首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oleD gene has been identified in the oleandomycin producer Streptomyces antibioticus and it codes a macrolide glycosyltransferase that is able to transfer a glucose moiety from UDP-glucose (UDP-Glc) to many macrolides. The glycosyltransferase coded by the oleD gene has been purified 371-fold from a Streptomyces lividans clone expressing this protein. The reaction product was isolated, and its structure determined by NMR spectroscopy. The kinetic mechanism of the reaction was analyzed using the macrolide antibiotic lankamycin (LK) as substrate. The reaction operates via a compulsory order mechanism. This has been shown by steady-state kinetic studies and by isotopic exchange reactions at equilibrium. LK binds first to the enzyme, followed by UDP-glucose. A ternary complex is thus formed prior to transfer of glucose. UDP is then released, followed by the glycosylated lankamycin (GS-LK). A pH study of the reaction was performed to determine values for the molecular pK values, suggesting possible amino acid residues involved in the catalytic process.  相似文献   

2.
Macrolides are a group of antibiotics structurally characterized by a macrocyclic lactone to which one or several deoxy-sugar moieties are attached. The sugar moieties are transferred to the different aglycones by glycosyltransferases (GTF). The OleI GTF of an oleandomycin producer, Streptomyces antibioticus, catalyzes the inactivation of this macrolide by glycosylation. The product of this reaction was isolated and its structure elucidated. The donor substrate of the reaction was UDP-alpha-D-glucose, but the reaction product showed a beta-glycosidic linkage. The inversion of the anomeric configuration of the transferred sugar and other data about the kinetics of the reaction and primary structure analysis of several GTFs are compatible with a reaction mechanism involving a single nucleophilic substitution at the sugar anomeric carbon in the catalytic center of the enzyme.  相似文献   

3.
Elloramycin and oleandomycin are two polyketide compounds produced by Streptomyces olivaceus Tü2353 and Streptomyces antibioticus ATCC11891, respectively. Elloramycin is an anthracycline-like antitumor drug and oleandomycin a macrolide antibiotic. Expression in S. albus of a cosmid (cos16F4) containing part of the elloramycin biosynthetic gene cluster produced the elloramycin non-glycosylated intermediate 8-demethyl-tetracenomycin C. Several plasmid constructs harboring different gene combinations of L-oleandrose (neutral 2,6-dideoxyhexose attached to the macrolide antibiotic oleandomycin) biosynthetic genes of S. antibioticus that direct the biosynthesis of L-olivose, L-oleandrose and L-rhamnose were coexpressed with cos16F4 in S. albus. Three new hybrid elloramycin analogs were produced by these recombinant strains through combinatorial biosynthesis, containing elloramycinone or 12a-demethyl-elloramycinone (= 8-demethyl-tetracenomycin C) as aglycone moiety encoded by S. olivaceus genes and different sugar moieties, coded by the S. antibioticus genes. Among them is L-olivose, which is here described for the first time as a sugar moiety of a natural product.  相似文献   

4.
Resistance to oleandomycin in Streptomyces antibioticus, the producer organism, was studied. The organism was highly resistant in vivo to the antibiotic but sensitive to other macrolides and lincosamides. Protein synthesis in vivo by mycelium of S. antibioticus was more resistant to oleandomycin than that by mycelium of Streptomyces albus G, an oleandomycin-sensitive strain, and this resistance was dependent on the age of the culture, older mycelium of S. antibioticus being more resistant to oleandomycin than young mycelium. [3H]Oleandomycin was capable of binding to the same extent to the 50S subunits of the ribosomes of both organisms. Oleandomycin also inhibited in vitro protein synthesis by ribosomes obtained from an oleandomycin-production medium at the time when maximum levels of oleandomycin were being produced. A clear difference between the ability of the two organisms to incorporate exogenous oleandomycin was observed. Thus, while S. albus G took up oleandomycin, S. antibioticus showed a decreased permeability to the antibiotic, suggesting a role for cell permeability in self-resistance.  相似文献   

5.
Abstract A cosmid clone from an oleandomycin producer, Streptomyces antibioticus , contains a large open reading frame encoding a type I polyketide synthase subunit and an oleandomycin resistance gene ( oleB ). Sequencing of a 1.4-kb DNA fragment adjacent to oleB revealed the existence of an open reading frame ( oleP ) encoding a protein similar to several cytochrome P450 monooxygenases from different sources, including the products of the eryF and eryK genes from Saccharopolyspora erythraea that participate in erythromycin biosynthesis. The oleP gene was expressed in Escherichia coli as a fusion protein to a maltose-binding protein. Using polyclonal antibodies against this fusion protein it was observed that the synthesis of the cytochrome P450 was in parallel to that of oleandomycin. The cytochrome P450 encoded by the oleP gene could be responsible for the epoxidation of carbon 8 of the oleandomycin lactone ring.  相似文献   

6.
Abstract The ole B gene of Streptomyces antibioticus , oleandomycin producer, encodes an ABC transporter containing two putative ATP-binding domains and is involved in oleandomycin resistance and secretion in this organism. We have overexpressed in Escherichia coli the N-terminal nucleotide-binding domain of OleB (OleB') as a fusion protein to a maltose-binding protein and purified the fusion protein by affinity chromatography. The fusion protein showed ATPase activity dependent on the presence of Mg2+ ions. ATPase activity was resistant to specific inhibitors of P-, F-, and V-type ATPase whereas sodium azide and 7-chloro-4-nitrobenzo-2-oxa-l,3-diazole (NBD-C1) were strong inhibitors. The change of Lys71, located within the Walker A motif of the OleB' protein, to Gin or Glu caused a loss of ATPase activity, whereas changing to Gly did not impair the activity. The results suggest that the intrinsic ATPase activity of purified fusion protein can be clearly distinguished from other ATP-hydrolysing enzymes, including ion-translocating ATPases or ABC-traffic ATPases, both on the basis of inhibition by different agents and since it hydrolyzes ATP without interacting with a hydrophobic membrane component.  相似文献   

7.
Cell extracts of Streptomyces antibioticus, an oleandomycin producer, can inactivate oleandomycin in the presence of UDP-glucose. The inactivation can be detected through the loss of biological activity or by alteration in the chromatographic mobility of the antibiotic. This enzyme activity also inactivates other macrolides (rosaramicin, methymycin, and lankamycin) which contain a free 2'-OH group in a monosaccharide linked to the lactone ring (with the exception of erythromycin), but not those which contain a disaccharide (tylosin, spiramycin, carbomycin, josamycin, niddamycin, and relomycin). Interestingly, the culture supernatant contains another enzyme activity capable of reactivating the glycosylated oleandomycin and regenerating the biological activity through the release of a glucose molecule. It is proposed that these two enzyme activities could be an integral part of the oleandomycin biosynthetic pathway.  相似文献   

8.
The production of clavam metabolites has been studied previously in Streptomyces clavuligerus , a species that produces clavulanic acid as well as 4 other clavam compounds, but the late steps of the pathway leading to the specific end products are unclear. The present study compared the clavam biosynthetic gene cluster in Streptomyces antibioticus , chosen because it produces only 2 clavam metabolites and no clavulanic acid, with that of S.?clavuligerus. A cosmid library of S.?antibioticus genomic DNA was screened with a clavaminate synthase-specific probe based on the corresponding genes from S. clavuligerus, and 1 of the hybridizing cosmids was sequenced in full. A clavam gene cluster was identified that shows similarities to that of S.?clavuligerus but also contains a number of novel genes. Knock-out mutation of the clavaminate synthase gene abolished clavam production in S.?antibioticus, confirming the identity of the gene cluster. Knock-out mutation of a novel gene encoding an apparent oxidoreductase also abolished clavam production. A potential clavam biosynthetic pathway consistent with the genes in the cluster and the metabolites produced by S. antibioticus, and correspondingly different from that of S.?clavuligerus, is proposed.  相似文献   

9.
An oleandomycin glycosyltransferase (OleD GT) gene from Streptomyces antibioticus was functionally expressed in Escherichia coli BL21 (DE3) with various molecular chaperones. The purified recombinant OleD GT catalyzed glycosylation of various flavonoids: apigenin, chrysin, daidzein, genistein, kaempferol, luteolin, 4-methylumbelliferone, naringenin, quercetin and resveratrol with UDP–glucose. 4.6 μg OleD GT was readily immobilized onto 1 mg hybrid nanoparticles of Fe3O4/silica/NiO on the basis of the affinity between His-tag and NiO nanoparticles with retention of 90% activity. In batch reaction, more than 90% naringenin (20 μM) was converted to its glycoside in 5 h. The immobilized OleD GT was efficiently reused for seven times whilst maintaining >60% of the residual activity in repeated glycosylation of naringenin.  相似文献   

10.
Two glycosyltransferase genes, oleG1 and oleG2, and a putative isomerase gene, oleP1, have previously been identified in the oleandomycin biosynthetic gene cluster of Streptomyces antibioticus. In order to identify which of these two glycosyltransferases encodes the desosaminyltransferase and which the oleandrosyltransferase, interspecies complementation has been carried out, using two mutant strains of Saccharopolyspora erythraea, one strain carrying an internal deletion in the eryCIII (desosaminyltransferase) gene and the other an internal deletion in the eryBV (mycarosyltransferase) gene. Expression of the oleG1 gene in the eryCIII deletion mutant restored the production of erythromycin A (although at a low level), demonstrating that oleG1 encodes the desosaminyltransferase required for the biosynthesis of oleandomycin and indicating that, as in erythromycin biosynthesis, the neutral sugar is transferred before the aminosugar onto the macrocyclic ring. Significantly, when an intact oleG2 gene (presumed to encode the oleandrosyltransferase) was expressed in the eryBV deletion mutant, antibiotic activity was also restored and, in addition to erythromycin A, new bioactive compounds were produced with a good yield. The neutral sugar residue present in these compounds was identified as L-rhamnose attached at position C-3 of an erythronolide B or a 6-deoxyerythronolide B lactone ring, thus indicating a relaxed specificity of the oleandrosyltransferase, OleG2, for both the activated sugar and the macrolactone substrate. The oleP1 gene located immediately upstream of oleG1 was likewise introduced into an eryCII deletion mutant of Sac. erythraea, and production of erythromycin A was again restored, demonstrating that the function of OleP1 is identical to that of EryCII in the biosynthesis of dTDP-D-desosamine, which we have previously proposed to be a dTDP-4-keto-6-deoxy-D-glucose 3, 4-isomerase.  相似文献   

11.
12.
To identify the potential role of the 3-hydroxyl group of the pyridine ring in nosiheptide (NOS) for its antibacterial activity against Gram-positive pathogens, enzymatic glycosylation was utilized to regio-selectively create a monoglycosyl NOS derivative, NOS-G. For this purpose, we selected OleD, a UDP glycosyltransferase from Streptomyces antibioticus that has a low productivity for NOS-G. Activity of the enzyme was increased by swapping domains derived from OleI, both single and in combination. Activity enhancement was best in mutant OleD-10 that contained four OleI domains. This chimer was engineered by site-directed mutagenesis (single and in combination) to increase its activity further, whereby variants were screened using a newly-established colorimetric assay. OleD-10 with I117F and T118G substitutions (FG) had an increased NOS-G productivity of 56%, approximately 70 times higher than that of wild-type OleD. The reason for improved activity of FG towards NOS was structurally attributed to a closer distance (<3 Å) between NOS/sugar donor and the catalytic amino acid H25. The engineered enzyme allowed sufficient activity to demonstrate that the produced NOS-G had enhanced stability and aqueous solubility compared to NOS. Using a murine MRSA infection model, it was established that NOS-G resulted in partial protection within 20 h of administration and delayed the death of infected mice. We conclude that 3-hydroxypyridine is a promising site for structural modification of NOS, which may pave the way for producing nosiheptide derivatives as a potential antibiotic for application in clinical treatment.  相似文献   

13.
A 6-kb region from the chromosome of Streptomyces antibioticus, an oleandomycin producer, was cloned and sequenced. This region was located between the 3′ end of the gene encoding the third subunit of the oleandomycin type I polyketide synthase and the oleP and oleB genes, which encode a cytochrome P450 monooxygenase and an oleandomycin resistance gene, respectively. Analysis of the nucleotide sequence revealed the presence of five genes encoding a cytochrome P450-like protein (oleP1), two glycosyltransferases (oleG1 and oleG2) involved in the transfer of the two 6-deoxysugars (L-oleandrose and D-desosamine) to the oleandomycin macrolactone ring, a methyltransferase (oleM1), and a gene (oleY) of unknown function. Insertional inactivation of this region by gene disruption generated an oleandomycin non-producing mutant which accumulated a compound that, according to mass spectrometry analysis, could correspond to the oleandomycin macrolactone ring (oleandolide), suggesting that the mutation affects oleandrosyl glycosyltransferase. Received: 3 December 1997 / Accepted: 12 May 1998  相似文献   

14.
When glucose is substituted for sucrose in the fermentation medium for Streptomyces antibioticus, the pH of the cultural broth becomes more acidic, the rate of protein synthesis in the mycelium rises, and the rate of oleandomycin synthesis decreases abruptly. The dynamics of cAMP (cyclic monophosphate) accumulation was studied in the process of biosynthesis by the culture in different media. Most of the synthesized cAMP (80-90%) was shown to be excreted into the medium. Glucose stimulates cAMP synthesis and excretion from the mycelium by a factor of 1.5-3. No distinct correlation was found between cAMP content in S. antibioticus cells and the level of oleandomycin biosynthesis. A correlation between changes in the concentration of exocellular cAMP and protein synthesis in the mycelium suggests that the excreted cAMP may be involved in regulating the growth of the culture producing the antibiotic.  相似文献   

15.
The ability of Streptomyces antibioticus strains to synthesize oleandomycin is studied under the effect of regeneration and fusion of protoplasts. The production of strains-regenerants with an increased (by 30-50%) synthesis of oleandomycin is possible. Regenerants of mutants resistant to the proper antibiotic retain a high level of the oleandomycin synthesis more stably. Variations in the antibiotic-production ability are considered in regenerant populations of various generations.  相似文献   

16.
A 6-kb region from the chromosome of Streptomyces antibioticus, an oleandomycin producer, was cloned and sequenced. This region was located between the 3′ end of the gene encoding the third subunit of the oleandomycin type I polyketide synthase and the oleP and oleB genes, which encode a cytochrome P450 monooxygenase and an oleandomycin resistance gene, respectively. Analysis of the nucleotide sequence revealed the presence of five genes encoding a cytochrome P450-like protein (oleP1), two glycosyltransferases (oleG1 and oleG2) involved in the transfer of the two 6-deoxysugars (L-oleandrose and D-desosamine) to the oleandomycin macrolactone ring, a methyltransferase (oleM1), and a gene (oleY) of unknown function. Insertional inactivation of this region by gene disruption generated an oleandomycin non-producing mutant which accumulated a compound that, according to mass spectrometry analysis, could correspond to the oleandomycin macrolactone ring (oleandolide), suggesting that the mutation affects oleandrosyl glycosyltransferase.  相似文献   

17.
A gene (ORFB) from Streptomyces antibioticus (an oleandomycin producer) encoding a large, multifunctional polyketide synthase (PKS) was cloned and sequenced. Its product shows an internal duplication and a close similarity to the third subunit of the PKS involved in erythromycin biosynthesis by Saccharopolyspora erythraea, showing the equivalent nine active site domains in the same order along the polypeptide. An unusual feature of this ORF is the GC content of most of the sequence, which is surprisingly low, for a Streptomyces gene; the large number of codons with T in the third position is particularly striking. The last 800 by of the gene stand out as being normal in their GC content, this region corresponding almost exactly to the thioesterase domain of the gene and suggesting that this domain was a late addition to the PKS. Based on the high degree of similarity between the ORFB product and the third subunit of the erythromycin PKS and the occurrence nearby of a gene conferring oleandomycin resistance, it is possible that this gene might be involved in the biosynthesis of the oleandomycin lactone ring.  相似文献   

18.
A gene (ORFB) from Streptomyces antibioticus (an oleandomycin producer) encoding a large, multifunctional polyketide synthase (PKS) was cloned and sequenced. Its product shows an internal duplication and a close similarity to the third subunit of the PKS involved in erythromycin biosynthesis by Saccharopolyspora erythraea, showing the equivalent nine active site domains in the same order along the polypeptide. An unusual feature of this ORF is the GC content of most of the sequence, which is surprisingly low, for a Streptomyces gene; the large number of codons with T in the third position is particularly striking. The last 800 by of the gene stand out as being normal in their GC content, this region corresponding almost exactly to the thioesterase domain of the gene and suggesting that this domain was a late addition to the PKS. Based on the high degree of similarity between the ORFB product and the third subunit of the erythromycin PKS and the occurrence nearby of a gene conferring oleandomycin resistance, it is possible that this gene might be involved in the biosynthesis of the oleandomycin lactone ring.  相似文献   

19.
Two strains of Str. antibioticus producing oleandomycin were studied. Strain 326 was obtained from the initial laboratory strain and strain 1607 from strain 326 as a result of multistage selection aimed at increasing the antibiotic production capacity. Extrachromosomal ring DNA could be identified in strain 1607. The identified DNA was designated as eSA1 or extrachromosomal element of Streptomyces antibioticus 1. The molecular weight of this DNA is 21.3 Md. It is represented by 1 copy per chromosome. No eSA1 was isolated from strain 326 at CsCl-EtBr gradient. Hybridization studies according to Southern with the use as a probe of 32-eSA1 DNA showed that strain 326 contained 1 copy of eSA1 per chromosome in the integrated state. The hybridization studies, electron microscopy and analysis of the total DNA in CsC1-EtBr gradient showed that eSA1 in strain 1607 was tandemly multireplicated in the chromosome content. In the autonomous state its number was approximately equal to 1 copy per chromosome. The presence of eSA1 in strain 1607 in the autonomous state probably results from its segregation during homologous recombination due to tandem multireplication. The data are indicative of multiplication in strain 1607 of the chromosome fragment 23.3 Md in size. It is suggested that an increase in the oleandomycin production capacity of strain 1607 is associated with multiplication of the DNA fragment (eSA1) containing the genes determining production of the antibiotic.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号