首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The applicability of the less specific protease elastase for the identification of membrane and cytosolic proteins has already been demonstrated. MALDI as ionization technique particularly favors the detection of basic and to a lesser extent of weakly acidic peptides, whereas neutral peptides often remain undetected. Moreover, peptides below 700 Da are routinely excluded. In the following study, the advantage of additional information gained from tandem mass tag zero labeled peptides and the resultant increase in sequence coverage was evaluated. Through derivatization with tandem mass tag reagents, peptide measurement within the standard mass range of the MALDI reflector mode is achievable due to the mass increase. Compared to the unlabeled sample, peptides exhibiting relatively low molecular masses, pI values or higher hydrophobicity could be identified.  相似文献   

2.
MALDI-TOF质谱源后衰变技术鉴定2D胶蛋白点   总被引:1,自引:0,他引:1  
PMF方法由于具有高灵敏度、高通量和容易自动化等优点,在蛋白质组学鉴定中占有重要的地位。然而,许多样品(比如:小分子蛋白,混合物等)仅仅通过PMF方法不能明确鉴定。在这种情况下,在测定PMF的同一个样品上,选择一个酶解片段峰进行PSD测序,并把这些序列信息输入MS—Tag软件进行搜索,结合PMF方法,表观分子量等电点等参数,能够对胶上的点进行明确的鉴定。本文先用PSD方法对胶上的三个标准蛋白进行鉴定,都得到了非常准确的结果,同时鉴定了胶上的几个未知点。  相似文献   

3.
The first peptidergic neurohormone from the ticks Ixodes ricinus and Boophilus microplus has been identified by using a combination of immunocytochemistry and mass spectrometric analysis of single cells. The novel peptide (Ixori-PVK, PALIPFPRV-NH2) shows a high sequence homology with members of the insect periviscerokinin/CAP2b peptides that in insects are involved in the regulation of water balance. The function of this peptide in ticks is still unknown, but these pests consume large amounts of blood in a single blood meal which is a challenge for the regulation of diuretic processes. Thus, the novel peptide may be involved in one of the key physiological processes in ticks. High energy collision-induced dissociation was successfully used to distinguish between Leu/Ile ambiguities in single cell preparations. This is the first successful de novo sequencing of a peptide from single cell preparations of arthropods.  相似文献   

4.
Although peptide mass fingerprinting is currently the method of choice to identify proteins, the number of proteins available in databases is increasing constantly, and hence, the advantage of having sequence data on a selected peptide, in order to increase the effectiveness of database searching, is more crucial. Until recently, the ability to identify proteins based on the peptide sequence was essentially limited to the use of electrospray ionization tandem mass spectrometry (MS) methods. The recent development of new instruments with matrix-assisted laser desorption/ionization (MALDI) sources and true tandem mass spectrometry (MS/MS) capabilities creates the capacity to obtain high quality tandem mass spectra of peptides. In this work, using the new high resolution tandem time of flight MALDI-(TOF/TOF) mass spectrometer from Applied Biosystems, examples of successful identification and characterization of bovine heart proteins (SWISS-PROT entries: P02192, Q9XSC6, P13620) separated by two-dimensional electrophoresis and blotted onto polyvinylidene difluoride membrane are described. Tryptic protein digests were analyzed by MALDI-TOF to identify peptide masses afterward used for MS/MS. Subsequent high energy MALDI-TOF/TOF collision-induced dissociation spectra were recorded on selected ions. All data, both MS and MS/MS, were recorded on the same instrument. Tandem mass spectra were submitted to database searching using MS-Tag or were manually de novo sequenced. An interesting modification of a tryptophan residue, a "double oxidation", came to light during these analyses.  相似文献   

5.
The ants use their venom for predation, defense, and communication. The venom of these insects is rich in peptides and proteins, and compared with other animal venoms, ant venoms remain poorly explored. The objective of this study was to evaluate the protein content of the venom in the Ponerinae ant Pachycondyla striata. Venom samples were collected by manual gland reservoir dissection, and samples were submitted to two‐dimensional gel electrophoresis and separation by ion‐exchange and reverse‐phase high‐performance liquid chromatography followed by mass spectrometry using tanden matrix‐assisted laser desorption/ionization with time‐of‐flight (MALDI‐TOF/TOF) mass spectrometry and electrospray ionization‐quadrupole with time‐of‐flight (ESI‐Q/TOF) mass spectrometry for obtaining amino acid sequence. Spectra obtained were searched against the NCBInr and SwissProt database. Additional analysis was performed using PEAKS Studio 7.0 (Sequencing de novo). The venom of P. striata has a complex mixture of proteins from which 43 were identified. Within the identified proteins are classical venom proteins (phospholipase A, hyaluronidase, and aminopeptidase N), allergenic proteins (different venom allergens), and bioactive peptides (U10‐ctenitoxin Pn1a). Venom allergens are among the most expressed proteins, suggesting that P. striata venom has high allergenic potential. This study discusses the possible functions of the proteins identified in the venom of P. striata.  相似文献   

6.
De novo peptide sequencing by mass spectrometry (MS) can determine the amino acid sequence of an unknown peptide without reference to a protein database. MS-based de novo sequencing assumes special importance in focused studies of families of biologically active peptides and proteins, such as hormones, toxins, and antibodies, for which amino acid sequences may be difficult to obtain through genomic methods. These protein families often exhibit sequence homology or characteristic amino acid content; yet, current de novo sequencing approaches do not take advantage of this prior knowledge and, hence, search an unnecessarily large space of possible sequences. Here, we describe an algorithm for de novo sequencing that incorporates sequence constraints into the core graph algorithm and thereby reduces the search space by many orders of magnitude. We demonstrate our algorithm in a study of cysteine-rich toxins from two cone snail species (Conus textile and Conus stercusmuscarum) and report 13 de novo and about 60 total toxins.  相似文献   

7.
The recent proliferation of novel mass spectrometers such as Fourier transform, QTOF, and OrbiTrap marks a transition into the era of precision mass spectrometry, providing a 2 orders of magnitude boost to the mass resolution, as compared to low-precision ion-trap detectors. We investigate peptide de novo sequencing by precision mass spectrometry and explore some of the differences when compared to analysis of low-precision data. We demonstrate how the dramatically improved performance of de novo sequencing with precision mass spectrometry paves the way for novel approaches to peptide identification that are based on direct sequence lookups, rather than comparisons of spectra to a database. With the direct sequence lookup, it is not only possible to search a database very efficiently, but also to use the database in novel ways, such as searching for products of alternative splicing or products of fusion proteins in cancer. Our de novo sequencing software is available for download at http://peptide.ucsd.edu/.  相似文献   

8.
The crustacean stomatogastric ganglion (STG) is modulated by both locally released neuroactive compounds and circulating hormones. This study presents mass spectrometric characterization of the complement of peptide hormones present in one of the major neurosecretory structures, the pericardial organs (POs), and the detection of neurohormones released from the POs. Direct peptide profiling of Cancer borealis PO tissues using matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) revealed many previously identified peptides, including proctolin, red pigment concentrating hormone (RPCH), crustacean cardioactive peptide (CCAP), several orcokinins, and SDRNFLRFamide. This technique also detected corazonin, a well-known insect hormone, in the POs for the first time. However, most mass spectral peaks did not correspond to previously known peptides. To characterize and identify these novel peptides, we performed MALDI postsource decay (PSD) and electrospray ionization (ESI) MS/MS de novo sequencing of peptides fractionated from PO extracts. We characterized a truncated form of previously identified TNRNFLRFamide, NRNFLRFamide. In addition, we sequenced five other novel peptides sharing a common C-terminus of RYamide from the PO tissue extracts. High K+ depolarization of isolated POs released many peptides present in this tissue, including several of the novel peptides sequenced in the current study.  相似文献   

9.
Highly sensitive peptide fragmentation and identification in sequence databases is a cornerstone of proteomics. Previously, a two-layered strategy consisting of MALDI peptide mass fingerprinting followed by electrospray tandem mass spectrometry of the unidentified proteins has been successfully employed. Here, we describe a high-sensitivity/high-throughput system based on orthogonal MALDI tandem mass spectrometry (o-MALDI) and the automated recognition of fragments corresponding to the N- and C-terminal amino acid residues. Robotic deposition of samples onto hydrophobic anchor substrates is employed, and peptide spectra are acquired automatically. The pulsing feature of the QSTAR o-MALDI mass spectrometer enhances the low mass region of the spectra by approximately 1 order of magnitude. Software has been developed to automatically recognize characteristic features in the low mass region (such as the y1 ion of tryptic peptides), maintaining high mass accuracy even with very low count events. Typically, the sum of the N-terminal two ions (b2 ion), the third N-terminal ion (b3 ion), and the two C-terminal fragments of the peptide (y1 and y2) can be determined. Given mass accuracy in the low ppm range, peptide end sequencing on one or two tryptic peptides is sufficient to uniquely identify a protein from gel samples in the low silver-stained range.  相似文献   

10.
Tryptic digestion of proteins continues to be a workhorse of proteomics. Traditional tryptic digestion requires several hours to generate an adequate protein digest. A number of enhanced accelerated digestion protocols have been developed in recent years. Nonetheless, a need still exists for new digestion strategies that meet the demands of proteomics for high-throughput and rapid detection and identification of proteins. We performed an evaluation of direct tryptic digestion of proteins on a MALDI target plate and the potential for integrating RP HPLC separation of protein with on-target tryptic digestion in order to achieve a rapid and effective identification of proteins in complex biological samples. To this end, we used a Tempo HPLC/MALDI target plate deposition hybrid instrument (ABI). The technique was evaluated using a number of soluble and membrane proteins and an MRC5 cell lysate. We demonstrated that direct deposition of proteins on a MALDI target plate after reverse-phase HPLC separation and subsequent tryptic digestion of the proteins on the target followed by MALDI TOF/TOF analysis provided substantial data (intact protein mass, peptide mass and peptide fragment mass) that allowed a rapid and unambiguous identification of proteins. The rapid protein separation and direct deposition of fractions on a MALDI target plate provided by the RP HPLC combined with off-line interfacing with the MALDI MS is a unique platform for rapid protein identification with improved sequence coverage. This simple and robust approach significantly reduces the sample handling and potential loss in large-scale proteomics experiments. This approach allows combination of peptide mass fingerprinting (PMF), MS/MS peptide fragment fingerprinting (PPF) and whole protein MS for both protein identification and structural analysis of proteins.  相似文献   

11.
The egg yolk precursor protein, vitellogenin (Vg), was isolated by size exclusion and ion exchange chromatography from plasma of California halibut (Paralichthys californicus) treated with estrogen. MALDI TOF mass spectrometry (MS) analysis resulted in a molecular mass of 188 kDa. MS/MS de novo sequencing identified the protein as Vg by matching sequences of tryptic peptides to the known sequences of several other species. Matches were also made to two different forms of Vg in haddock, medaka, and mummichog, providing evidence that California halibut has more than one form of Vg. Native PAGE and Western blot with an antibody to turbot (Scophthalmus maximus) Vg confirmed the identity of the protein. Protein resolved on the SDS PAGE as a double band of approximately the same mass as determined with MALDI TOF, and two lower mass bands that were also immunoreactive. MALDI TOF and MS/MS de novo sequencing were useful for determining the molecular mass, identification, and exploring the multiplicity of Vg. The potential of using other MS methods to understand the structure and function of Vg is discussed.  相似文献   

12.
Kim SI  Kim JY  Kim EA  Kwon KH  Kim KW  Cho K  Lee JH  Nam MH  Yang DC  Yoo JS  Park YM 《Proteomics》2003,3(12):2379-2392
As an initial step to the comprehensive proteomic analysis of Panax ginseng C. A. Meyer, protein mixtures extracted from the cultured hairy root of Panax ginseng were separated by two-dimensional polyacrylamide gel electrophoresis (2-DE). The protein spots were analyzed and identified by peptide finger printing and internal amino acid sequencing by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) and electrospray ionization quadrupole-time of flight mass spectrometry (ESI Q-TOF MS), respectively. More than 300 protein spots were detected on silver stained two-dimensional (2-D) gels using pH 3-10, 4-7, and 4.5-5.5 gradients. Major protein spots (159) were analyzed by peptide fingerprinting or de novo sequencing and the functions of 91 of these proteins were identified. Protein identification was achieved using the expressed sequence tag (EST) database from Panax ginseng and the protein database of plants like Arabidopsis thaliana and Oryza sativa. However, peptide mass fingerprinting by MALDI-TOF MS alone was insufficient for protein identification because of the lack of a genome database for Panax ginseng. Only 17 of the 159 protein spots were verified by peptide mass fingerprinting using MALDI-TOF MS whereas 87 out of 102 protein spots, which included 13 of the 17 proteins identified by MALDI-TOF MS, were identified by internal amino acid sequencing using tandem mass spectrometry analysis by ESI Q-TOF MS. When the internal amino acid sequences were used as identification markers, the identification rate exceeded 85.3%, suggesting that a combination of internal sequencing and EST data analysis was an efficient identification method for proteome analysis of plants having incomplete genome data like ginseng. The 2-D patterns of the main root and leaves of Panax ginseng differed from that of the cultured hairy root, suggesting that some proteins are exclusively expressed by different tissues for specific cellular functions. Proteome analysis will undoubtedly be helpful for understanding the physiology of Panax ginseng.  相似文献   

13.
Protein identification has been greatly facilitated by database searches against protein sequences derived from product ion spectra of peptides. This approach is primarily based on the use of fragment ion mass information contained in a MS/MS spectrum. Unambiguous protein identification from a spectrum with low sequence coverage or poor spectral quality can be a major challenge. We present a two-dimensional (2D) mass spectrometric method in which the numbers of nitrogen atoms in the molecular ion and the fragment ions are used to provide additional discriminating power for much improved protein identification and de novo peptide sequencing. The nitrogen number is determined by analyzing the mass difference of corresponding peak pairs in overlaid spectra of (15)N-labeled and unlabeled peptides. These peptides are produced by enzymatic or chemical cleavage of proteins from cells grown in (15)N-enriched and normal media, respectively. It is demonstrated that, using 2D information, i.e., m/z and its associated nitrogen number, this method can, not only confirm protein identification results generated by MS/MS database searching, but also identify peptides that are not possible to identify by database searching alone. Examples are presented of analyzing Escherichia coli K12 extracts that yielded relatively poor MS/MS spectra, presumably from the digests of low abundance proteins, which can still give positive protein identification using this method. Additionally, this 2D MS method can facilitate spectral interpretation for de novo peptide sequencing and identification of posttranslational or other chemical modifications. We envision that this method should be particularly useful for proteome expression profiling of organelles or cells that can be grown in (15)N-enriched media.  相似文献   

14.
We introduce a method for sequencing peptides by mass spectrometry using a metalloendopeptidase that cleaves proteins at the amino side of lysine (Lys-N). When analyzed by electron transfer dissociation (ETD)-based mass spectrometric sequencing, Lys-N-digested peptides that contain a single lysine residue produce spectra dominated by c-type fragment ions, providing simple ladders for sequence determination. This method should be a valuable strategy for de novo sequencing and the analysis of post-translational modifications.  相似文献   

15.

Background

Liquid chromatography combined with tandem mass spectrometry is an important tool in proteomics for peptide identification. Liquid chromatography temporally separates the peptides in a sample. The peptides that elute one after another are analyzed via tandem mass spectrometry by measuring the mass-to-charge ratio of a peptide and its fragments. De novo peptide sequencing is the problem of reconstructing the amino acid sequences of a peptide from this measurement data. Past de novo sequencing algorithms solely consider the mass spectrum of the fragments for reconstructing a sequence.

Results

We propose to additionally exploit the information obtained from liquid chromatography. We study the problem of computing a sequence that is not only in accordance with the experimental mass spectrum, but also with the chromatographic retention time. We consider three models for predicting the retention time and develop algorithms for de novo sequencing for each model.

Conclusions

Based on an evaluation for two prediction models on experimental data from synthesized peptides we conclude that the identification rates are improved by exploiting the chromatographic information. In our evaluation, we compare our algorithms using the retention time information with algorithms using the same scoring model, but not the retention time.
  相似文献   

16.
Despite a recent surge of interest in database-independent peptide identifications, accurate de novo peptide sequencing remains an elusive goal. While the recently introduced spectral network approach resulted in accurate peptide sequencing in low-complexity samples, its success depends on the chance of presence of spectra from overlapping peptides. On the other hand, while multistage mass spectrometry (collecting multiple MS 3 spectra from each MS 2 spectrum) can be applied to all spectra in a complex sample, there are currently no software tools for de novo peptide sequencing by multistage mass spectrometry. We describe a rigorous probabilistic framework for analyzing spectra of overlapping peptides and show how to apply it for multistage mass spectrometry. Our software results in both accurate de novo peptide sequencing from multistage mass spectra (despite the inferior quality of MS 3 spectra) and improved interpretation of spectral networks. We further study the problem of de novo peptide sequencing with accurate parent mass (but inaccurate fragment masses), the protocol that may soon become the dominant mode of spectral acquisition. Most existing peptide sequencing algorithms (based on the spectrum graph approach) do not track the accurate parent mass and are thus not equipped for solving this problem. We describe a de novo peptide sequencing algorithm aimed at this experimental protocol and show that it improves the sequencing accuracy on both tandem and multistage mass spectrometry.  相似文献   

17.
Milin, a potent molluscicide from the latex of Euphorbia milii, holds promise in medicinal biochemistry. Electrophoresis, size exclusion chromatography, mass spectrometry and other biochemical characteristics identify milin as a homodimeric, plant subtilisin-like serine protease, the first of its kind. The subunits of milin are differentially glycosylated affecting dimer association, solubility and proteolytic activity. The dimeric dissociation is SDS-insensitive and strongly temperature dependent but does not appear to be linked by disulfide bridges. N-terminal sequence of acid hydrolyzed peptide fragments shows no homology to known serine protease. Peptide mass fingerprinting and de novo sequencing of the tryptic fragments also did not identify putative domains in the protein. Milin seems to be a novel plant enzyme with subunit association partly similar to human herpes virus serine proteases and partly to penicillin binding proteins. Its behaviour on SDS-PAGE gels and other properties is like "kinetically stable" proteins. Such subunit association and properties might play a critical role in its physiological function and in controlling Schistosomiasis.  相似文献   

18.
Proteomic profiling by MALDI‐TOF MS presents various advantages (speed of analysis, ease of use, relatively low cost, sensitivity, tolerance against detergents and contaminants, and possibility of automation) and is being currently used in many applications (e.g. peptide/protein identification and quantification, biomarker discovery, and imaging MS). Earlier studies by many groups indicated that moderate reproducibility in relative peptide quantification is a major limitation of MALDI‐TOF MS. In the present work, we examined and demonstrate a clear effect, in cases apparently random, of sample dilution in complex samples (urine) on the relative quantification of peptides by MALDI‐TOF MS. Results indicate that in urine relative abundance of peptides cannot be assessed with confidence based on a single MALDI‐TOF MS spectrum. To account for this issue, we developed and propose a novel method of determining the relative abundance of peptides, taking into account that peptides have individual linear quantification ranges in relation to sample dilution. We developed an algorithm that calculates the range of dilutions at which each peptide responds in a linear manner and normalizes the received peptide intensity values accordingly. This concept was successfully applied to a set of urine samples from patients diagnosed with diabetes presenting normoalbuminuria (controls) and macroalbuminuria (cases).  相似文献   

19.
Lee YH  Kim MS  Choie WS  Min HK  Lee SW 《Proteomics》2004,4(6):1684-1694
Recently, various chemical modifications of peptides have been incorporated into mass spectrometric analyses of proteome samples, predominantly in conjunction with matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS), to facilitate de novo sequencing of peptides. In this work, we investigate systematically the utility of N-terminal sulfonation of tryptic peptides by 4-sulfophenyl isothiocyanate (SPITC) for proteome analysis by capillary reverse-phase liquid chromatography/tandem mass spectrometry (cRPLC/MS/MS). The experimental conditions for the sulfonation were carefully adjusted so that SPITC reacts selectively with the N-terminal amino groups, even in the presence of the epsilon-amino groups of lysine residues. Mass spectrometric analyses of the modified peptides by cRPLC/MS/MS indicated that SPITC derivatization proceeded toward near completion under the experimental conditions employed here. The SPITC-derivatized peptides underwent facile fragmentation, predominantly resulting in y-series ions in the MS/MS spectra. Combining SPITC derivatization and cRPLC/MS/MS analyses facilitated the acquisition of sequence information for lysine-terminated tryptic peptides as well as arginine-terminated peptides without the need for additional peptide pretreatment, such as guanidination of lysine amino group. This process alleviated the biased detection of arginine-terminated peptides that is often observed in MALDI MS experiments. We will discuss the utility of the technique as a viable method for proteome analyses and present examples of its application in analyzing samples having different levels of complexity.  相似文献   

20.
Heavy metals are required as nutrients for essential functions in microorganisms. However, higher concentrations of these cations are generally toxic and may produce contrasting effects on living organisms. Enterobacter liquefaciens strain C-1, a bacterium isolated from the Moa mine in Cuba, is able to survive in the presence of high concentrations of heavy metals. The proteomes of Enterobacter liquefaciens strain C-1, grown under aerobic conditions in the presence and absence of Co (II) were compared using two-dimensional gel electrophoresis analysis in the isoelectric point range of 4-7 and the mass range of 15-120 kDa. Significant changes in the expression level (> two-fold) were detected for 13 spots: seven and six were up- and down-regulated, respectively. Because the genome of this bacterium is unknown, identification by peptide mass fingerprinting only succeeded in four cases and most of the cross-species identifications were supported by de novo sequencing of tryptic peptides followed by sequence alignment using the MS BLAST program. Twelve different proteins were identified, ten are involved in cellular antioxidant defence probably induced by the presence of Co (II). This is the first step towards understanding the role of proteins participating in the mechanism of resistance to heavy metals in this bacterium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号