首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Partial hydrolysates of (1→3)(1→4)-β- -glucan from oats were produced by three hydrolysis methods: acid, cellulase or lichenase. The molecular weights ranged from 31 000 to 237 000 g/mol. Six percent solutions of small molecular weight β-glucans formed elastic gels after 4 days at 4 °C whereas larger molecular weight β-glucans remained viscous liquids after 7 days. The melting temperature of the gels increased as they aged and the peak heat flow temperature, measured by differential scanning calorimetry, was 62±2 °C. Partial hydrolysates produced with cellulase, which was shown to preferentially cleave regions of the molecule with longer contiguous β-(1→4)-linked -glucopyranosyl units, tended to produce more elastic gels with stronger junction zones than partial hydrolysates produced with lichenase which cleaves the β-(1→4) glycosidic 3-o-substituted glucose links. This suggests that β-(1→3)-linked cellotriose sections of the polymer are probably the segments which form the junction zones in the gel network rather than cellulose-like segments.  相似文献   

2.
A (1 → 3)-β-glucan 3-glucanohydrolase (EC 3.2.1.39) has been purified approx. 190-fold from extracts of germinating barley. The enzyme has an apparent Mr 32 000, a pI of 8.6, and a pH optimum of 5.6. Analysis of hydrolysis products released from the (1 → 3)-β-glucan, laminarin, shows that the enzyme is an endohydrolase. Sequence analysis of the 46 NH2-terminal amino acids of the (1 → 3)-β-glucanase reveals 54% positional identity with barley (1 → 3,1 → 4)-β-glucanases (EC 3.2.1.73) and suggests a common evolutionary origin for these two classes of β-glucan endohydrolases. The barley (1 → 3)-β-glucanase also exhibits significant similarity with a (1 → 3)-β-glucanase from tobacco.  相似文献   

3.
Oat β-glucan, present in oat bran in greater concentrations than in the whole oat groat, is mainly composed of β-(1 → 3)-linked cellotriosyl and cellotetraosyl units, present at 52 and 34% by weight of the molecule, respectively. The remaining structure consits of β-(1 → 3)-linked blocks composed of four or more consecutive β-(1 → 4)-linked -glucopyranosyl units. Size-exclusion chromatography indicated a molecular weight for oat β-glucan of 2–3 × 106. This was significantly reduced during digestion in the small intestine of rats and chicks. In healthy human volunteers, oat β-glucan reduced the postprandial glucose response to an oral glucose load similarly to guar gum. The effectiveness of oat β-glucan was proportional to the logarithm of the viscosity of the solution fed.  相似文献   

4.
During fermentation, the mutant strain Rhizobium mefliloti M5N1 CS, which induces nodule formation on alfalfa roots, produces a partially acetylated (1 → 4)-β-d-glucuronan. In addition to this exopolysaccharide of high molecular weight, the mutant strain produces oligoglucoronates and cyclic (1 → 2)-β-d-glucans with degrees of polymerization from 17 to 30. Under the conditions applied, magnesium has no effect on cyclic glucan production by the mutant strain, but the succinoglycan production by the wild-type strain Rhizobium meliloti M5N1 increases.  相似文献   

5.
The stability of almond β-glucosidase in five different organic media was evaluated. After 1 hour of incubation at 30°C, the enzyme retained 95, 91, 81, 74 and 56% relative activity in aqueous solutions [30% (v/v)] of dioxane, DMSO, DMF, acetone and acetonitrile, respectively. Transglucosylation involving p-nitrophenyl β-D-glucopyranoside as donor and β-1-N-acetamido-D-glucopyranose, which is a glycosylasparagine mimic, as acceptor was explored under different reaction conditions using almond βglucosidase and cloned Pichia etchellsii β-glucosidase II. The yield of disaccharides obtained in both reactions turned out to be 3%. Both enzymes catalyzed the formation of (1→3)- as well as (1→6)- regioisomeric disaccharides, the former being the major product in cloned β-glucosidase II reaction while the latter predominated in the almond enzyme catalyzed reaction. Use of β-1-N-acetamido-D-mannopyranose and β-1-N-acetamido-2-acetamido-2-deoxy-D-glucopyranose as acceptors in almond β-glucosidase catalyzed reactions, however, did not afford any disaccharide products revealing the high acceptor specificity of this enzyme.  相似文献   

6.
Production of β-glycosidases: β-xylosidase and β-glucosidase by the fungus Sclerotinia sclerotiorum was optimized in the presence of different carbon sources. Immobilization supports with different physico-chemical characteristics were evaluated for use in continuous reactors. Immobilization and activity yields were calculated. Among the adsorption on Duolite, Amberlite, Celite and DEAE-sepharose, and entrapment in polyacrylamide gel or reticulation using glutaraldehyde, highest yields were obtained when β-xylosidase was adsorbed on Duolite A 7 and when β-glucosidase was adsorbed on DEAE-sepharose.

Enzyme preparations from S. sclerotiorum cultures were used in a biphasic (alcohol/aqueous) medium for the synthesis of alkyl-glycosides by trans-glycosylation of sugars and long-chain alcohols. The synthesis was studied under different conditions with primary and secondary alcohols as substrates, in the presence of free or immobilized enzyme. Xylan and cellobiose were used for the synthesis of alkyl-xylosides and alkyl-glucosides, respectively. The majority of the immobilized preparations were unable to catalyze the synthesis of alkyl-glycosides.

Highest yields were obtained when using xylan and C4–C6-alcohols. The reaction produced alkyl-β-xyloside and alkyl-β-xylobioside, as confirmed by MS/MS. Up to 22 mM iso-amyl-xyloside and 14 mM iso-amyl-xylobioside were produced from iso-amyl alcohol and xylan.  相似文献   


7.
《FEBS letters》1994,340(3):185-188
Membrane-associated phosphoinositide-phospholipase C (PI-PLC)-β (150 kDa) and its truncated forms (100 kDa and 45 kDa) were purified from human platelets. The 100 kDa PI-PLC-β was found to be activated to a greater extent by brain G-protein βγ subunits compared to the intact 150 kDa enzyme. Furthermore, treatment with μ-calpain of the intact PI-PLC-β (150 kDa) caused a marked augmentation of its activation by βγ subunits. This enhanced PLC activation by βγ subunits was due to truncation by μ-calpain, producing a 100 kDa PI-PLC, but not by another protease,thrombin.  相似文献   

8.
Whole cells of Rhodococcus erythropolis DSM 44534 grown on ethanol, (R)- and (S)-1,2-propanediol were used for biotransformation of racemic 1,4-alkanediols into γ-lactones. The cells oxidized 1,4-decanediol (1a) and 1,4-nonanediol (2a) into the corresponding γ-lactones 5-hexyl-dihydro-2(3H)-furanone (γ-decalactone, 1c) and 5-pentyl-dihydro-2(3H)-furanone (γ-nonalactone, 2c), respectively, with an EE(R) of 40–75%. The transient formation of the γ-lactols 5-hexyl-tetrahydro-2-furanol (γ-decalactol, 1b) and 5-pentyl-tetrahydro-2-furanol (γ-nonalactol, 2b) as intermediates was observed by GC–MS. 1,4-Pentanediol (3a) was transformed into 5-methyl-dihydro-2(3H)-furanone (γ-valerolactone, 3c) whereas (R)- and (S)-2-methyl-1,4-butanediol (4a) was converted to the methyl-substituted γ-butyrolactones 4-methyl-dihydro-2(3H)-furanone (4c1) and 3-methyl-dihydro-2(3H)-furanone (4c2) in a ratio of 80:20 with a yield of 55%. Also cis-2-buten-1,4-diol (5a) was transformed resulting in the formation of 2(5H)-furanone (γ-crotonolactone, 5c). At the higher pH values of 8.8 the yield of lactone formed was improved; however, the enatiomeric excesses were slightly higher at the lower pH of 5.2.  相似文献   

9.
The major laminarinase activity (EC 3.2.1.39) from the gastropodean marine mollusc Haliotis tuberculata was purified to homogeneity by cation exchange chromatography and its action pattern was investigated by HPAEC-PAD analysis of the degradation of various laminarin samples. It consists of a 60 kDa protein capable of depolymerizing the unbranched portions of the β-(1→3), β-(1→6)-glucan, down to laminaritriose. The enzyme operates via a molecular mechanism retaining the anomeric configuration. As the purified protein does not cleave the β-(1→6) linkages, it can be used for the structural analysis of laminarins.  相似文献   

10.
The polysaccharide chains and the crystallinity of β-glucan in a white sorghum variety, SK5912 were investigated using chemical and enzymic studies. Mild periodate oxidation and methylation, coupled to descending paper chromatography of products revealed the presence of unresolved non-carbohydrate moiety, 2, 4-and 2, 3-di-O-methyl -glucose residues (molar ratio; 18:3) and 2, 4, 6-and 2, 3, 6-tri-O-methyl -glucose residues (molar ratio; 1:14). Paper chromatography of the total acid hydrolysate also revealed a non-carbohydrate spot, identified as protein on the basis of positive Biuret and ninhydrin tests. The O-methyl -glucose residues suggest two polysaccharide chains designated X and Y. Chain X is formed through linking of β- -glucopyranosyl residues by (1→3) linkages with 85–86% (1→6) bonds at branch points and constitute about 6–7% of the β-glucan sample. Chain Y, which is 93–94% of the β-glucan polysaccharide chains, constitutes β- -glucopyranosyl residues in (1→4) linkages and 4–5% (1→6) bonds at branch points. Of the 18 branch points on the X-chains in a given β-glucan sample, about 15 are the Y chains interlinked to the X-chains through their (Y-chains) reducing ends. Both acid and enzyme hydrolyses of the β-glucan suggest two structural organizations, a crystalline and less crystalline granules, based on two first order kinetics. This was correlated by the progress curves obtained during hydrolysis with two purified isoforms of β-glucanases from the sorghum malt. The short and highly branched polysaccharide chains, and longer but less branched polysaccharide chains found in this β-glucan are reminiscent of the structures of amylopectin and amylose, respectively. The Kms of 0.30–0.32 and 0.42–0.50 mg β-glucan/ml for the β-glucanase isoforms also lay credence to both the crystalline forms and the highly polymerised nature of the β-glucan in white sorghum.  相似文献   

11.
An α- -fucosidase from porcine liver produced α- -Fuc-(1→2)-β- -Gal-(1→4)- -GlcNAc (2′-O-α- -fucosyl-N-acetyllactosamine, 1) together with its isomers α- -Fuc-(1→3)-β- -Gal-(1→4)- -GlcNAc (2) and α- -Fuc-(1→6)-β- -Gal-(1→4)- -GlcNAc (3) through a transglycosylation reaction from p-nitrophenyl α- -fucopyranoside and β- -Gal-(1→4)- -GlcNAc. The enzyme formed the trisaccharides 13 in 13% overall yield based on the donor, and in the ratio of 40:37:23. In contrast, transglycosylation by Alcaligenes sp. α- -fucosidase led to the regioselective synthesis of trisaccharides containing a (1→3)-linked α- -fucosyl residue. When β- -Gal-(1→4)- -GlcNAc and lactose were acceptors, the enzyme formed regioselectively compound 2 and α- -Fuc-(1→3)-β- -Gal-(1→4)- -Glc (3′-O-α- -fucosyllactose, 4), respectively, in 54 and 34% yields, based on the donor.  相似文献   

12.
Partial acid hydrolysis of the anti-complementary acidic heteroglycan, AAFIIb-3, isolated from the leaves of Artemisia princeps PAMP gave the oligosaccharides Gal-(1→6)-Gal, Gal-(1→6)-Gal-(1→6)-Gal, GalA-(1→4)-Rha, GalA-(1→2)-Rha, GlcA-(1→4)-Gal, GlcA-(1→4)-Rha, GlcA-(1→6)-Gal, and GlcA-(1→4)-Xyl. On methylation of AAFIIb-3 without de-esterification, 4-linked and 3,6-disubstituted galactan, 3-linked galactan, 4-linked galactan, and branched arabinan-rich fragments were obtained. The results of base-catalysed β-elimination indicated that AAFIIb-3 has a backbone consisting of 4-linked GalA and 2-linked Rha to which a highly branched arabino-3,6-galactan and arabino-4-galactan are linked at positions 4 of some 2-linked Rha units. Xyl-(1→4)-GalA, GlcA-(1→4)-Xyl-GalA, and →3)-Gal-(1→4)-GalA might also be joined to other 2-linked Rha at the same position. Some 6-linked and 4-linked Gal were terminated by GlcA.  相似文献   

13.
Thermostable β-glucosidase from Sulfolobus shibatae was immobilized on silica gel modified or not modified with 3-aminopropyl-triethoxysilane using transglutaminase as a cross-linking factor. Obtained preparations had specific activity of 3883 U/g of the support, when measured at 70 °C using o-nitrophenyl β-d-galactopyranoside (GalβoNp) as substrate. The highest immobilization yield of the enzyme was achieved at pH 5.0 in reaction media. The most active preparations of immobilized β-glucosidase were obtained at a transglutaminase concentration of 40 mg/ml at 50 °C. The immobilization was almost completely terminated after 100 min of the reaction and prolonged time of this process did not cause considerable changes of the activity of the preparations. The immobilization did not influence considerably on optimum pH and temperature of GalβoNp hydrolysis catalyzed by the investigated enzyme (98 °C, pH 5.5). The broad substrate specifity and properties of the thermostable β-glucosidase from S. shibatae immobilized on silica-gel indicate its suitability for hydrolysis of lactose during whey processing.  相似文献   

14.
A large panel of fungal β-N-acetylhexosaminidases was tested for the regioselectivity of the β-GlcNAc transfer onto galacto-type acceptors ( -galactose, lactose, 2-acetamido-2-deoxy- -galactopyranose). A unique, non-reducing disaccharide β- -GlcpNAc-(1→1)-β- -Galp and trisaccharides β- -GlcpNAc-(1→4)-β- -GlcpNAc-(1→1)-β- -Galp, β- -Galp-(1→4)-β- -Glcp-(1→1)-β- -GlcpNAc and β- -Galp-(1→4)-α- -Glcp-(1→1)-β- -GlcpNAc were synthesised under the catalysis of the β-N-acetylhexosaminidase from the Aspergillus flavofurcatis CCF 3061 with -galactose and lactose as acceptors. The use of 2-acetamido-2-deoxy- -galactopyranose as an acceptor with the β-N-acetylhexosaminidases from A. flavofurcatis CCF 3061, A. oryzae CCF 1066 and A. tamarii CCF 1665 afforded only β- -GlcpNAc-(1→6)- -GalpNAc.  相似文献   

15.
Cell suspension cultures of Capsicum frutescens accumulated digoxin, purpureaglycoside A and other unknown derivatives when digitoxin, a cardiac glycoside, was used as a precursor. The feeding of digitoxin complexed with β-cyclodextrin increased the accumulation of digoxin, purpureaglycoside A and other unknown derivatives. Control cultures (without digitoxin) did not produce any of these metabolites. The growth of cells was affected by both digitoxin as well as digitoxin- β-cyclodextrin. The accumulation of purpureaglycoside A and digoxin reached a maximum of 1241 and 374 μg 100 ml -1 culture on the 6th and 2nd day, respectively, which was 3.9 and 4.5 fold higher than cultures treated with digitoxin alone (sampled on the 13th day). The other unknown derivatives formed in digitoxin- β-cyclodextrin fed cultures were 15 times higher than digitoxin alone fed C. frutescens cultures. The addition of glucose to digitoxin- β-cyclodextrin treated cultures increased the accumulation of purpureaglycoside A which reached a maximum of 3589 μg 100 ml -1 culture after 12 h incubation, which was a 2.9 fold increase over cultures treated with digitoxin- β-cyclodextrin alone.  相似文献   

16.
γ-L-Glutamyltaurine is a naturally occurring peptide and known to have several physiological functions in mammals. This paper describes a new method for the enzymatic production of γ-L-glutamyltaurine from L-glutamine and taurine through the transpeptidation reaction of γ-glutamyltranspeptidase (EC 2.3.2.2) of Escherichia coli K-12. The optimum conditions for the production of γ-L-glutamyltaurine were 200 mM L-glutamine, 200 mM taurine and 0.2 U/ml γ-glutamyltranspeptidase, pH 10, and 1-h incubation at 37°C. Forty-five mM γ-L-glutamyltaurine was obtained, the yield being 22.5%. γ-L-Glutamyltaurine was purified on Dowex 1 × 8 and C18 columns, and identified by means of NMR and a polarimeter.  相似文献   

17.
Kim YW  Chen H  Withers SG 《Carbohydrate research》2005,340(18):2735-2741
The application of the hyperactive glycosynthase derived from Agrobacterium sp. β-glucosidase (AbgE358G-2F6) to the synthesis of xylo-oligosaccharides by using -d-xylopyranosyl fluoride as donor represents the first successful use of glycosynthase technology for xylosyl transfer. Transfer to p-nitrophenyl β-d-glucopyranoside yields di- and trisaccharide products with β-(1→4) linkages in 63% and 35% yields, respectively. By contrast, transfer to p-nitrophenyl β-d-xylopyranoside yielded the β-(1→3) linked disaccharide and β-d-Xyl-(1→4)-β-d-Xyl-(1→3)-β-d-Xyl-pNP as major products in 42% and 30% yields, respectively. Transfer of xylose to β-d-Xyl-(1→4)-β-d-Xyl-pNP yielded the β-(1→4) linked trisaccharide in 98% yield, thereby indicating that transfers to xylo-disaccharides occur with formation of β-(1→4) bonds. Xylosylation of carbamate-protected deoxyxylonojirimycin produced a mixture of di- and tri-‘saccharide’ products in modest yields.  相似文献   

18.
The capsular polysaccharide produced by a Rhizobium isolated from a root nodule of Acacia decurrens is composed of 3-O-methyl- -rhamnose: -rhamnose: - mannose: -glucose: -galacturonic acid in the molar ratios of 1:2:2:4:1. The extracellular polysaccharide is similarly constituted. Structural analyses indicate a decasaccharide repeating-unit in which the -rhamnosyl groups occur as single-unit side-chains. The 3-O-methyl- -rhamnosyl and one of the α- -rhamnosyl groups are (1→6)-linked to two of the -glucosyl residues. The other α- -rhamnosyl group is (1→4)-linked to the -galacturonic acid residue. The main-chain residues are all (1→3)-linked, and are partially identified as -(1→3)-α- -GalpA-(1→3)-α- -Manp- (1→3)-α- -Glcp-(1→3)-.  相似文献   

19.
Structure and biological activities of hypochlorite oxidized zymosan   总被引:5,自引:0,他引:5  
Zymosan (ZYM), a strong complement activating yeast cell preparation, is also a potent inflammatory substance, which shows immunopharmacological activity. Major component of ZYM is β-glucan but contains other constituents, such as mannan, protein, and nucleic acid. We applied sodium hypochlorite (NaClO) treatment to ZYM to reduce impurities and compared the activity with native/parent ZYM. Oxidized ZYM (OX-ZYM) became a nitrogen-free agent. By NMR analysis of native OX-ZYM and zymolyase (endo-1,3-β-glucanase) digest, OX-ZYM was found to contain 1,3-β-linked and 1,6-β-linked glucan moieties, while the latter degraded by sodium metaperiodate treatment. OX-ZYM also contained small amounts of anionic groups, partly reducible by sodium borohydride. Degree of polymerization (DP) of 1,6-β-glucan moiety was estimated to be about DP10–DP50 by MALDI-TOF-MS analysis. In comparison with ZYM activities, OX-ZYM and derivatives showed strong antitumor activity to solid form of Sarcoma 180 in mice, and showed strong activity on alternative pathway of complement, but lost secondary response to ZYM-immune mice. These facts strongly suggested that a particulate form of β-glucan was prepared by NaClO treatment of ZYM and at least a part of ZYM-mediated biological activity was found unmediated by β-glucan moiety.  相似文献   

20.
A microbial process for the production of optically-active γ-decalactone from the ricinoleic acid present as triglycerides in castor oil has been developed, γ-decalactone (γDL) is a component of some fruit flavours, being an important organoleptic component of peach flavours. Screening showed two red yeast microorganisms, Rhodotorula glutinis and Sporobolomyces odortts to be especially suitable for this biotransformation. The process involves lipase-mediated hydrolysis of the castor oil to give free ricinoleic acid, uptake of the acid by the cells and aerobic fermentation to achieve abbreviated β-oxidation of the ricinoleic acid (12-hydroxyoleic acid) into 4-hydroxydecanoic acid (4HDA), lactonisation of the acid into γ-DL, followed by solvent extraction and distillation. γ-DL broth concentrations of 0.5-1.2g · 1-t were obtained after 3-5 days from fermentation media containing 10 g · 1-1 castor oil, representing an 8.3-20.0% theoretical yield. Intermediates detected were consistent with the operation of the β-oxidation pathway. Appreciable amounts of novel metabolites identified as cis and trans isomers of a tetrahydrofuran (C10) were also produced. Their formation from 4HDA appeared to be non-enzymic and was favoured by anaerobic conditions. Yields of γ-DL were inversely proportional to the concentration of castor oil present in the medium, indicating that substrate inhibition takes place. The highest yields of γ-DL were obtained when castor oil was present from the beginning of the fermentation, rather than when added once the fermentation had become established, demonstrating that the β-oxidation pathway and/or transport system require continual induction. Significant amounts of γ-DL were not produced from other fatty acids, including ricinelaidic acid, the trans isomer of ricinoleic acid. γ-DL formation was dramatically inhibited by antibiotic inhibitors of oxidative phosphorylation, indicating the importance of intact β-oxidation pathways, whereas inhibitors of protein synthesis and cell-wall synthesis had much less marked effects. Selective extraction of 4HDA from the fermentation broths, and of γDL from broth lactonised by heating at low pH, could be achieved by adsorption to Amberlite XAD-1 and XAD-7 resins respectively. Some product could be recovered from the exit gases of the fermenter by passing through propylene glycol traps. This pathway is unusual in that it is a rare example of the truncated β-oxidation of a fatty acid by microorganisms. This effect probably occurs because of partial inhibition of one or more enzymes of the β-oxidation pathway by the C10 hydroxylated fatty acid intermediate(s) allowing intracellular accumulation of the 4HDA, followed by leakage out of the cell; although further metabolism of this C10 intermediate does take place slowly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号