首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Variation in dog-whelk shells in relation to wave action and crab predation   总被引:1,自引:0,他引:1  
In Nucella lapillus there is usually a progressive gradation in mean shell shape from short squat individuals on exposed headlands to more elongated ones in shelter. This pattern has been attributed to the differential selective effects of wave action and crab predation, although it would almost certainly be an oversimplification to imagine these as the only significant forces involved, especially near the limits of the species' distribution.
However, whilst this pattern of shell-shape variation with exposure is generally true over most of the animal's range in both Europe and North America, there are exceptions. There are occasional enclaves with much more elongated shells than would normally have been expected. Sometimes these are so abundant, as in the Severn Estuary, that all dog-whelk enclaves are unusually elongated, regardless of the exposure of their habitat.
In other areas, such as south-eastern England, the Solway Firth and the area around the mouth of the Conway the shells are not unusually elongated, but the enclaves show very little variation: a normal sheltered-shore form is seen wherever the species occurs. Shetland samples appear to be a combination of this pattern (predominating) with the 'normal' one showing the full range of shellshape variation.
Nucella appears in the Atlantic fossil record at the end of the Pliocene without any antecedent forms. It is assumed to have colonized from the Pacific and exploited the vacant niche before the onset of the Ice Age. Successive advances and retreats of the ice, with attendant changes in sea level, will have served to break up and recombine those dog-whelk populations that were not eliminated. It is postulated that the modern Nucella lapillus is a combination of several genetically distinct populations, some of which show the full range of variation and may respond to the selective effects of crabs and waves, and some of which do not and show little variation.  相似文献   

2.
Nucella lapillus is a common and widely distributed carnivorous gastropod of North Atlantic rocky sea shores. Populations of this animal usually show variation in shell shape according to the exposure of their habitat to wave action, with individuals from exposed sites having a short squat shell and a wide aperture as compared with a more elongated form seen in shelter. The same pattern of variation is seen over most of the species European range, but there are some exceptions. One of these has been described in Sullom Voe (Shetland) and this prompted an investigation of Faroese populations to ascertain whether they behaved in a similar manner. It is shown in this paper that Faroese populations vary in shell shape with exposure in the usual way (and not like those in Shetland) and moreover show such a fine and precise reflection of minor alterations in environmental conditions that measurement of dog-whelk shells may prove to be the best way of 'measuring' exposure in Faroe.  相似文献   

3.
This paper considers the patterns of shell shape variation shown by Nucella canalicuata, N. emarginata and N. lamellosa from two areas of the Pacific Northwest: the shores near Friday Harbour on San Juan Island and near Bamfield on the west coast of Vancouver Island. No clear pattern of variation in association with changes in exposure was seen in either N. canaliculata or N. lamellosa . It appears that genetic influences are more important controls of shell shape than environmental selection in both these species. Nucella emarginata shows the nearest approximation to the pattern shown by the Atlantic species, N. lapillus , but only at the exposed end of the wave-action gradient. On those shores, enclaves from the most surf-washed open coast headlands have shells with proportionally larger apertures (and thus a shorter, squatter form) than their equivalents in local shelter. But, unlike in N. lapillus , the trend does not continue onto genuinely sheltered shores. Under these circumstances the species is generally rare and, where enclaves do occur, their shells are of much the same shape (although of a much larger size) as in more exposed situations.  相似文献   

4.
Global climate change is having a significant effect on the distributions of a wide variety of species, causing both range shifts and population extinctions. To date, however, no consensus has emerged on how these processes will affect the range-wide genetic diversity of impacted species. It has been suggested that species that recolonized from low-latitude refugia might harbour high levels of genetic variation in rear-edge populations, and that loss of these populations could cause a disproportionately large reduction in overall genetic diversity in such taxa. In the present study, we have examined the distribution of genetic diversity across the range of the seaweed Chondrus crispus, a species that has exhibited a northward shift in its southern limit in Europe over the last 40 years. Analysis of 19 populations from both sides of the North Atlantic using mitochondrial single nucleotide polymorphisms (SNPs), sequence data from two single-copy nuclear regions and allelic variation at eight microsatellite loci revealed unique genetic variation for all marker classes in the rear-edge populations in Iberia, but not in the rear-edge populations in North America. Palaeodistribution modelling and statistical testing of alternative phylogeographic scenarios indicate that the unique genetic diversity in Iberian populations is a result not only of persistence in the region during the last glacial maximum, but also because this refugium did not contribute substantially to the recolonization of Europe after the retreat of the ice. Consequently, loss of these rear-edge populations as a result of ongoing climate change will have a major effect on the overall genetic diversity of the species, particularly in Europe, and this could compromise the adaptive potential of the species as a whole in the face of future global warming.  相似文献   

5.
Paleontological evidence and current patterns of angiosperm species richness suggest that European biota experienced more severe bottlenecks than North American ones during the last glacial maximum. How well this pattern fits other plant species is less clear. Bryophytes offer a unique opportunity to contrast the impact of the last glacial maximum in North America and Europe because about 60% of the European bryoflora is shared with North America. Here, we use population genetic analyses based on approximate Bayesian computation on eight amphi‐Atlantic species to test the hypothesis that North American populations were less impacted by the last glacial maximum, exhibiting higher levels of genetic diversity than European ones and ultimately serving as a refugium for the postglacial recolonization of Europe. In contrast with this hypothesis, the best‐fit demographic model involved similar patterns of population size contractions, comparable levels of genetic diversity and balanced migration rates between European and North American populations. Our results thus suggest that bryophytes have experienced comparable demographic glacial histories on both sides of the Atlantic. Although a weak, but significant genetic structure was systematically recovered between European and North American populations, evidence for migration from and towards both continents suggests that amphi‐Atlantic bryophyte population may function as a metapopulation network. Reconstructing the biogeographic history of either North American or European bryophyte populations therefore requires a large, trans‐Atlantic geographic framework.  相似文献   

6.
The present study assessed the existence of variation in the shell shape of the pod razor shell (Ensis siliqua) throughout its distributional range in the north-eastern Atlantic. Shells of E. siliqua caught at seven collecting sites (three in Portugal, three in Spain and one in Ireland) were studied by geometric morphometric methods, using both landmark- and contour-based methods. Both approaches (landmarks inside the valves and shell outline) discriminated the shells from Aveiro (centre of Portugal) and Strangford Lough (Ireland) from those caught in the nearby localities (remaining Portuguese and Spanish sites, maximum distance of 550 km by sea). Landmark analysis revealed that shells from Aveiro were more similar to shells from Ireland (~1,500 km far away). Contour analysis revealed that shells from Aveiro had a shape with a comparatively larger height-to-width ratio, whereas shells from Ireland showed a slightly more curved outline than in the remaining sites. Landmark- and contour-based methods provided coherent complementary information, confirming the usefulness of geometric morphometric analyses for discerning differences in shell shape among populations of E. siliqua. A brief review of previous applications of geometric morphometric methods to modern bivalve species is also provided.  相似文献   

7.
Understanding the dual roles of demographic and selective processes in the buildup of population divergence is one of the most challenging tasks in evolutionary biology. Here, we investigated the demographic history of Atlantic salmon across the entire species range using 2035 anadromous individuals from North America and Eurasia. By combining results from admixture graphs, geo‐genetic maps, and an Approximate Bayesian Computation (ABC) framework, we validated previous hypotheses pertaining to secondary contact between European and Northern American populations, but also identified secondary contacts in European populations from different glacial refugia. We further identified the major sources of admixture from the southern range of North America into more northern populations along with a strong signal of secondary gene flow between genetic regional groups. We hypothesize that these patterns reflect the spatial redistribution of ancestral variation across the entire North American range. Results also support a role for linked selection and differential introgression that likely played an underappreciated role in shaping the genomic landscape of species in the Northern hemisphere. We conclude that studies between partially isolated populations should systematically include heterogeneity in selective and introgressive effects among loci to perform more rigorous demographic inferences of the divergence process.  相似文献   

8.
Solidago altissima and S. gigantea were introduced from North America to Europe ~250 yr ago and are now considered aggressive weeds in abandoned fields and conservation areas. We studied patterns of genetic differentiation in these two species along their present latitudinal range in Europe (44-61 degrees N). Two generations of clonally propagated ramets from randomly selected genets of 24 populations of each species were grown in a common-garden experiment at latitude 47 degrees N from 1991 to 1992. Both species showed significant variation among populations in morphological and life-history characters: at this southern location, plants from northern populations were smaller and flowered earlier than plants from southern populations. The gradient of clinal variation was more pronounced in the second year of cultivation than in the first and was steeper in S. altissima than in S. gigantea. Within-population variation among genotypes was significant tot most characters in the case of S. altissima. Phenological rate (reciprocal of days to flowering) and size at maturity showed a significant negative correlation among populations bot not among genotypes within populations, indicating that genetic trade-offs may occur at one but not another infraspecific level. We suggest that the pattern of among-population variation reflects rapid adaptive population differentiation after introduction of the species to Europe.  相似文献   

9.
In the Houtman Abrolhos Islands, Western Australia, the direct-developing littorine snail Bembicium vittatum occupies a wide range of habitats, which are replicated across the three major groups of islands. Earlier studies showed that allozyme similarities followed patterns related to gene flow, independent of habitat, providing an excellent opportunity to test for associations with habitat for traits more likely to be adaptively important. As the first test for adaptive divergence, we examined variation in size and shape of shells among 131 populations in the Abrolhos Islands. Two-fold variations were found in width of adults, the allometric coefficient of height with width, and shell height scaled to a standard width. Quantification of habitat characteristics was summarized by principal components analysis. In contrast with the patterns of divergence for allozymes, shell height, adjusted for width, was strongly associated with habitat: flatter shells are found on exposed, vertical shores, while domed, more globose shells predominate in sheltered sites. This association was stronger for shape of adult-sized snails than for height scaled to an arbitrary size, highlighting the importance of using biologically relevant measures. Even highly isolated and allozymically less variable populations in tidal ponds conformed to this association. Because differences in shape are highly heritable in B. vittatum , this association of shape with habitat, independent of patterns of gene flow, indicates local adaptation. Shell size also varied with habitat, but because growth rate is highly plastic, variation in size cannot be interpreted simply in terms of adaptation. Nevertheless, the pattern of variation indicates that, within realized limits, larger size is generally favourable, but may be constrained by local conditions. Thus, variation in size signals the potential for adaptive divergence of life histories among the many, isolated populations of this species.  相似文献   

10.
About 43Cladophora species inhabit the coasts of the northern Atlantic Ocean. These can be subdivided into seven distribution groups: (a) the tropical western Atlantic group (16 species); (b) the warm temperate Mediterranean-Atlantic group (9 species); (c) the warm temperate North American group (1 species); (d) the Arctic group (1 species); (e) the amphiatlantic tropical to warm temperature group (7 species); (f) the amphiatlantic tropical to temperate group (4 species), and (g) the amphiatlantic temperate group (5 species). These groups agree with general phytogeographic patterns. Thus, the high numbers of species restricted to the tropical western Atlantic region and the warm temperate Mediteranean-Atlantic region are in agreement with the richness and high degree of endemism of these regions. The fact that all species occurring in northeast America also occur in Europe agrees with the high floristic similarity of the boreal areas in America and Europe. The sediment coasts of the Carolinas are an efficient barrier to the south-north dispersal of benthic algae. The temperature bound phytogeographic limits are set in most cases by the species ability to survive adverse temperatures; for “northern” species to survive a high summer temperature in the south, and for “southern” species to survive a low winter temperature in the north. The limits in the Arctic region are all set by the species ability for sufficient growth and reproduction in summer. Conversely, only few northern species have a southern limit which is set by a winter temperature that is not too high for sufficient growth and reproduction. Most species of this group are winter-annuals at their southern limit, and summer-annuals at their northern limit. A comparatively small number of species with a tropical-to-warm temperate distribution have a northern limit at temperate latitudes which is set by a sufficiently high summer temperature for growth and reproduction. A high proportion of this group are lagoonal or quiet water species, which profit by higher summer temperatures in sheltered waters.C. vagabunda is an example.C. rupestris andC. sericea have an amphiboreal distribution and also occur in the southern temperate belt. They probably used a Pleistocene temperature drop to disperse, through the Atlantic along the African coast, from one hemisphere to the other. In the Pacific temperatures were not sufficiently low for this dispersal; and hence these two species reached the Pacific probably by way of the Bering Strait.  相似文献   

11.
Aim The tunicate Molgula manhattensis has a disjunct amphi‐Atlantic distribution and a recent history of world‐wide introductions. Its distribution could be the result of regional extinctions followed by post‐glacial recolonization, or anthropogenic dispersal. To determine whether the North Atlantic distribution of M. manhattensis is natural or human‐mediated, we analysed mtDNA cytochrome c oxidase subunit I (COI) sequence variation in individuals from cryptogenic and introduced ranges. Location North Atlantic Europe and America; Black Sea; San Francisco Bay; Osaka Bay. Methods Nuclear 18S rDNA sequences were used to resolve phylogenetic relationships and mtDNA COI sequences for phylogeographic analyses. Results Phylogenetic analyses confirmed that M. manhattensis and M. socialis, which are frequently confused, are distinct species. MtDNA haplotype diversity was nearly three times higher with deeper relationships among haplotypes on the North‐east American coast than in Europe. Diversity declined from south to north in America but not in Europe. In areas of known introductions (Black Sea, Japan, San Francisco Bay), M. manhattensis showed variable levels of haplotype diversity. Medium‐to‐high‐frequency haplotypes originating from the North‐west Atlantic were present in two locations of known introductions, but not in Europe. Private haplotypes were found on both sides of the Atlantic and in introduced populations. The mismatch distribution for the North‐east Atlantic coast indicates a recent expansion. Main conclusions Molgula manhattensis is native in North‐east America. However, whether it was introduced or is native to Europe remains equivocal. Additional sampling might or might not reveal the presence of putative private European haplotypes in America. The low European diversity may be explained by low effective population size and a recent expansion, or by low propagule pressure of anthropogenic introduction. Absence of medium‐to‐high‐frequency American haplotypes in Europe may be the result of exclusive transport from southern ports, or long‐term residence. These arguments are ambiguous, and M. manhattensis remains cryptogenic in Europe.  相似文献   

12.
Many benthic marine invertebrates show striking range disjunctions across broad spatial scales. Without direct evidence for endemism or introduction, these species remain cryptogenic. The common ragworm Hediste diversicolor plays a pivotal role in sedimentary littoral ecosystems of the North Atlantic as an abundant prey item and ecosystem engineer, but exhibits a restricted dispersal capacity that may limit connectivity at both evolutionary and ecological time scales. In Europe, H. diversicolor is subdivided into cryptic taxa and genetic lineages whose distributions have been modified by recent invasions. Its origin in the northwest Atlantic has not been adequately addressed. To trace the age and origin of North American ragworm populations, we analyzed mtDNA sequence data (COI) from the Gulf of Maine and Bay of Fundy (n=73 individuals) and compared our findings with published data from the northeast Atlantic. Our results together with previous data indicate that two species of the H. diversicolor complex have independently colonized the northwest Atlantic at least three different times, resulting in two distinct conspecific assemblages in the Bay of Fundy and Gulf of Maine (respectively) that are different from the species found in the Gulf of St. Lawrence. North American populations had significantly lower genetic diversity compared with populations in the northeast Atlantic, and based on patterns of shared identity, populations in the Bay of Fundy originated from the Baltic Sea and North Sea. Populations from the Gulf of Maine were phylogenetically distinct and most likely originated from unsampled European populations. Analyses of the North American populations revealed patterns of post‐colonization gene flow among populations within the Gulf of Maine and Bay of Fundy. However, we failed to detect shared haplotypes between the two regions, and this pattern of complete isolation corroborates a strong phylogeographic break observed in other species.  相似文献   

13.
Morphological variation is often attributed to differential adaptations to diverse habitats, but adaptations to a similar environment do not necessarily result in similar phenotypes. Adaptations for water and heat budget are crucial for organisms living in arid habitats, and in snails, variation in shell morphology has been frequently attributed to selection by stressful environmental factors. However, their phenotypic divergence often is not accompanied by a relevant niche differentiation and consistent relationships with environmental correlates are lacking. In the pulmonate genus Albinaria, there is great size and shape variation between and within species, and there are two major shell sculpture morphotypes, ribbed and smooth. We used 62 populations of 28 Albinaria species, taking into account their phylogeny, to examine the variation of shell traits (sculpture, size, shape), their effect on water and heat budget, and their association with geographical and climatic gradients. We found unambiguous size and shape discrimination between the two morphotypes. Ribbed shells are lighter, taller, and slimmer and have a smaller aperture than the smooth ones. Moreover, significant correlations between shell traits and heat/moisture budget and climate/geography were revealed. Ribbed and taller shells retain more water on their shell surface, and on the other hand, smooth shells exhibit lower water permeability. Therefore, two strategies are being used to prevent water loss, active retention or resistance to loss. Consequently, different alternative solutions evolved and were retained as responses to the same stressful factor by the two distinct shell morphotypes. Larger shells occur in southern latitudes, mostly on islands, and at sites where there is a shortage of rainfall. Therefore, the variation of the examined traits is nonrandom with respect to location and to climate and their evolution can be attributed to selection by environmental factors, with water availability being the key driving agent of body-size variation.  相似文献   

14.
The level and hierarchical distribution of genetic variation in complete sequences of the Atlantic salmon (Salmo salar) growth hormone (GH1) gene were investigated in populations from Europe and North America with a view to inferring the major evolutionary forces affecting genetic variation at this locus. Seventeen polymorphic sites were identified in complete sequences from nine populations, with levels of noncoding (intron and untranslated region sequences) nucleotide diversity being similar to those observed in other species. No variation, however, was observed in exonic sequences, indicating that nucleotide diversity in the Atlantic salmon GH1 gene is three and 25 times less than that estimated for human and Drosophila coding sequences, respectively. This suggests that purifying selection is the predominant contemporary force controlling the molecular evolution of GH1 coding sequences. Comparison of haplotype relationships within and between populations indicated that differentiation between populations from Europe and North America was greater than within-continent comparisons. However, several haplotypes observed in the northernmost European populations were more similar to those observed in North American than to any other haplotypes observed in Europe. This is most likely to be a result of historical, rather than contemporary, gene flow. Neutrality test statistics, such as Tajima's D, were significantly positive in the European populations in which North American-like haplotypes were observed. Although a positive Tajima's D is commonly interpreted as the signal of balancing selection, a more likely explanation in this case is that either historical migration or ascertainment bias, rather than within population local adaptation, has given rise to an excess of intermediate frequency alleles.  相似文献   

15.
Aim Based on extensive range‐wide sampling, we address the phylogeographical history of one of the most widespread and taxonomically complex sedges in Europe, Carex nigra s. lat. We compare the genetic structure of the recently colonized northern areas (front edge) and the long‐standing southern areas (rear edge), and assess the potential genetic basis of suggested taxonomic divisions at the rank of species and below. Location Amphi‐Atlantic, central and northern Europe, circum‐Mediterranean mountain ranges, central Siberia, Himalayas. Methods A total of 469 individuals sampled from 83 populations, covering most of the species’ range, were analysed with amplified fragment length polymorphism (AFLP) and chloroplast DNA (cpDNA) markers. Bayesian clustering, principal coordinates analysis, and estimates of diversity and differentiation were used for the analysis of AFLP data. CpDNA data were analysed with statistical parsimony networks and maximum parsimony and Bayesian inference of phylogenetic trees. Results Overall genetic diversity was high, but differentiation among populations was limited. Major glacial refugia were inferred in the Mediterranean Basin and in western Russia; in addition, there may have been minor refugia in the North Atlantic region. In the southern part of the range, we found high levels, but geographically quite poorly structured genetic diversity, whereas the levels of genetic diversity varied among different areas in the north. North American populations were genetically very similar to the European populations. Main conclusions The data are consistent with extensive gene flow, which has obscured the recent history of the taxon. The limited differentiation in the south probably results from the mixing of lineages expanding from several local refugia. Northward post‐glacial colonization resulted in a leading‐edge pattern of low diversity in the Netherlands, Belgium, Scotland and Iceland, whereas the observed high diversity levels in Fennoscandia suggest broad‐fronted colonization from the south as well as from the east. The patterns found in the American populations are consistent with post‐glacial colonization, possibly even with anthropogenic introduction from Europe. Our data also suggest that the tussock‐forming populations of C. nigra, often referred to as a distinct species (Carex juncella), represent an ecotype that has originated repeatedly from different populations with creeping rhizomes.  相似文献   

16.
Morphological variation among natural populations is a phenomenon commonly observed in marine invertebrates and well studied, particularly, in shelled gastropods. The nassariid Buccinanops globulosus is interesting to study shell shape variation because it exhibits strong interpopulation differences in life history features, including maximum size, fecundity and growth rate. In this study, we examined the pattern of variation in size and shell shape among populations and between sexes of B. globulosus (Bahía San Antonio 40°29′S 63°01′W, Playa Villarino 40°45′S 64°40′W and Bahía Nueva 42°46′S 65°02′W). In particular, we used geometric morphometric techniques to test: (1) whether the two components of shell morphology (size and shape) are independent and (2) whether shape differences between sexes are consistently found among populations, regardless of their body sizes. Our results show shell shape variation between the populations of B. globulosus of northern Patagonia. Intra-specific shell shape variation is affected by body size, indicating allometry. Regardless of the size differences, individuals from Playa Villarino have high-spired shells, and shorter apertures and wider columellar area than individuals from the other populations. Also, sex-related shape differences were consistently found at each population, thus suggesting a common sexual dimorphism in shell morphology for this species. The functional significance of the variability found is discussed in terms of the flexibility of developmental programmes for morphology as well as the evolution of phenotypic plasticity.  相似文献   

17.
Here we investigate if predation by the European green crab (Carcinus maenas) differs between two congeneric snails in the northwest Atlantic (Littorina littorea and L. obtusata), and ask if differential predation can help explain the geography of claw and shell forms among geographically separated populations. First, correlations between crusher-claw size and shell mass -- tested across a wide size range of animals -- were highly significant among populations of C. maenas and L. obtusata, whereas only a small number of significant correlations were found between C. maenas and L. littorea, and these were limited to the smaller size classes of snails and crabs. Moreover, among populations, L. obtusata shells were more frequently scarred than those of L. littorea, and L. obtusata were attacked and killed more frequently than L. littorea during field- and laboratory-predation experiments. Combined, results suggest L. obtusata is currently under greater selection by C. maenas than L. littorea for more crab-resistant shell forms. One possible explanation for these patterns is that L. littorea may have interacted with green crabs for centuries (in Europe) prior to their reintroduction to green crabs in America, thus predator-resistance may had already evolved.  相似文献   

18.
Organisms featuring wide trait variability and occurring in a wide range of habitats, such as the ovoviviparous New Zealand freshwater snail Potamopyrgus antipodarum, are ideal models to study adaptation. Since the mid‐19th century, P. antipodarum, characterized by extremely variable shell morphology, has successfully invaded aquatic areas on four continents. Because these obligately and wholly asexual invasive populations harbor low genetic diversity compared to mixed sexual/asexual populations in the native range, we hypothesized that (1) this phenotypic variation in the invasive range might be adaptive with respect to colonization of novel habitats, and (2) that at least some of the variation might be caused by phenotypic plasticity. We surveyed 425 snails from 21 localities across northwest Europe to attempt to disentangle genetic and environmental effects on shell morphology. We analyzed brood size as proxy for fitness and shell geometric morphometrics, while controlling for genetic background. Our survey revealed 10 SNP genotypes nested into two mtDNA haplotypes and indicated that mainly lineage drove variation in shell shape but not size. Physicochemical parameters affected both shell shape and size and the interaction of these traits with brood size. In particular, stronger stream flow rates were associated with larger shells. Our measurements of brood size suggested that relatively larger slender snails with relatively large apertures were better adapted to strong flow than counterparts with broader shells and relatively small apertures. In conclusion, the apparent potential to modify shell morphology plays likely a key role in the invasive success of P. antipodarum; the two main components of shell morphology, namely shape and size, being differentially controlled, the former mainly genetically and the latter predominantly by phenotypic plasticity.  相似文献   

19.
We describe a massive polymorphism for shell colour and pattern in Donacilla cornea , a shallow-burrowing bivalve which inhabits the mid-littoral of sandy and stony beaches in southern and western Europe. Of the four sites studied, the one where the substrate was a mixture of small stones and sand contained the highest densities of Donacilla. At this site the densities of stones and animals and the frequencies of shell and stone colour phenotypes are both highly correlated. Although the four populations sampled comprise a similar range of phenotypes, the frequencies of most morphs and population diversity indices differ significantly between sites. At two sites the similar range of colour and pattern variation between shells and substrate suggests selection for crypsis and masquerade. On the other hand, at two other sites, one or two common phenotypes (and a number of rare ones at all sites) fail to mimic any aspect of the background. We therefore suggest that if frequency-dependent selection by predators is responsible for the maintenance of polymorphism in Donacilla , then the mechanisms involved include crypsis and masquerade in some cases and selective advantages from being different in others.  相似文献   

20.
Data on the geographical distribution, phylogeny and fossil record of cool-temperate North Atlantic shell-bearing molluscs that live in waters shallower than 100 m depth belong to two biogeographic provinces, one in eastern North America north of Cape Cod, the other in northern Europe. Amphi-Atlantic species, which are found in both provinces, comprise 30.8% of the 402 species in the northeastern Atlantic and 47.3% of the 262 species in the northwestern Atlantic. Some 54.8% of these amphi-Atlantic species have phylogenetic origins in the North Pacific. Comparisons among fossil Atlantic faunas show that amphi-Atlantic distributions became established in the Middle Pliocene (about 3.5 million years ago), and that all represent westward expansions of European taxa to North America. No American taxa spread eastward to Europe without human assistance. These results are in accord with previous phylogeographic studies among populations within several amphi-Atlantic species. Explanations for the unidirectional expansion of species across the Atlantic remain uncertain, but may include smaller size and greater prior extinction of the North American as compared to the European fauna and biased transport mechanisms. Destruction of the European source fauna may jeopardize faunas on both sides of the Atlantic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号