首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An enzyme electrode for on-line determination of ethanol and methanol   总被引:1,自引:0,他引:1  
Since a stable alcohol oxidase with a high specific activity is not commercially available, we propose to produce and purify this enzyme from a strain of the yeast Hansenula polymorpha. This alcohol oxidase was immobilized into a gelatin matrix and its activity was estimated by a pO(2) sensor. The enzyme electrode obtained was then used in a continuous flow system to measure methanol or ethanol concentrations. The sample oxygen content dependence of the signal was minimized by the support properties. Measuring time for each sample were less than two minutes including response data treatment and rinsing step. The enzyme electrode response was set for ethanol from 0.5mM to 15mM and for methanol from 10mM to 300mM. On repeated use, the electrode signal for 10mM of ethanol was stable for at least 500 assays. Analysis have been performed in different beverages such as wine and beer, and the results compared to those obtained with classical methods of analysis.  相似文献   

2.
An amperometric enzyme electrode for the determination of glucose under anaerobic solution conditions was developed by immobilizing glucose oxidase and then by adsorbing ferrocene in polyvinylferrocenium matrix coated on a Pt electrode surface. The amperometric response due to the electrooxidation of ferrocene that the reduced flavin adenine dinucleotide centers of glucose oxidase was measured at a constant potential. The response characteristics of the enzyme electrode were investigated. The effects of the thickness of the polymeric film, the amount of the enzyme immobilized, the amount of the mediator, the glucose concentration, the applied potential, operating pH and temperature on the response of the enzyme electrode were studied. The response time and the optimum pH were found to be 30-40 s and pH 7.4 at 25 degrees C, respectively. The linear response was observed up to 5.0 mM glucose concentration that the produced detectable current was 0.0075 mM glucose concentration. The activation energy (E(a)) of immobilized enzyme reaction was calculated to be 41.3 kJ mol(-1) from the Arrhenius plot. The apparent Michaelis-Menten constant (K(Mapp)) was found to be 6.05 mM glucose according to the Lineweaver-Burk graph of the Michaelis-Menten equation under the optimum conditions. The interference signal due to the most common electrochemical interfering species was also evaluated.  相似文献   

3.
The response characteristics of a new enzyme electrode for determining choline are reported. The enzyme electrode consists of a polyvinylferrocenium perchlorate coated Pt surface onto which the enzyme, choline oxidase, is attached. Choline oxidase catalyzes the oxidation of choline to betaine, producing H2O2. Current due to H2O2 oxidation catalyzed by polyvinylferrocenium centers was measured. The effects of choline concentration, the amount of enzyme immobilized and the operating pH and temperature on the response of the enzyme electrode were studied. The effects of interferents were also investigated. The response time was found to be 60–70 s and the upper limit of the linear working portion was found to be 1.2 mM choline concentration. The minimum substrate concentration that produced detectable current was 4.0×10−6 M choline concentration. The steady-state current of this enzyme electrode was reproducible within ±4.6% of relative error. The apparent Michaelis–Menten constant (KMapp) and the activation energy, Ea, of this immobilized enzyme system were found to be 2.32 mM and 38.91 kJ/mol, respectively.  相似文献   

4.
A simple method of enzyme immobilization was investigated, which is useful for development of enzyme electrodes based on polyvinylferrocenium perchlorate coated Pt electrode surface. Enzymes were incorporated into the polymer matrix via ion exchange process by immersing polyvinylferrocenium perchlorate coated Pt electrode in enzyme solution for several times. Choline and acetylcholine enzyme electrodes were developed by co-immobilizing choline oxidase and acetylcholinesterase in polyvinylferrocenium perchlorate matrix coated on a Pt electrode surface. The amperometric responses of the enzyme electrodes were measured at +0.70 V versus SCE, which was due to the electrooxidation of enzymatically produced H2O2. The effects of the thickness of the polymeric film, pH, temperature, substrate and enzyme concentrations on the response of the enzyme electrode were investigated. The optimum pH was found to be pH 7.4 at 25 degrees C. The steady-state current of these enzyme electrodes were reproducible within +/-5.0% of the relative error. Response time was found to be 30-50s and upper limit of the linear working portions was found to be 1.2mM choline and acetylcholine concentrations in which produced detectable currents were 1.0 x 10(-6)M substrate concentrations. The apparent Michaelis-Menten constant and the activation energy of this immobilized enzyme system were found to be 1.74 mM acetylcholine and 14.9 kJ mol(-1), respectively. The effects of interferents and stability of the enzyme electrodes were also investigated.  相似文献   

5.
A benzyl alcohol oxidase (BAO) was purified to homogeneity from Botrytis cinerea. The enzyme was found to have a molecular mass of 214 kD with a trimeric structure, and optimal pH and temperature of 5.0 and 30°C, respectively. The enzyme activity was not sensitive to metal ions or to metal ion chelators, while thiol blocking reagents strongly inhibited BAO activity. Sulfur dioxide irreversibly inhibited the enzyme activity and the inhibitory effect of ethanol was weak and reversible. Benzyl alcohol was the most effective alcohol substrate for BAO. Para or meta monosubstituted benzyl alcohol with methyl or methoxy groups were good substrates. BAO also oxidized cinnamyl alcohol, furfuryl alcohol, and some terpenic alcohols· with an alkenyl group near the reactive carbinol. Secondary alcohol, methanol and phenol were not substrates. Product inhibition studies suggested that benzaldehyde and benzyl alcohol were bound at different places to the active site. O2 was the only electron acceptor identified and Botrytis cinerea benzyl alcohol oxidase was classified .as EC 1.1.3.7 according to stoichiometrical studies. We discuss the metabolic role of BAO in the Botrytis cinerea-grape host-parasite relationship.  相似文献   

6.
The effect of pH on steady state kinetic parameters for the yeast alcohol dehydrogenase-catalyzed reduction of aldehydes and oxidation of alcohols has been studied. The oxidation of p-CH3 benzyl alcohol-1,1-h2 and -1,1-d2 by NAD+ was found to be characterized by large deuterium isotope effects (kH/kD = 4.1 plus or minus 0.1) between pH 7.5 and 9.5, indicating a rate-limiting hydride trahsfer step in this pH range; a plot of kCAT versus pH could be fit to a theoretical titration curve, pK = 8.25, where kCAT increases with increasing pH. The Michaelis constnat for p-CH3 benzyl alcohol was independent of pH. The reduction of p-CH3 benzaldehyde by NADH and reduced nicotinamide adenine dinucleotide with deuterium in the 4-A position (NADD) cound not be studied below pH 8.5 due to substrate inhibition; however, between pH 8.5 and 9.5, kCAT was found to decrease with increasing pH and to be characterized by significant isotope effects (kH/kD = 3.3 plus or minus 0.3). In the case of acetaldehyde reduction by NADH and NADD, isotope effects were found to be small and exxentially invariant (kH/kD = 2.O plus or minus 0.4) between pH 7.2 and 9.5, suggesting a partially rate-limiting hydride transger step for this substrate; a plot of kCAT/K'b (where K'b is the Michaelis constant for acetaldehyde) versus pH could be fit to a titration curve, pK = 8.25. The titration curve for acetaldehyde reduction has the same pK but is opposite in direction to that observed for p-CH3 benzyl alcohol oxidation. The data presented in this paper indicate a dependence on different enzyme forms for aldehyde reduction and alcohol oxidation and are consistent with a single active site side chain, pK = 8.25, which functions in acid-base catalysis of the hydride transfer step.  相似文献   

7.
The neutral anesthetics chloroform and benzyl alcohol, at concentrations that block the nerve impulse, greatly modify the transport parameters of positive and negative ions in lipid bilayers made from monolayers. Both chloroform and benzyl alcohol increase the membrane permeability to these ions and increase the translocation rate for tetraphenylborate. It was found that both anesthetics increase the membrane permeability to positive ions more markedly than to negative ions. It was also found that the membrane capacitance increases lineary with the concentration of benzyl alcohol. At 51 mM benzyl alcohol, the increase in capacitance is approximately 6%. Chloroform also increases the membrane capacitance; the increase in capacitance was found to be 6% at 18 mM chloroform. An analysis of the changes in the transport parameters of the lipophilic ions, together with the changes in membrane capacitance, suggests that benzyl alcohol and chloroform modify the dipole potential and dielectric constant of the membrane. Benzyl alcohol may also increase the "fluidity" of the lipid bilayer membranes. At 36 mM benzyl alcohol, the membrane permeability to acetamide increases by 38%.  相似文献   

8.
Abstract

A new amperometric sensor has been fabricated for sensitive and rapid quantification of ethanol. The biosensor assembly was prepared by covalently immobilizing alcohol oxidase (AOX) from Pichia pastoris onto chemically modified surface of polyvinylchloride (PVC) beaker with glutaraldehyde as a coupling agent followed by immobilization of horseradish peroxidase (HRP), silver nanoparticles (AgNPs), chitosan (CHIT), carboxylated multi-walled carbon nanotubes (c-MWCNTs) and nafion (Nf) nanocomposite onto the surface of Au electrode (working electrode). Owing to properties such as chemical inertness, light weight, weather resistance, corrosion resistance, toughness and cost-effectiveness, PVC membrane has attracted a growing interest as a support for enzyme immobilization in the development of biosensors. The amperometric biosensor displayed optimum response within 8?s at pH 7.5 and 35°C temperature. A linear response to alcohol in the range of 0.01mM–50?mM and 0.0001?µM as a minimum limit of detection was displayed by the proposed biosensor with excellent storage stability (190?days) at 4°C. The sensitivity of the sensor was found to be 155?µA mM?1?cm?2. A good correlation (R2?=?0.99) was found between alcohol level in commercial samples as evaluated by standard ethanol assay kit and the current biosensor which validates its performance.  相似文献   

9.
The benzyl 2-methyl-3-hydroxybutyrate dehydrogenase was purified from the cells of baker’s yeast by streptomycin treatment, Sephadex G-50 gel filtration, SP-Sephadex C-50 chromatography, and Toyopearl HW-60F gel filtration. The purified enzyme preparation was homogeneous and the molecular weight was about 31,000 to 32,000. The enzyme was NADPH-dependent and its maximum activity was at pH 7.0 and 45°C. It was stable between pH 6 and 9. The Km values at pH 7.0 were 0.42 mM for benzyl 2-methyl-3-oxobutyrate (1) and 4.2 mM for α-methyl β-hydroxy ester [syn-(2) and anti-(3)]. This enzyme reduced only benzyl 2-methyl-3-oxobutyrate (1) but had no effect on other synthetic substrates.

The reduced products [syn-(2) and anti(3)] produced by the purified enzyme were identified by 400 MHz NMR.  相似文献   

10.
1. Kinetic relationships referring to multiple-turnover conditions have been derived for the slowest exponential transient appearing in two-substrate enzyme reactions proceeding by an ordered ternary-complex mechanism. The validity of these and previously derived theoretical relationships for this mechanism has been tested by application to the liver alcohol dehydrogenase reaction. 2. All essential features of the transient-state kinetics of alcohol oxidation by NAD+ in the liver alcohol dehydrogenase system can be qualitatively and quantitatively explained in view of the compulsory-order mechanism in the proposed scheme. There is no kinetic evidence for any half-of-the-sites reactivity of the enzyme. A consistent set of rate constants is reported for the enzymic oxidation of benzyl alcohol at pH 8.75. 3. Transient-state rate parameters for benzyl alcohol/benzaldehyde catalysis by liver alcohol dehydrogenase have been determined at different pH. The interpretation of such rate parameters is critically discussed with reference to their informative value for the purpose of determination of rate constants (k and k') for the process of ternary-complex interconversion in the proposed scheme. It is concluded that the apparent rate constant (k') for hydride transfer from benzyl alcohol to NAD+ is dependent on a proton dissociation step with a pKa of 6.4, whereas the rate constant (k) for hydride transfer from NADH to benzaldehyde exhibits no corresponding dependence on proton association. 4. The asymmetric pH dependence of the forward and reverse rate of ternary-complex interconversion during liver alcohol dehydrogenase catalysis appears to reflect an obligatory step of alcohol/alcoholate ion equilibration occurring at the ternary-complex level. It is suggested that the observed pKa 6.4 dependence of the transient rate of alcohol oxidation can be attributed to a coupled acid-base system involving minimally the enzyme-bound alcohol and the protein residues Ser-48 and His-51.  相似文献   

11.
A biosensor for the specific determination of uric acid in urine was developed using urate oxidase (EC 1.7.3.3) in combination with a dissolved oxygen probe. Urate oxidase was immobilized with gelatin by means of glutaraldehyde and fixed on a pretreated teflon membrane to serve as enzyme electrode. The electrode response was maximum when 50 mM glycine buffer was used at pH 9.2 and 35 degrees C. The enzyme electrode response depends linearly on uric acid concentration between 5-40 microM with a response time of 5 min. The enzyme electrode is stable for more than 2 weeks and during this period over 35 assays were performed.  相似文献   

12.
For the first time glucose oxidase (GOx) was successfully co-deposited on nickel-oxide (NiO) nanoparticles at a glassy carbon electrode. In this paper we present a simple fabrication method of biosensor which can be easily operated without using any specific reagents. Cyclic voltammetry was used for electrodeposition of NiO nanoparticle and GOx immobilization. The direct electron transfer of immobilized GOx displays a pair of well defined and nearly reversible redox peaks with a formal potential (E(0')) of -0.420 V in pH 7 phosphate buffer solution and the response shows a surface controlled electrode process. The surface coverage and heterogeneous electron transfer rate constant (k(s)) of GOx immobilized on NiO film glassy carbon electrode are 9.45 x 10(-13)mol cm(-2) and 25.2+/-0.5s(-1), indicating the high enzyme loading ability of the NiO nanoparticles and great facilitation of the electron transfer between GOx and NiO nanoparticles. The biosensor shows excellent electrocatalytical response to the oxidation of glucose when ferrocenmethanol was used as an artificial redox mediator. Furthermore, the apparent Michaelis-Menten constant 2.7 mM, of GOx on the nickel oxide nanoparticles exhibits excellent bioelectrocatalytic activity of immobilized enzyme toward glucose oxidation. In addition, this glucose biosensor shows fast amperometric response (3s) with the sensitivity of 446.2nA/mM, detection limit of 24 microM and wide concentration range of 30 microM to 5mM. This biosensor also exhibits good stability, reproducibility and long life time.  相似文献   

13.
1. A dye-linked alcohol dehydrogenase was purified 20-fold from extracts of Rhodopseudomonas acidophila 10050 grown anaerobically in the light on methanol/HCO3-. 2. The enzyme resembled many previously reported methanol dehydrogenases from other methylotrophic organisms in coupling to phenazine methosulphate, requiring ammonia as an activator, possessing a pH optimum of 9 and a mol.wt. of approx. 116000. In many other respects the enzyme showed singular properties. 3. The stability of the enzyme under various conditions of temperature and pH was studied. 4. Primary aliphatic amines containing up to nine carbon atoms (the longest tested) were better activators than ammonia. 5. A wide range of primary alcohols and aldehydes served as substrates, with apparent Km values ranging from 57 mM for methanol to 6 micron for ethanol. 6. O2 was an inhibitor competitive with respect to the alcohol substrate. In the presence of O2, apparent Km values of 145 mM were recorded for methanol. 6. Cyanide and alphaalpha'-bipyridine were inhibitors competitive with respect to the amine activator. 7. The properties of the enzyme from Rhodopseudomonas acidophila are compared with those of similar enzymes from other organisms, and implications of the salient differences are discussed.  相似文献   

14.
A potentiometric enzyme electrode for the direct measurement of organophosphate (OP) nerve agents was developed. The basic element of this enzyme electrode was a pH electrode modified with an immobilized organophosphorus hydrolase (OPH) layer formed by cross-linking OPH with bovine serum albumin (BSA) and glutaradehyde. OPH catalyses the hydrolysis of organophosphorus pesticides to release protons, the concentration of which is proportional to the amount of hydrolysed substrate. The sensor signal and response time was optimized with respect to the buffer pH, ionic concentration of buffer, temperature, and units of OPH immobilized using paraoxon as substrate. The best sensitivity and response time were obtained using a sensor constructed with 500 IU of OPH and operating in pH 8.5, 1 mM HEPES buffer. Using these conditions, the biosensor was used to measure as low as 2 microM of paraoxon, ethyl parathion, methyl parathion and diazinon. The biosensor was completely stable for at least one month when stored in pH 8.5, 1 mM HEPES + 100 mM NaCl buffer at 4 degrees C.  相似文献   

15.
1. Alcohol oxidase (alcohol:oxygen oxidoreductase) was purified 22-fold from the brown rot fungus Poria contigua. The final enzyme preparation was homogeneous as judged by polyacrylamide gel electrophoresis, and by sedimentation in an ultracentrifuge. The molecular weight was calculated to be 610000 +/- 5000 from sedimentation equilibrium experiments. Electrophoresis in sodium dodecylsulfate gels and electron microscopic analysis indicate that the enzyme is an octamer composed of eight probably identical subunits, each having a molecular weight of 79 000. The enzyme contains eight mol FAD/mol as the prosthetic group. 2. This alcohol oxidase oxidizes not only methanol but also lower primary alcohols (C2-C4), 2-propin-1-ol and formaldehyde. The apparent Km value for methanol is 0.2 mM, and that for formaldehyde 6.1 mM. Sodium azide was found to be a competitive inhibitor with respect to methanol. 3. The enzyme from the fungus Poria contigua is immunologically different from the alcohol oxidase isolated from the methanol-utilizing yeast Candida boidinii. Furthermore antiserum raised against this enzyme did not cross-react with the alcohol oxidase from the white rot fungus Polyporus obtusus.  相似文献   

16.
J T McFarland  Y H Chu 《Biochemistry》1975,14(6):1140-1146
New transient kinetic methods, which allow kinetics to be carried out under conditions of excess substrate, have been employed to investigate the kinetics of hydride transfer from NADH to aromatic aldehydes and from aromatic alcohols to NAD+ as a function of pH. The hydride transfer rate from 4-deuterio-NADH to beta-naphthaldehyde is nearly pH independent from pH 6.0 to pH 9.9; the isotope effect is also pH independent with kappa-H/kappaD congruent to 2.3. Likewise, the rate of oxidation of benzyl alcohol by NAD+ changes little with pH between pH 8.75 and pH 5.9; the isotope effect for this process is between 3.0 and 4.4. Earlier substituent effect studies on the reduction of aromatic aldehydes were consistent with electrophilic catalysis by either zinc or a protonic acid. The pH independence of hydride transfer is consistent with electrophilic catalysis by zinc since such catalysis by protonic acid (with a pK between 6.0 and 10.0) would show strong pH dependence. However, protonic acid catalysis cannot be excluded if the pKa of the acid catalyst in the ternary NADH-E-RCOH complex were smaller than 6.0 or smaller than 10.0. The two kinetic parameters changing significantly with pH are the kinetic binding constant for ternary complex formation with aromatic alcohol and the rate of dissociation of aromatic alcohols from enzyme. This is consistent with base-catalyzed removal of a proton from alcohol substrated and consequent acid catalysis of protonation of a zinc-alcoholate complex. The equilibrium constant for hydride transfer from benzaldehyde to benzyl alcohol at pH 8.75 is K-eq equals kappa-H/kappa-H equals 42; this constant has important consequences concerning subunit interactions during liver alcohol dehydrogenase catalysis.  相似文献   

17.
An amperometric glucose biosensor was fabricated by the electrochemical polymerization of pyrrole onto a platinum electrode in the presence of the enzyme glucose oxidase in a KCl solution at a potential of + 0·65 V versus SCE. The enzyme was entrapped into the polypyrrole film during the electropolymerization process. Glucose responses were measured by potentio-statting the enzyme electrode at a potential of + 0·7 V versus SCE in order to oxidize the hydrogen generated by the oxidation of glucose by the enzyme in the presence of oxygen. Experiments were performed to determined the optimal conditions of the polypyrrole glucose oxidase film preparation (pyrrole and glucose oxidase concentrations in the plating solution) and the response to glucose from such electrodes was evaluated as a function of film thickness, pH and temperature. It was found that a concentration of 0·3 M pyrrole in the presence of 65 U/ml of glucose oxidase in 0·01 M KCl were the optimal parameters for the fabrication of the biosensor. The optimal response was obtained for a film thickness of 0·17 μm (75 mC/cm2) at pH 6 and at a temperature of 313 K. The temperature dependence of the amperometric response indicated an activation energy of 41 kJ/mole. The linearity of the enzyme electrode response ranged from 1·0 mM to 7·5 mM glucose and kinetic parameters determined for the optimized biosensors were 33·4 mM for the Km and 7·2 μA for the Imax. It was demonstrated that the internal diffusion of hydrogen peroxide through the polypyrrole layer to the platinum surface was the main limiting factor controlling the magnitude of the response of the biosensor to glucose. The response was directly related to the enzyme loading in the polypyrrole film. The shelf life and the operational stability of the optimized biosensor exceed 500 days and 175 assays, respectively. The substrate specificity of the entrapped glucose oxidase was not altered by the immobilization procedure.  相似文献   

18.
An organic-phase alcohol biosensor has been developed by co-entrapping alcohol oxidase and horseradish peroxidase within an ionotropy polymer hydrogel matrix fabricated from silica gel particles, hydroxyethyl carboxymethylcellulose, an adduct of 3-methoxy-4-ethoxybenzaldehyde and 4-tert-butylpyridinium acetohydrazone, and octadecylsilica particles. The viability of the immobilised enzymes for the biocatalytic reaction of methanol in n-hexane was comparatively studied by using a bulk cell or a volume-changeable flow-through cell coupled with an oxygen optical transducer. It was found that the microenvironment around the enzyme, the deterioration property of the enzyme, the substrate throughput and the mass transfer process of the reactant in the bioreactor were the crucial parameters affecting the performance of the alcohol organic-phase biosensor. Our optimal biosensor was constructed from a flow-through cell packed with small particles of immobilised enzymes and it could maintain the biocatalytic reaction at high and stable rate for on-line detection of methanol in n-hexane under flow operation mode. The biosensor had an analytical working range of 2.3-90 mM methanol in n-hexane. The response times (t95) were 4.5 and 7.5 min for 60 and 10 mM methanol, respectively. The operational lifetime of the biosensor was more than 45 assays and the shelf lifetime was longer than 2 weeks. The biosensor has been successfully applied to determine the methanol content in a commercial gasoline-methanol blend sample with good recovery.  相似文献   

19.
Immobilization of tyrosinase and alcohol oxidase is achieved in the copolymer of pyrrole with vinyl alcohol with thiophene side groups (PVATh-co-PPy) which is a newly synthesized conducting polymer. PVATh-co-PPy/alcohol oxidase and PVATh-co-PPy/tyrosinase electrodes are constructed by the entrapment of enzyme in conducting copolymer matrix during electrochemical copolymerization. For tyrosinase and alcohol oxidase enzymes, catechol and ethanol are used as the substrates, respectively. Kinetic parameters: maximum reaction rates (V(max)) and Michaelis-Menten constants (K(m)) are obtained. V(max) and K(m) are found as 2.75 micromol/(minelectrode) and 18 mM, respectively, for PVATh-co-PPy/alcohol oxidase electrode and as 0.0091micromol/(minelectrode) and 40 mM, respectively, for PVATh-co-PPy/tyrosinase electrode. Maximum temperature and pH values are investigated and found that both electrodes have a wide working range with respect to both temperature and pH. Operational and storage stabilities show that although they have limited storage stabilities, the enzyme electrodes are useful with respect to operational stabilities.  相似文献   

20.
Alcohol dehydrogenase was purified in 14 h from male Fischer-344 rat livers by differential centrifugation, (NH4)2SO4 precipitation, and chromatography over DEAE-Affi-Gel Blue, Affi-Gel Blue, and AMP-agarose. Following HPLC more than 240-fold purification was obtained. Under denaturing conditions, the enzyme migrated as a single protein band (Mr congruent to 40,000) on 10% sodium dodecyl sulfate-polyacrylamide gels. Under nondenaturing conditions, the protein eluted from an HPLC I-125 column as a symmetrical peak with a constant enzyme specific activity. When examined by analytical isoelectric focusing, two protein and two enzyme activity bands comigrated closely together (broad band) between pH 8.8 and 8.9. The pure enzyme showed pH optima for activity between 8.3 and 8.8 in buffers of 0.5 M Tris-HCl, 50 mM 2-(N-cyclohexylamino)ethanesulfonic acid (CHES), and 50 mM 3-(cyclohexylamino)-1-propanesulfonic acid (CAPS), and above pH 9.0 in 50 mM glycyl-glycine. Kinetic studies with the pure enzyme, in 0.5 M Tris-HCl under varying pH conditions, revealed three characteristic ionization constants for activity: 7.4 (pK1); 8.0-8.1 (pK2), and 9.1 (pK3). The latter two probably represent functional groups in the free enzyme; pK1 may represent a functional group in the enzyme-NAD+ complex. Pure enzyme also was used to determine kinetic constants at 37 degrees C in 0.5 M Tris-HCl buffer, pH 7.4 (I = 0.2). The values obtained were Vmax = 2.21 microM/min/mg enzyme, Km for ethanol = 0.156 mM, Km for NAD+ = 0.176 mM, and a dissociation constant for NAD+ = 0.306 mM. These values were used to extrapolate the forward rate of ethanol oxidation by alcohol dehydrogenase in vivo. At pH 7.4 and 10 mM ethanol, the rate was calculated to be 2.4 microM/min/g liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号