of a 'core' containing a DNA segment of about 135 base pairs associated to a DNA fragment more susceptible to nuclease attack. The addition of histone H1 results in a striking condensation of the SV40 minichromosome, which supports the assumption that histone H1 is involved in the folding of chromatin fibers.  相似文献   

8.
Summary The action of micrococcal nuclease, DNase I and DNase II on mouse TLT hepatoma chromatin revealing the periodicity of its structure as visualized by denaturing and nondenaturing gel electrophoresis, was consistent with the action of these enzymes on other chromatins. Micrococcal nuclease showed a complex subnucleosome fragment pattern based on multiples of 10 base pairs with a prominant couplet at 140/160 base pairs and the absence of the 80 base pair fragment. This couplet of the core and minimal nucleosome fragments was conspicuously present in the mononucleosomes found in the 11S fractions of a glycerol gradient centrifugation. DNase I and II produced a fairly even distribution of a 10 base pair increasing series of fragments to about 180 base pairs, a pattern also repeated in the DNA of nucleosome glycerol-gradient fractions. In limited digestions by these nucleases multinucleosomic DNA fragments are pronounced. These fragment lengths are multiples of an estimated average repeat length of nucleosome DNA of 180 base pairs. The action of the endogenous Mg/Ca-stimulated endonuclease produced only limited cuts in the hepatoma chromatin resulting primarily in multi-nucleosommc DNA fragment lengths and only upon lengthy digestion limited subnucleosomic, 10-base-pair multiple fragments are produced. The putative euchromatin-enriched fractions (50–75S) of the glycerol gradient centrifugation of autodigested chromatin, similarly, contained primarily the multinucleosomic DNA fragment lengths. These results are consistent with our previous electron microscopic demonstration that autodigested chromatin as well as the putative euchromatin-enriched fractions were composed of multinucleosomic chromatin segments containing a full complement of histones.  相似文献   

9.
In this study, electron tomograms of plunge-frozen isolated chromatin in both open and compacted form were recorded. We have resolved individual nucleosomes in these tomograms in order to provide a 3D view of the arrangement of nucleosomes within chromatin fibers at different compaction states. With an optimized template matching procedure we obtained accurate positions and orientations of nucleosomes in open chromatin in "low-salt" conditions (5 mM NaCl). The mean value of the planar angle between three consecutive nucleosomes is 70°, and the mean center-to-center distance between consecutive nucleosomes is 22.3 nm. Since the template matching approach was not effective in crowded conditions, for nucleosome detection in compact fibers (40 mM NaCl and 1 mM MgCl(2)) we developed the nucleosome detection procedure based on the watershed algorithm, followed by sub-tomogram alignment, averaging, and classification by Principal Components Analysis. We find that in compact chromatin the nucleosomes are arranged with a predominant face-to-face stacking organization, which has not been previously shown for native isolated chromatin. Although the path of the DNA cannot be directly seen in compact conditions, it is evident that the nucleosomes stack with their dyad axis aligned in forming a "double track" conformation which is a consequence of DNA joining adjacent nucleosome stacks. Our data suggests that nucleosome stacking is an important mechanism for generating chromatin compaction in vivo.  相似文献   

10.
A defined in vitro chromatin assembly system was used to examine the nucleosome alignment induced by histone H5 throughout a 12 kilobase pair chicken genomic DNA fragment containing the ovalbumin gene. In contrast with total fragmented chicken DNA and several anonymous cloned fragments, much of the gene permitted histone H5 to space nucleosomes at physiological intervals in an extended array. Nucleosomes at the 3'-end of the gene and on approximately 4 kilobase pairs of 5'-flanking ovalbumin sequence did not become aligned to appreciable extents. Analysis of cloned 2-3 kilobase pair subfragments suggested that a strong nucleosome alignment signal, specifying a 196 +/- 5 base pair repeat exists in intron E. A second discrete region of the gene, which mapped approximately to intron A, exhibited nucleosome alignment with a spacing periodicity of about 200 base pairs. The ovalbumin cDNA did not permit nucleosome alignment. These findings suggest that some of the introns contain signals that direct nucleosome alignment over the ovalbumin gene in a way conducive to its regulation.  相似文献   

11.
Digestion of chromatin DNA in nuclei of sea urchin embryos with pancreatic nuclease and with micrococcal nuclease give additional details concerning the interaction between DNA and histones. A specific site of hydrolysis appears to be located on the nucleosome in such a position as to split the DNA unit length in two equivalent fragments of about 60–70 base pairs in length. The complete digestion of chromatin DNA appears to depend on the low stability of the nucleosome containing the split DNA fragments.  相似文献   

12.
Eukaryotic DNA is organized into a macromolecular structure called chromatin. The basic repeating unit of chromatin is the nucleosome, which consists of two copies of each of the four core histones and DNA. The nucleosomal organization and the positions of nucleosomes have profound effects on all DNA-dependent processes. Understanding the factors that influence nucleosome positioning is therefore of general interest. Among the many determinants of nucleosome positioning, the DNA sequence has been proposed to have a major role. Here, we analyzed more than 860,000 nucleosomal DNA sequences to identify sequence features that guide the formation of nucleosomes in vivo. We found that both a periodic enrichment of AT base pairs and an out-of-phase oscillating enrichment of GC base pairs as well as the overall preference for GC base pairs are determinants of nucleosome positioning. The preference for GC pairs can be related to a lower energetic cost required for deformation of the DNA to wrap around the histones. In line with this idea, we found that only incorporation of both signal components into a sequence model for nucleosome formation results in maximal predictive performance on a genome-wide scale. In this manner, one achieves greater predictive power than published approaches. Our results confirm the hypothesis that the DNA sequence has a major role in nucleosome positioning in vivo.  相似文献   

13.
14.
Heterogeneity of chromatin subunits in vitro and location of histone H1.   总被引:74,自引:40,他引:34       下载免费PDF全文
Chromatin subunits ("nucleosomes") which were purified by sucrose gradient centrifugation of a staphylococcal nuclease digest of chromatin have been studied. We found that such a preparation contains nucleosomes of two discrete types which can be separated from each other by polyacrylamide gel electrophoresis. Nucleosome of the first type contains all five histones and a DNA segment of approximately 200 base pairs long, whereas nucleosome of the second type lacks histone H1 and its DNA segment is approximately 170 base pairs long, i.e., about 30 base pairs shorter than the DNA segment of the nucleosome of the first type. Purified dimer of the nucleosome also can be fractionated by gel electrophoresis into three discrete bands which correspond to dinucleosomes containing two molecules of histone H1, one and no H1. These and related findings strongly suggest that the H1 molecule is bound to a short (approximately 30 base pairs) terminal stretch of the nucleosomal DNA segment which can be removed by nuclease (possibly in the form of H1-DNA complex) without any significant disturbance of main structural features of the nucleosome.  相似文献   

15.
The chromatin structure of the oocyte-type 5S RNA genes in Xenopus laevis was investigated. Blot hybridization analysis of DNA from micrococcal nuclease digests of erythrocyte nuclei showed that 5S DNA has the same average nucleosome repeat length, 192 +/- 4 base pairs, as two Xenopus satellite DNAs and bulk erythrocyte chromatin. The positions of nuclease-sensitive regions in the 5S DNA repeats of purified DNA and chromatin from erythrocytes were mapped by using an indirect end-labeling technique. Although most of the sites cleaved in purified DNA were also cleaved in chromatin, the patterns of intensities were strikingly different in the two cases. In 5S chromatin, three nuclease-sensitive regions were spaced approximately a nucleosome length apart, suggesting a single, regular arrangement of nucleosomes on most of the 5S DNA repeats. The observed nucleosome locations are discussed with respect to nucleotide sequences known to be important for expression of 5S RNA. Because the preferred locations appear to be reestablished in each repeating unit, despite spacer length heterogeneity, we suggest that the regular chromatin structure reflects the presence of a sequence-specific DNA-binding component on inactive 5S RNA genes.  相似文献   

16.
Positional correlation analysis for the complete genome of Saccharomyces cerevisiae is performed with the aim to reveal possible chromatin-related sequence features. A strong periodicity with the period 10.4 bases is detected in the distance histograms for the dinucleotides AA and TT, with the characteristic decay distance of approximately 50 base pairs. The oscillations are observed as well in the distributions of other dinucleotides. However, the respective amplitudes are small, consistent with secondary effects, due to dominant periodicity of AA and TT. The observations are in accord with earlier data on the chromatin sequence periodicities and nucleosome DNA sequence patterns. The autocorrelations of AA and TT dinucleotides in yeast include also a counter-phase component. A tentative DNA sequence pattern for the yeast nucleosomes is suggested and verified by comparison of its autocorrelation plots with the respective natural autocorrelations. The nucleosome mapping guided by the pattern is in accord with experimental data on the linker length distribution in yeast.  相似文献   

17.
We digested polyoma virus nucleoprotein complex, isolated from disrupted virions, with micrococcal nuclease and DNase I. The results were compared with digestions of chromatin from mouse nuclei. The nucleosome "core" structures were similar, but the spacing of the nucleosomes in the isolated polymoma nucleoprotein complexes was irregular, whereas in mouse chromatin it was regular. The average nucleosome repeat length in each case was 190 to 200 base pairs. This figure suggests that, unless there are substantial stretches of free DNA, the polyoma nucleoprotein complex contains about 26 nucleosomes. The commonly used method of preparing the nucleoprotein complex by disruption of virions at pH 10.2 may lead to significant damage to the structure. Such damage may be more clearly revealed by the susceptibility of the DNA to nuclease digestion than by the usual criteria of sedimentation velocity and buoyant density.  相似文献   

18.
Abstract

Positional correlation analysis for the complete genome of Saccharomyces cerevisiae is performed with the aim to reveal possible chromatin-related sequence features. A strong periodicity with the period 10.4 bases is detected in the distance histograms for the dinucleotides AA and TT, with the characteristic decay distance of approximately 50 base pairs. The oscillations are observed as well in the distributions of other dinucleotides. However, the respective amplitudes are small, consistent with secondary effects, due to dominant periodicity of AA and TT. The observations are in accord with earlier data on the chromatin sequence periodicities and nucleosome DNA sequence patterns. The autocorrelations of AA and TT dinucleotides in yeast include also a counter-phase component. A tentative DNA sequence pattern for the yeast nucleosomes is suggested and verified by comparison of its autocorrelation plots with the respective natural autocorrelations. The nucleosome mapping guided by the pattern is in accord with experimental data on the linker length distribution in yeast.  相似文献   

19.
Calf thymus chromatin, depleted in histone H1, was digested with micrococcal nuclease and fractionated by column chromatography. 140 base pair nucleosome core particles were isolated along with an unusual particle containing 2 histone octamers and 240 base pairs of DNA. Evidence is presented that the spacer DNA region is absent from these modified dinucleosomes, which appear as stable products of the digestion process. The physical properties of both particles are presented along with brief speculation on their possible origin and function.  相似文献   

20.
The precise locations of the DNase I cutting sites in the nucleosome core have been determined by analysis of the DNA products of a DNase I digestion of 32P end-labelled mucleosome cores on a high resolution gel electrophoresis system. This system is capable of resolving fragments of mixed sequence DNA differing by one base into the region of 160 bases in length. The DNase I cutting sites in the core are found to be spaced at multiples of about 10.4 (i.e. clearly different from 10.0) bases along the DNA, but show significant variations about this value. In addition to the location of the sites, the stagger between individual sites on opposite strands has been determined and is found to be inconsistent with at least one proposed mechanism for nuclease cleavage of chromatin DNA. Finally, a calculated distribution of fragment lengths in a DNase I digest of nuclei has been determined from the data obtained from the nucleosome core and found to be in reasonable agreement with the observed distribution. The periodicity of 10.4 is discussed with respect to the number of base pairs per turn of chromatin DNA and the number of superhelical turns of DNA per nucleosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号