首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The creation of a double His-tag fusion that forms a RNA stem loop in the mRNA encoding the N-terminus of the target protein is a novel approach for the enhancement of expression, purification, and detection of a recombinant protein. Compared to a single His-tag fusion, a tandem His-tag fusion RNA stem loop, located downstream of the constitutive groE and Ch promoters, enhanced heterologous gene expression in Brucella, Salmonella, and Escherichia. We demonstrated one-step detection and purification of recombinant green fluorescence protein (GFP) directly from Brucella spp. without using Escherichia coli as an expression host. The amount of purified GFP using the tandem His-tag RNA stem loop increased more than threefold; moreover, the sensitivity of detection increased more than fourfold in comparison to the single His-tag fusion form. This method has the potential to significantly improve heterologous gene expression and high-throughput protein synthesis and purification.  相似文献   

2.
3.
The efficacy of protein-based medicines can be compromised by their rapid clearance from the blood circulatory system. Achieving optimal pharmacokinetics is a key requirement for the successful development of safe protein-based medicines. Protein PEGylation is a clinically proven strategy to increase the circulation half-life of protein-based medicines. One limitation of PEGylation is that there are few strategies that achieve site-specific conjugation of PEG to the protein. Here, we describe the covalent conjugation of PEG site-specifically to a polyhistidine tag (His-tag) on a protein. His-tag site-specific PEGylation was achieved with a domain antibody (dAb) that had a 6-histidine His-tag on the C-terminus (dAb-His(6)) and interferon α-2a (IFN) that had an 8-histidine His-tag on the N-terminus (His(8)-IFN). The site of PEGylation at the His-tag for both dAb-His(6)-PEG and PEG-His(8)-IFN was confirmed by digestion, chromatographic, and mass-spectral studies. A methionine was also inserted directly after the N-terminal His-tag in IFN to give His(8)Met-IFN. Cyanogen bromide digestion studies of PEG-His(8)Met-IFN were also consistent with PEGylation at the His-tag. By using increased stoichiometries of the PEGylation reagent, it was possible to conjugate two separate PEG molecules to the His-tag of both the dAb and IFN proteins. Stability studies followed by in vitro evaluation confirmed that these PEGylated proteins retained their biological activity. In vivo PK studies showed that all of the His-tag PEGylated samples displayed extended circulation half-lives. Together, our results indicate that site-specific, covalent PEG conjugation at a His-tag can be achieved and biological activity maintained with therapeutically relevant proteins.  相似文献   

4.
Multiheme cytochromes c have been found in a number of sulfate- and metal ion-reducing bacteria. Geobacter sulfurreducens is one of a family of microorganisms that oxidize organic compounds, with Fe(III) oxide as the terminal electron acceptor. A triheme 9.6 kDa cytochrome c(7) from G. sulfurreducens is a part of the metal ion reduction pathway. We cloned the gene for cytochrome c(7) and expressed it in Escherichia coli together with the cytochrome c maturation gene cluster, ccmABCDEFGH, on a separate plasmid. We designed two constructs, with and without an N-terminal His-tag. The untagged version provided a good yield (up to 6 mg/l of aerobic culture) of the fully matured protein, with all three hemes attached, while the N-terminal His-tag appeared to be detrimental for proper heme incorporation. The recombinant protein (untagged) is properly folded, it has the same molecular weight and displays the same absorption spectra, both in reduced and in oxidized forms, as the protein isolated from G. sulfurreducens and it is capable of reducing metal ions in vitro. The shape parameters for the recombinant cytochrome c(7) determined by small angle X-ray scattering are in good agreement with the ones calculated from a homologous cytochrome c(7) of known structure.  相似文献   

5.
The sterility of hormone-sensitive lipase (HSL) knockout mice clearly shows the link between lipid metabolism and spermatogenesis. However, which substrate or product of this multifunctional lipase affects spermatogenesis is unclear. We found that an HSL protein with a His-tag at the N-terminus preserved the normal hydrolase activity of cholesteryl ester (CE) but the triglyceride lipase (TG) activity significantly decreased in vitro. Therefore, mice with this functionally incomplete HSL (His-HSL) were produced on a background of HSL deficiency (HSL−/−h). As a result, HSL−/−h testis has an 8.65-fold higher CE activity than wild-type testis but a twofold higher TG activity than wild-type testis. To compare His-HSL and wild-type HSL in vitro and in vivo, we confirmed that the His-tag significantly suppressed HSL TG activity. From our results, we believe that TG activity was affected by the His-tag insertion, but CE activity was not influenced. Furthermore, the His-tag protected HSL from binding to the inhibitor BAY. From our study, TG activity and BAY binding sites were affected by N-terminal His-tag insertion.  相似文献   

6.
Histidine-tag (His-tag) is the most frequently used tag to label and purify recombinant protein kinases, namely autokinases. However, when analyzing protein phosphorylation, it appears that this modification occurs not only on the kinase itself but also on several serine residues present in the vector-derived His-tag sequence. These parasite modifications can thus lead to misinterpretation of the data concerning protein phosphorylation. We report here on a modified vector devoid of serine residues in the tag and, therefore, more appropriate and secure for studying protein phosphorylation.  相似文献   

7.
Heterologous expression in Escherichia coli, subcellular distribution, solubility, and catalytic and substrate-binding properties of four truncated cytochromes P450 46A1 were investigated in the present study. All four lacked the N-terminal transmembrane region (residues 3-27), and, in addition, Delta 46A1H had a 4x His-tag fused to the C-terminus; H Delta 46A1 had the N-terminal 4x His-tag; H Delta 46A1 Delta had a 4x His-tag at the N-terminus and did not contain a proline-rich region at the C-terminus (residues 494-499); and Delta 46A1 Delta lacked the C-terminal proline-rich region. The truncated enzymes were expressed at 390-650 nmol/L culture levels, distributed at about a 1:1 ratio between the membrane fraction and the cytosol in low ionic strength buffer, and were predominantly monomers in detergent-free buffer. They had moderately decreased catalytic efficiencies for either cholesterol or 24S-hydroxycholesterol or both, whereas their substrate-binding constants were either unchanged or decreased 2-fold. The two forms, Delta 46A1 Delta and H Delta 46A1 Delta, both lacking the C-terminal proline-rich region seem to be good candidates for future crystallographic studies because they contain only 0.3-0.8% of high molecular weight aggregates and their catalytic efficiencies are decreased no more than 2.3-fold.  相似文献   

8.
In recent years, the atomic force microscope (AFM) has contributed much to our understanding of the molecular forces involved in various high-affinity receptor-ligand systems. However, a universal anchor system for such measurements is still required. This would open up new possibilities for the study of biological recognition processes and for the establishment of high-throughput screening applications. One such candidate is the N-nitrilo-triacetic acid (NTA)/His-tag system, which is widely used in molecular biology to isolate and purify histidine-tagged fusion proteins. Here the histidine tag acts as a high-affinity recognition site for the NTA chelator. Accordingly, we have investigated the possibility of using this approach in single-molecule force measurements. Using a histidine-peptide as a model system, we have determined the binding force for various metal ions. At a loading rate of 0.5 microm/s, the determined forces varied from 22 +/- 4 to 58 +/- 5 pN. Most importantly, no interaction was detected for Ca(2+) and Mg(2+) up to concentrations of 10 mM. Furthermore, EDTA and a metal ion reloading step demonstrated the reversibility of the approach. Here the molecular interactions were turned off (EDTA) and on (metal reloading) in a switch-like fashion. Our results show that the NTA/His-tag system will expand the "molecular toolboxes" with which receptor-ligand systems can be investigated at the single-molecule level.  相似文献   

9.
In the present study, molecular simulations were performed to investigate the chelating mechanisms of various metal ions to the His-tag motifs with various His residues. The chelation mostly involved the i and i+2 His residues for Ni(2+), Zn(2+), Cu(2+), and Co(2+), while the cooperation of 3 His residues was necessary when Fe(3+) was involved in chelation with His-tags having more than 4 His residues. Metal ion was best fitted into the pocket formed by the imidazole nitrogens while it was about equally located among these nitrogen atoms. His-tag6 was found to have little effect on the structural integrity while the target protein contains more than 68 amino acid residues. Ni(2+) interacted with the imidazole nitrogen of His3 in the beginning of chelation, and then entered into the pocket formed by His3 and His5 at 4 ns during the 10 ns molecular dynamics simulations. The fast chelating process resulted in successful application of IMAC techniques in efficient protein purification.  相似文献   

10.
The amount of active capture antibodies immobilized per unit square is crucial to developing effective antibody chips, biosensors, immunoassays and other molecular recognition technologies. In this study, we present a novel yet simple method for oriented antibody immobilization at high density based on the formation of an orderly, organized aggregation of immunoglobulin G (IgG) and staphylococcal protein A (SPA). Following the chelation of His-tag with Ni(2+), antibodies were immobilized on a solid surface in a three-dimensional (3D) manner and exposed the analyte receptor sites well, which resulted in a substantial enhancement of the analytical signal with more than 64-fold increase in detection sensitivity. Pull-down assays confirmed that IgG antibody can only bind to Ni(2+) matrix indirectly via a SPA linkage, where the His-tag is responsible for binding Ni(2+) and homologous domains are responsible for binding IgG Fc. The immobilization approach proposed here may be an attractive strategy for the construction of high performance antibody arrays and biosensors as long as the antibody probe is of mammalian IgG.  相似文献   

11.
The effect of hexahistidine-tag (His-tag) location at either the C or N-terminus on the catalytic activity of 3-hydroxybutyrate dehydrogenase (3HBDH) from Alcaligenes faecalis was studied. The kinetic parameters of 3HBDHs with C and N-terminal His-tags were investigated, and the enzyme with an N-terminal His-tag was found to have approximately 1,200-fold higher catalytic efficiency than its C-terminal counterpart. Furthermore, the effect of His-tag location on the catalytic activity of 3 engineered variants of 3HBDH that were previously developed for the conversion of levulinic acid to 4-hydroxyvaleric acid was also investigated. All of the N-terminal variants exhibited higher catalytic efficiency for levulinic acid than did the C-terminal counterparts. The structural basis of the His-tag effect was studied by investigating the structure of 3HBDH obtained from in silico His-tag modification, and the results revealed that the modification of the C-terminal structure could deform the hinge region of the active site entry loop, disrupting the catalytic motion of the enzyme. In contrast, due to the location of the N-terminus far from the active site of the enzyme, the catalytic activity of the enzyme was not severely affected by the N-terminal His-tag.  相似文献   

12.
Aldose-6-phosphate reductase (A6PRase) is a key enzyme for glucitol biosynthesis in plants from the Rosaceae family. To gain on molecular tools for enzymological studies, we developed an accurate system for the heterologous expression of A6PRase from apple leaves. The recombinant enzyme was expressed with a His-tag alternatively placed in the N- or C-terminus, thus allowing the one-step protein purification by immobilized metal affinity chromatography. Both, the N- and the C-term tagged enzymes exhibited similar affinity toward substrates, although the kcat of the latter enzyme was 80-fold lower than that having the His-tag in the N-term. Gel filtration chromatography showed different oligomeric structures arranged by the N- (dimer) and the C-term (monomer) tagged enzymes. These results, reinforced by homology modeling studies, point out the relevance of the C-term domain in the structure of A6PRase to conform an enzyme having optimal specific activity and the proper quaternary structure.  相似文献   

13.
To develop a general method for the detection of histidine-tagged proteins, the interactions of the histidine epitope tag of MutH and MutL proteins with the epitope specific monoclonal anti-His6 antibody were monitored by a label-free direct method using impedance spectroscopy. The immunosensor was fabricated by covalent coupling of the antibody on a conducting polymer coated electrode surface. The impedance of the antibody modified electrode was decreased after binding to the histidine-tagged proteins. The specificity of the sensor was demonstrated by showing that no impedance change was occurred when the sensor was exposed to both of non-tagged MutH and MutL proteins. The specific interaction was further characterized using quartz crystal microbalance studies. Based on impedance measurements, the linear ranges were obtained from 50.0 to 125.0 and 50.0 to 250.0 micorg/ml, for His-tag MutH and His-tag MutL proteins, respectively. The detection limits were determined to be 37.8 and 59.1 microg/ml, for His-tag MutH and His-tag MutL proteins, respectively.  相似文献   

14.
为考察组氨酸标签(His-tag)对Brevibacterium sp.DGCDC-82中胆固醇氧化酶基因(ChoAb)在大肠杆菌中表达的影响,将PCR扩增后得到的结构基因与pET28a(+)连接,构建重组质粒pETChoAb(不带His-tag),pETChoAbn(His-tag位于N端)和pETChoAbc(His-tag位于C端)并在大肠杆菌中进行表达.对重组酶进行酶活检测,结果表明His-tag位于ChoAb的C端和N端,COD单位体积酶活由未带标签时的1.72 U/mL分别提高到4.03 U/mL和11.36 U/mL.利用软件Quantity One对SDS-PAGE电泳条带进行灰度分析,结果显示与不带His-tag的COD相比,His-tag位于ChoAb的C端和N端,COD表达量由8.8%增加到16.4%与72.3%.同时菌体浓度分别提高了1.2倍和3.2倍.作为纯化标签,该研究结果对His-tag用于诊断用酶COD的分离纯化可以提供一定的理论指导.  相似文献   

15.
We propose a novel method to prepare a DNA–protein conjugate using histidine-tag (His-tag) chemistry. Oligo-DNA was modified with nitrilotriacetate (NTA), which has high affinity to a His-tag on recombinant protein via the complexation of Ni2+. Investigations using a microplate which displayed a complementary DNA-strand revealed that a NTA-modified DNA–protein conjugate was formed and immobilized in the presence of Ni2+ on the microplate. We then adopted alkaline phosphatase (AP) as a model protein, and application of the DNA–AP conjugate was demonstrated in a thrombin aptamer-based detection system with a detection limit of approximately 10 nM.  相似文献   

16.
With the impressive growth in gene sequence data that has become available, recombinant proteins represent an increasingly vast source of molecular components, with unique functional and structural properties, for use in biotechnological applications and devices. To facilitate the use, manipulation, and integration of such molecules into devices, a controllable method for their chemical modification was developed. In this approach, a trifunctional labeling reagent first recognizes and binds a His-tag on the target protein's surface. After binding, a photoreactive group on the trifunctional molecule is triggered to create a covalent linkage between the reagent and the target protein. The third moiety on the labeling reagent can be varied to bring unique chemical functionality to the target protein. This approach provides: (1) specificity in that only His-tagged targets are modified, (2) regio-specific control in that the target is modified proximal to the His-tag, the position of which can be varied, and (3) stoichiometric control in that the number modifications is limited by the binding capacity of the His-tag. Two such labeling reagents were designed, synthesized, and used to modify both N- and C-terminally His-tagged versions of the enzyme murine dihydrofolate reductase (mDHFR). The first reagent biotinylated the enzyme,while the second served to attach an oligonucleotide to yield a protein-DNA conjugate. In all cases, modification in this manner brings new functionality to the protein while leaving the enzymatic activity intact. The protein-DNA conjugate was used to specifically immobilize the active enzyme through DNA hybridization onto polystyrene microspheres, a step toward creating a functional protein microarray.  相似文献   

17.
Immobilized metal ion affinity chromatography (IMAC) has become one of the most popular protein purification methods for recombinant proteins with a hexa-histidine tag (His-tag) placed at the C- or N-terminus of proteins. Nevertheless, there are always difficult proteins that show weak binding to the metal chelating resin and thus low purity. These difficulties are often overcome by increasing the His-tag to 8 or 10 histidines. Despite their success, there are only few expression vectors available to easily clone and test different His-tag lengths. Therefore, we have modified Escherichia coli T7 expression vector pET21a to accommodate ligation-independent cloning (LIC) that will allow easy and efficient parallel cloning of target genes with different His-tag lengths using a single insert. Unlike most LIC vectors available commercially, our vectors will not translate unwanted extra sequences by engineering the N-terminal linker to anneal before the open reading frame, and the C-terminal linker to anneal as a His-tag.  相似文献   

18.
Amarantin, an 11S globulin, is one of the most important storage proteins of amaranth seeds, with relevant nutritional-functional and nutraceutical characteristics. Its cDNA was cloned in-frame with a sequence encoding a polyhistidine tag and expressed under the direction of a 35S promoter in transgenic tobacco seeds. The presence of a (His)(6) tag on the polypeptide permitted a high-yield single-step purification using immobilized metal-ion affinity chromatography and rapid characterization. Purified His-tag amarantin accounted for up to 5% of total soluble seed protein. Biochemical characterization indicated that purified His-tag amarantin migrated with the expected molecular weight (53 kDa) and was correctly processed into an acidic polypeptide (32 kDa) with isoelectric point (pI) of 5.58 and a basic polypeptide (21 kDa) with pI of 9.24, linked by a disulfide bridge. Moreover, His-tag amarantin was assembled into both homo- and hetero-hexameric 11S structures. These results show that the His tag did not change the biochemical and physicochemical properties of amarantin. The strategy presented here for rapid and high-yield expression and purification procedure should facilitate structure-function studies for this nutritional protein.  相似文献   

19.
The gene coding for phosphoglucomutase (PGM) from Oryctolagus cuniculus (rabbit) has been expressed in Escherichia coli under a T7 expression system with a His-tag. About half of the expressed PGM protein was present in inclusion bodies, but this protein was inactive when solubilized. The protein in the soluble cell fraction was isolated and purified in one step on a Ni-NTA column. The eluate from this column was adjusted to 95% saturated ammonium sulfate, and the resulting protein precipitate was resuspended in sodium phosphate buffer and dialyzed against 2.5 M ammonium sulfate. The final yield of protein was about 10 mg per liter of LB medium. The protein was judged to be greater than 90% pure on the basis of gel electrophoresis and activity measurements (128 U per milligram). Our motivation for developing this bacterial production system for PGM has been to prepare sufficient quantities of stable-isotope-labeled protein for experiments that utilize recently developed NMR technologies suitable for proteins the size of PGM (61.6 kDa). Preliminary NMR studies indicate that the current level of purity is adequate for this work. The construct described here was designed to incorporate an N-terminal His-tag for ease of isolation. Although PGM is a metalloprotein, the His-tag does not appear to interfere with activity. The presence of the His-tag should not pose a problem for proposed (31)P NMR investigations of the protein and its complexes in aqueous solution or incorporated into reverse micelles. However, we plan to design a cleavable His-tag for later (1)H, (13)C, (15)N studies of the active site, which includes essential histidine residues.  相似文献   

20.
Hexahistidine tag (His-tag) is the most widely used tag for affinity purification of recombinant proteins for their structural and functional analysis. In the present study, single chain Fv (scFv) constructs were engineered form the monoclonal antibody (MAb) CC49 which is among the most extensively studied MAb for cancer therapy. For achieving efficient purification of scFvs by immobilized metal-ion affinity chromatography (IMAC), a His-tag was placed either at the C-terminal (scFv-His6) or N-terminal (His6-scFv) of the coding sequence. Solid-phase radioimmunoassay for scFv-His6 showed only 20-25% binding whereas both His6-scFv and scFv (no His-tag) showed 60-65% binding. Surface plasmon resonance studies by BIAcore revealed the binding affinity constant (KA) for His6-scFv and scFv as 1.19 x 10(6) M(-1) and 3.27 x 10(6) M(-1), respectively. No K(A) value could be calculated for scFv-His6 due to poor binding kinetics (kon and koff). Comparative homology modeling for scFv and scFv-His6 showed that the C-terminal position of the His-tag partially covered the antigen-binding site of the protein. The study demonstrates that the C-terminal position of His-tag on the CC49 scFv adversely affects the binding properties of the construct. The results emphasize the importance of functional characterization of recombinant proteins expressed with purification tags.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号