首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Activity of glucose 6-phosphate dehydrogenase (D-glucose 6-phosphate:NADP oxidoreductase, EC 1.1.1.49 [EC] ) preparation from sweet potatoroot tissue was markedly altered in the presence of variousions. Cations or anions were effective in the following order:Na$, K$>Tris$>NH4$>Mg2$>Ca2$, or Cl>NO3,HPO42–>SO42–>HCO3. Activity was inhibitedat high concentrations of Ca2$, and HCO3,. In an investigationon the dependence of the activity on pH, two activity peakswere clearly observed at low ionic strength. Ionic strength altered both the Km and Vmax for glucose 6-phosphate(G6P). A Lineweaver-Burk plot for the enzyme, with respect toG6P, showed a bimodal nature at low ionic strength; suggestingnegative cooperativity. Deviation from linearity of the plotwas less with an increase in the ionic strength. 1 Present address: Institute of Applied Microbiology, Universityof Tokyo, Bunkyo-ku, Tokyo 113. (Received September 18, 1971; )  相似文献   

2.
Mannitol-1-phosphate dehydrogenase (EC 1.1.1.17 [EC] ) and mannitol-1-phosphatase(EC number yet unassigned) were detected in the brown algae,Spatoglossum pacificum and Dictyota dichotoma. The enzymes wereextracted from algal fronds and their properties were investigatedusing partially purified preparations. Mannitol-1-phosphatase shows maximum activity at pH 7. The enzymehad a narrow substrate specificity. The Km value for mannitol-1-phosphateis 8.3x10–4 M (30°C, pH 7.0). The enzyme is activatedby Mg++ and Mn++and is strongly inhibited by PCMB, Hg++and NaF. Mannitol-1-phosphate dehydrogenase showed maximum activitiesat pH values 6.5 and 10.2 in reductive and oxidative reactions,respectively. The dehydrogenase also showed narrow substratespecificity; mannitol-1-phosphate and NAD or fructose-6-phosphateand NADH2 are utilized, respectively, in oxidative and reductivereactions by the enzyme. Km values for these substrates andthe coenzymes are 2.5x10–4 M and 7.1x10–5 M forthe first pair and 2.8x10–4 M and 1.3x10–5 M forthe latter pair. This enzyme was strongly inhibited by PCMBand Hg++, but was only slightly affected by adenosine phosphates. Possible roles of these enzymes in the biosynthesis of mannitolin brown algae are discussed. 1 Contributions from the Shimoda Marine Biological Station ofTokyo Kyoiku University, No. 233. This work was supported inpart by a Grant-in-Aid for Co-operative Research from the Ministryof Education, Japan and in part by a grant to one of us (T.Ikawa) from the Matsunaga Science Foundation. 2 Present address: Chemical and Physical Laboratory, HoechstJapan Research Laboratory, Minamidai, Kawagoe, Japan. (Received February 22, 1972; )  相似文献   

3.
NADP-specific isocitrate dehydrogenase from the soluble fractionof maturing castor bean endosperm was partially purified (approximately180-fold) and some of its enzymatic properties were studied.Mg++, Mn++, Cd++, Ba++, Co++, Zn++, and Sr++ were activatorsof the enzyme reaction at a concentration of 6.7x10 M. The optimumpH of this enzyme was about 8.5. The enzyme was stable in thenarrow range from pH 7.0 to pH 8.0. Km values for isocitrateand NADP at pH 8.5 were 3.5x10–6 M and 3.6x10–6M, respectively. Enzyme stability was not affected by NaCl concentrationand enzyme reaction was inhibited at 5x10–6 M PCMB (80%inhibition). It is suggested that the condensation product ofglyoxylate and oxalacetate also inhibits the reaction. NADP-IDHin the crude extract from maturing castor bean endosperm washeat-stable but the dialyzed enzyme preparation and the partiallypurified enzyme were labile against heat treatment at 57°C.When Mg++ was added to the partially purified enzyme in thepresence of isocitrate or NADP, the enzyme was stabilized againstheat treatment. Mn++, Ca++, Co++, Sr++ or Ba++ could be substitutedfor Mg++. Addition of only one of the factors, Mg++, isocitrateor NADP, had no effect on the heat stability. Moreover, a combinationof isocitrate and NADP did not establish stabilization. A divalentcation plays a central role, while adenine nucleotide, especiallyATP, may have an important part in stabilization. (Received August 14, 1972; )  相似文献   

4.
NADP malic enzyme (EC 1.1.1.40 [EC] ) from leaves of two C4 speciesof Cyperus (C. rotundus and C. brevifolius var leiolepis) exihibiteda low level of activity in an assay mixture that contained lowconcentrations of Cl. This low level of activity wasmarkedly enhanced by increases in the concentration of NaClup to 200 mM. Since the activity of NADP malic enzyme was inhibitedby Na2SO4 and stimulated by relatively high concentration ofTris-HCl (50–100 mM, pH 7–8), the activation ofthe enzyme by NaCl appears to be due to Cl. Variationsin the concentration of Mg2+ affected the KA (the concentrationof activator giving half-maximal activation) for Cl,which decreased from 500 mM to 80 mM with increasing concentrationsof Mg2+ from 0.5 mM to 7 mM. The Km for Mg2+ was decreased from7.7 mM to 1.3 mM with increases in the concentration of NaClfrom zero to 200 mM, although the increase of Vmax was not remarkable.NADP malic enzyme from Cyperus, being similar to that from otherC4 species, was able to utilize Mn2+. The Km for Mn2+ was 5mM, a value similar to that for Mg2+. The addition of 91 mMNaCl markedly decreased the Km for Mn2+ to 20 +M. NADP malicenzyme from Setaria glauca, which contains rather less Clthan other C4 species, was inactivated by concentrations ofNaCl above 20 mM, although slight activation of the enzyme wasobserved at low concentrations of NaCl at pH7.6. (Received February 20, 1989; Accepted June 12, 1989)  相似文献   

5.
Dihydrofolate reductase (E.C. 1.5.1.3 [EC] ) was found in pea seedlingsand was partially purified by treatments with ammonium sulfate,protamine sulfate and by DEAE-cellulose column chromatography.Some properties of the enzyme were investigated. Optimum pHfor the reaction was 6.5. In the enzyme reaction, FAH2 and NADPH2were specifically required. MICHAELIS constants for FAH2 andNADPH2 were 4.3x10–6 M and 4.0x10–5 M, respectively.Folate antagonists such as aminopterin, methotrexate and pyrimethaminewere potent inhibitors of this enzyme. Enzyme activity was almostcompletely inhibited at a concentration of 10–7 M of aminopterinand methotrexate and 10–6 M of pyrimethamine. Growth of germinating pea seeds was inhibited by aminopterin,methotrexate and pyrimethamine, and it recovered significantlywith a tetrahydro-derivative of folate, CF, but not with dihydrofolicor folic acid. These results suggest that growth inhibitionof pea seedlings by these antagonists is due to inhibition ofdihydrofolate reductase in seedlings. 1Studies on the enzymatic synthesis and metabolism of folatecoenzymes in plants IV. (For the previous paper, Part III, seeReference (21)) . Part of this paper was presented at the AnnualMeeting of the Agricultural Chemical Society of Japan held atTokyo on April 4, 1967 (Received October 8, 1969; )  相似文献   

6.
1.Organic acids, such as citric, -ketoglutaric, succinic, fumaricand L-malic acids, inhibit the IAA-induced growth of Avena coleoptilesections. But pyruvic acid has no effect on the growth. 2.High concentrations of MnCl2 (for example 10–3 m) alleviatethe inhibition due to L-malic, -ketoglutaric, succinic and fumaricacids, but not that due to D-malic, tartaric and malonic acids. 3.A mechanism of the alleviating effect of Mn++ on the inhibitiondue to the organic acids is discussed with the reference tothe activating effect of Mn++ on "malic" enzyme. 1Contribution No. 6 from the Botanical Gardens. Faculty of Science,University of Tokyo, Koishikawa, Tokyo.  相似文献   

7.
Methenyltetrahydrofolate cyclohydrolase (E.C. 3.5.4.9 [EC] ), whichis responsible for the enzymatic conversion of 5,10-methenyl-H4FAto 10-formyl-H4FA, has been found in various plant tissues.The enzyme was partially purified from pea seedlings and someof its properties were investigated. It was unstable, but wasstabilized by the addition of 25% glycerol. The enzyme was purifiedabout 60-fold by fractionation with ammonium sulfate and columnchromatography on DEAE-cellulose in the presence of 25% glycerol.Optimum pH for the reaction was 7.7. Michaelis constants for5,10-methenyl-H4FA in the forward reaction, and for 10-formyl-H4FAin the reverse reaction were 4x10–5M and 2x10–4M,respectively. The apparent equilibrium constant for the reactionwas calculated as 50. Enzyme activity was greatly inhibitedby the reduced forms of folate derivatives. The probable participationof this enzyme in the regulation of folate coenzyme levels inplant tissues has been suggested. 1 Studies on the enzymatic synthesis and metabolism of folatecoenzymes in plants, VI. (For Part V, see Reference (5) ). Partof this paper was presented at the 22nd annual meeting of theJapan Vitamin Society held at Hiroshima on October 14, 1970. 2 Present address: Sizuoka Eiwa Junior College, Ikeda, Shizuoka. (Received September 9, 1972; )  相似文献   

8.
NADPH2 and ATP competitively inhibit sweet potato glucose 6-phosphatedehydrogenase with NADP and glucose 6-phosphate (G6P), respectively.At pH 8.0, a Lineweaver-Burk plot of the reciprocal rate againstreciprocal G6P concentration was concave downwards in the presenceand absence of ATP, whereas a double reciprocal plot followedthe Michaelis-Menten relationship at pH 7.0, irrespective ofthe presence of ATP. Many of the other metabolic intermediatestested had no effects on the enzyme reaction. 1 This paper constitutes Part 96 of the Phytopathological Chemistryof Sweet Potato with Black Rot and Injury. 2 Present address: Institute of Applied Microbiology, Universityof Tokyo Bunkyo-ku, Tokyo 113. (Received October 20, 1971; )  相似文献   

9.
Nitrite reductase was extracted from the red alga Porphyra yezoensisUeda and purified through precipitation with ammonium sulfate,column chromatographies, and polyacrylamide gel disk electrophoresis.The enzyme preparation thus obtained showed a single band ondisk electrophoresis. The absorption spectrum had three maxima at 385 nm (Soret band),580 nm (-band), and 278 nm; the ratio of absorbance of the Soretband to the -band was 4.3. The molecular weight and the numberof amino acid residues were estimated to be 63,000 and 601,respectively. The enzyme activity was optimal at around pH 7.5, and its activitywas heat labile as indicated by reduction of activity by about70% when heated at 37°C for 10 min. The enzyme used ferredoxin and methyl viologen, but not NADP+or NAD+, as the electron carriers. Moreover, reduced forms ofthe latter two showed no effect on its activity. Km values ofthis enzyme for NO2, Fd, and MV were 8.1 x 10–4M, 4.3 x 10–8 M, and 3.7 x 10–4 M, respectively.Almost half of its activity was lost when potassium cyanidewas added at a concentration as low as 10–5 M, and theKi value was 1.8 x 10–5 M. Thus, the nitrite reductaseof Porphyra must be systematically grouped in EC 1.7.7.1 [EC] . Itresembled closely that of Chlorella, except for the amountsof some amino acids. 1 Present address: Department of Biological Sciences, Universityof Tsukuba, Sakura-Mura, Ibaraki, 300-31 Japan. 2 Present address: Department of Fisheries, College of Agricultureand Veterinary Medicine, Nihon University, Shimouma, Setagaya-ku,Tokyo, 154 Japan. (Received June 10, 1975; )  相似文献   

10.
An enzyme, which catalyzes the formation of dihydrofolate fromdihydropteroic acid and L-glutamic acid, was found in pea seedlings.The enzyme was purified approximately 25-fold from the crudeextracts of pea seedlings, and its some properties were investigated.Optimum pH for the enzyme activity was found to be 8.8. Pteroicand tetrahydropteroic acids were not active as substrate. Theenzymatic reaction required as cofactors ATP, divalent (Mg2+or Mn2+) and univalent (K+, NH4+ or Rb+) cations. The productwas characterized as dihydrofolic acid by bioautography. MICHAELIS constants for L-glutamic acid, ATP, dihydropteroicacid and Mg2+ were 7.0x10–4, 9.0x10–5, 3.5x10–6and 1.2x10–3 M, respectively. The MICHAELIS constant forMn2+ was 3.0x10–4. The enzyme was inhibited by PCMB orsilver nitrate and, to some extent, by L-aspartic acid. Inhibitionby PCMB was completely reversed by addition of 2-mercaptoethanol.Enzyme activity was distributed widely among plants. The importanceof magnesium and potassium ions for enzyme catalysis is discussed. 1For the previous paper, Part V, see Reference (30). (Received March 28, 1970; )  相似文献   

11.
Konjak phosphomannose isomerase was inactivated in a time-dependentprocess by metal binding agents, and the inactivated enzymewas instantaneously reactivated by adding such metal ions asZn++, Co++, Fe++, Mn++ and Cu++. However, neither Ca++ nor Mg++were effective for reactivation. Zn++, at a low concentration,brought about complete reactivation of the enzyme at pH 6–7. The EDTA-treated enzyme was more susceptible to heat denaturationwhen compared with the native enzyme, but the addition of variousmetal ions caused the recovery of the thermal stability of theEDTA-treated enzyme. The magnitude of the recovery dependedon the metal ion species and the concentrations. The most effectivemetal ion was Co++, which caused the recovery of thermal stabilityto a level higher than that of the native enzyme. Phosphomannoseisomerase was inhibited by pchloromercuribenzoate and HgCl2;the inhibition by p-chloromercuribenzoate being more pronouncedas incubation progressed. In contrast, the EDTA-treated enzymewas more readily inhibited by the mercurial ion than was thenative enzyme. Zn++, when added to the EDTA-treated enzyme,markedly restored its resistance to the mercurial-induced inhibition.The metal-substituted enzyme was also inhibited by EDTA in atime-dependent process. 1 This paper constitutes part 4 of studies on konjak mannanbiosynthesis. (Received March 3, 1975; )  相似文献   

12.
The metabolism of [14C]GA20 during seed maturation of Phaseolusvulgaris was studied using cell-free systems from embryos rangingin age from 10 DAF (day after flowering) to 24 DAF. Enzyme preparationsfrom very immature seeds actively converted GA20 to GA1, GA5and GA6. The ratio of incubation products suggested the biosyntheticpathway of GA20—GA5—GA6. Fluctuation in the levelsof endogenous C19-GAs, namely GA1, GA4, GA5, GA6, GA8, GA9 andGA20 was analyzed by GC-SIM using internal standards to compareenzyme activity with the levels of endogenous GAs. AlthoughGA1, GA4 and GA6 showed maximum levels on 20 DAF, enzyme activitydecreased during seed maturation and showed weak activity on20 DAF. 1Graduate student of the University of Tokyo, Department ofAgricultural Chemistry, Bunkyo-ku, Tokyo 113, Japan. 3Present address: Pesticides Research Laboratory, TakarazukaResearch Center, Sumitomo Chemical Co., Ltd., Takarazuka, Hyogo655, Japan. (Received December 17, 1987; Accepted March 30, 1988)  相似文献   

13.
High activity of phosphoenolpyruvate (PEP)-carboxykinase, orADP: oxalacetate (OAA) carboxy-lyase activity (a kind of EC4. 1. 1. 32) was discovered in enzyme extracts or partiallypurified preparations obtained from the brown algae, Eiseniabicyclis, Dictyota dichotoma, Spatoglossum pacificum; and Hizikiafusiformis. Enzyme activities were determined by measuring theradioactivity incorporated in the products of dark 14CO2-fixationand by spectrophotometric determinations. Except for the lowactivity of "malic enzyme" (EC 1. 1. 1.40), no activities ofother carboxylases, i.e. PEP-carboxylase, PEP-carboxytransphosphorylase,and pyruvate carboxylase could be detected in algal extractsprepared under various conditions. Malate dehydrogenase (EC1. 1. 1. 37), fumarase (EC 4. 2. 1. 2), and glutamic: oxalacetictransaminase (EC 2. 6. 1. 1) were also detected. The algal PEP-carboxykinase required ADP and Mn2+ for maximumactivity in the carboxylation reaction; and ATP and Mn2+, butnot GTP, for maximum activity in both the decarboxylation andOAA-14CO2-exchange reactions. The optimum pH of purified PEP-carboxykinase was in the regionof 7.0 to 7.3 in both the carboxylation and decarboxylationreactions, and its Km values for HCO3, PEP, and ADP were10 mM, 0.3 mM, and 0.07 mM, respectively, in the carboxylationreaction, and values for OAA and ATP were 0.05 mM and 0.4 mM,respectively, in the decarboxylation reaction. Furthermore,the decarboxylation reaction was markedly inhibited by 20 mMHCO3. The physiological role of PEP-carboxykinase as the enzyme responsiblefor the entrance reaction of the dark CO2-fixation is discussed. 1 Contributions from the Shimoda Marine Biological Station ofTokyo Kyoiku University, No. 236. This work was supported inpart by a Grant-in-Aid for Co-operative Research from the Ministryof Education, Japan and Matsunaga Science Foundation (to T.Ikawa). 2 Present address: Department of Antibiotics, the National Instituteof Health, Shinagawa, Tokyo, Japan. (Received February 22, 1972; )  相似文献   

14.
Some enzymic Properties of a partially purified preparationof sucrose phosphate synthetase (E.C.2.4.1.14) from germinatingrice seed scutella were studied. Examination of the reactionkinetics revealed that the rate of synthesis of sucrose phosphatefollows the Michaelis-Menten equation at an optimum PH of 7.5,having Km of 25 mM for UDP-glucose, and of 4.9 mM for fructose6-phosphate. UDP inhibited the enzyme reaction competitively;K1 of 3.3 mM. Fe++ and Fe+++ activated the enzyme reaction about2-fold; Ka, 0.3 mM and 2.0 mM, respectively. Co++, Co(NH3)6+++,Mg++ and Mn++ also activated the enzyme reaction. At high concentrationK+ activated the enzyme reaction with the maximum activationof 24% at 400 mM. The molecular weight and S20,w value of theenzyme were determined as 4.5 ? 105 and 10.4S, respectively. 1Part IV of this series is Ref. (5). 2California Foundation for Biochemical Research Fellow (1973). (Received December 20, 1973; )  相似文献   

15.
A sulfite-dependent ATPase [EC 3.6.1.3 [EC] ] of Thiobacillus thiooxidanswas activated and solubilized by treatment with trypsin [EC3.4.4.4 [EC] ], and purified 84-fold with a 32% recovery. It requiredboth Mg2+ and SO32– for full activity, and its optimumpH was found at 7.5–8.0. Mn2+, Co2+, and Ca2+ could partiallysubstitute for Mg2+, while SeO32– and CrO42– couldpartially substitute for SO32–. The enzyme hydrolyzed ATP and deoxy-ATP most rapidly and otherphosphate esters were poorer substrates. The apparent Km valuefor ATP was 0.33 mM. The enzyme activity was strongly inhibitedby 0.2 mM NaN3 and 10 mM NaF. (Received July 27, 1977; )  相似文献   

16.
The activities of enzymes involved in C4 photosynthesis andphotorespiration in colorless parts of variegated leaves ofStenotaphrum secundatum (Walt.) Kuntze were compared with thosein green leaves. Chlorophyll content of the colorless part wasonly about 0.3–3% of that of the green leaves. The activities of chloroplastic enzymes, pyruvate, Pi dikinase,NADP+-malic enzyme and NADP+-glyceraldehyde 3-phosphate dehydrogenasewere considerably lower in colorless tissue on a fresh weightor protein basis (the ratios of the activities in the green/colorlesstissues ranging from 5 to 20). A cytoplasmic enzyme, UDP-glucosepyrophosphorylase as well as aspartate and alanine aminotransferasesshowed comparable activities in the two types of tissue, whereasPEP carboxylase in the colorless tissue had only the one-thirdactivity of that in green tissue. Differences in activitieswere also observed for the glycolate pathway enzymes (the ratiosranging from 2 to 7 for glycolate oxidase, hydroxypyruvate reductaseand serine hydroxymethyltransferase, and 7 to 15 for catalase),while cytochrome c oxidase showed comparable activity in thetwo types of tissue. The results suggest that the deficiency of thylakoid developmentin the colorless tissue influences enzyme activities not onlyin plastids but also in other cellular compartments. 1Present address: Institute of Applied Microbiology, Universityof Tokyo, Tokyo 113, Japan. (Received March 26, 1986; Accepted June 17, 1986)  相似文献   

17.
Sedimentation behavior of sweet potato glucose 6-phosphate dehydrogenasewas studied using the sucrose density gradient centrifugation.The relative s value to s20, value of alcohol dehydrogenasewas determined to be about 6 in the absence of both NADP$ andglucose 6-phosphate. In the presence of NADP$, the enzyme wassedimented with a relative s value of about 9. The additionof glucose 6-phosphate did not affect the sedimentation behavior.When glucose 6-phosphate was added to the gradient medium containingNDAP$, the enzyme was sedimented with a relative s value ofabout 6 or 7, depending on the concentration of glucose 6-phosphate. 1 Present address: Institute of Applied Microbiology, Universityof Tokyo, Bunkyo-ku. Tokyo, Japan. (Received February 13, 1971; )  相似文献   

18.
Quinate:NAD oxidoreductase, which catalyzes the interconversionof quinic acid and 3-dehydroquinic acid, has been extractedfrom liquid N2-frozen powders of 2-day-old etiolated seedlingsof Phaseolus mungo. The enzyme was partially purified by ammoniumsulfate fractionation and by DEAE-cellulose and gel filtrationcolumn chromatographies, and was separable from shikimate: NADPoxidoreductase and 3-dehydroquinate hydrolyase. The activityappeared to be maximal at pH 8.6–9.0. The apparent Kmvalues at pH 8.6 were 0.48 mM for quinic acid and 0.043 mM forNAD. The involvement of sulfhydryl group in the reaction wasdemonstrated by the potent inhibitory action of both heavy metalions and sulfhydryl inhibitors. The purified preparation ofthe enzyme was reasonably stable for storage in the presenceof dithiothreitol. The metal ions tested, except Hg2+ and Ag+,showed practically no inhibitory action on the enzyme activity.Aromatic amino acids and other aromatic and alicyclic compoundstested had little or no effect on the activity. 1 Part 9 of "Alicyclic acid metabolism in plants". (Received January 20, 1977; )  相似文献   

19.
UDP-glucuronate pyrophosphorylase from the pollen of Typha latifoliaLinne was purified about 600-fold by protamine sulfate treatment,ammonium sulfate fractionation, gel filtration, chromatofocusing,affinity chromatography, and isoelectric focusing. The purificationwas carried out using buffer containing 20% sucrose which helpedto prevent enzyme inactivation. This enzyme required equimolarlevels of Mg2+ to PPi or UTP for maximum velocity of enzymecatalysis. Results of experiments on product inhibition andthe initial velocity of the enzyme catalysis reaction suggesteda Theorell-Chance mechanism. 1 Present address: Japan Spectroscopic Co., 2967-5, Ishikawa-Cho,Hachioji-City, Tokyo 192, Japan. (Received April 5, 1983; Accepted September 26, 1983)  相似文献   

20.
The NADP$-specific isocitrate dehydrogenase was partially purifiedfrom photosynthetically-grown Rhodospirillum rubrum. The pHoptimum is between 7.5 and 9.0 in phosphate buffer. The apparentKm is 3.1x10–5 M for isocitrate, 5.1x10–5 M forNADP$, 1.7x10–5 M for manganese, 1.5x10–4 M formagnesium, and 3.5x10–3 M for inorganic orthophosphate.Arsenate exerts a slight inhibition. The Q10 between 17.5°Cand 40°C is 1.62, and the energy of activation at 25°Cis 9.74 Kcal/mole. Glyoxylate and oxalacetate cause concertedinhibition of the enzyme activity. Various nucleotides inhibitthe activity. The kinetics of inhibition by ATP was found tobe mixed type with respect to NADP$ and isocitrate, the Ki valuesbeing 1.17x10–3 M and 1.10x10–3 M respectively.The inhibition between ATP and orthophosphate is competitivewith a Ki of 10–4M. Thiol binding reagents are inhibitory;this inhibition is reversed by cysteine or reduced glutathione. (Received October 1, 1971; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号