首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genotoxicities of four samples of diesel exhaust particle (DEP) extracts (DEPE) and nine nitroarenes found in DEPE were investigated after activation catalyzed by human cytochrome P450 (P450) family 1 enzymes co-expressed with NADPH-cytochrome P450 reductase (NPR) in Escherichia coli membranes. The DEPE samples induced umu gene expression in Salmonella typhimurium TA1535/pSK1002 without any P450 system and were further activated by human P450 1B1/NPR membranes. Moderate activation of the DEPE sample by P450 1A2/NPR membranes was also observed, but not by either P450 1A1/NPR or NPR membranes. 1-Nitropyrene (1-NP) was strongly activated by human P450 1B1/NPR membranes. 1,8-Dinitropyrene (1,8-DNP) was most highly activated by P450 1A1 and 1B1 systems for the three DNPs tested. In contrast, 1, 3-DNP was inactivated by P450 1A1/NPR, 1A2/NPR, and 1B1/NPR systems and slightly activated by NPR membranes. 2-Nitrofluoranthene (2-NF) and 3-nitrofluoranthene (3-NF) showed activities similar to 1-NP after bioactivation by P450 1B1/NPR membranes. However, the genotoxicities of 6-nitrochrysene, 7-nitrobenz[a]anthracene, and 6-nitrobenzo[a]pyrene were all weak in the present assay system. Apparent genotoxic activities of DEPE were very low compared with standard nitroarenes in the presence of P450s, possibly because unknown component(s) of DEPE had inhibitory effects on the bioactivation of 1-NP and 1,8-DNP catalyzed by human P450 1B1. These results suggest that environmental chemicals existing in airborne DEP, in addition to 1-NP, 1,6-DNP, 1,8-DNP, 2-NF, and 3-NF, can be activated by human P450 1B1. Biological actions of air pollutants such as nitroarenes to human extrahepatic tissues may be of concern in tissues in which P450 1B1 is expressed.  相似文献   

2.
Metabolic activation of 1-nitropyrene (1-NP) by human cytochrome P450 (P450) family 1 enzymes co-expressed with NADPH-cytochrome P450 reductase (NPR) in Escherichia coli membranes was investigated. 1-NP induced umu gene expression in Salmonella typhimurium TA1535/pSK1002 in the absence of any P450 system, but the activities were influenced by the levels of bacterial O-acetyltransferase (OAT) and nitroreductase. Metabolic activation of 1-NP by human P450 1B1/NPR membranes was observed and was influenced by the levels of OAT levels in tester strains. Metabolic activation of 1-NP (0.3microM) by P450 1B1 was 750 umu units/min/nmol P450 1B1 in an OAT-overexpressing strain NM2009. The metabolic activation of 1-NP (3-30microM) was similar (approximately 300 umu units/min/nmol P450 1B1) using TA1535/pSK1002 or OAT-deficient strain NM2000. P450 1B1 had the highest catalytic activities among P450 family 1 enzymes for the activation of 1-aminopyrene (1-AP) in the OAT-overexpressing strain NM2009, suggesting nitrenium ion formation via N-hydroxylation/O-acetylation. High-performance liquid chromatography (HPLC) analyses revealed the formation of 1-nitropyrene-6-ol and also 1-nitropyrene-3-ol, 1-nitropyrene-8-ol, and trans-4,5-dihydroxy-4,5-diol-1-nitropyrene from 1-NP (10microM), catalyzed by P450 1B1. These results indicate that 1-NP can be activated by human P450 1B1 to a genotoxic agent by nitroreduction/O-acetylation at low substrate concentrations and probably by epoxidation (independent of OAT) at high concentrations.  相似文献   

3.
The genotoxicities of four samples of diesel exhaust particle (DEP) extracts (DEPE) and nine nitroarenes found in DEPE were investigated after activation catalyzed by human cytochrome P450 (P450) family 1 enzymes co-expressed with NADPH-cytochrome P450 reductase (NPR) in Escherichia coli membranes. The DEPE samples induced umu gene expression in Salmonella typhimurium TA1535/pSK1002 without any P450 system and were further activated by human P450 1B1/NPR membranes. Moderate activation of the DEPE sample by P450 1A2/NPR membranes was also observed, but not by either P450 1A1/NPR or NPR membranes. 1-Nitropyrene (1-NP) was strongly activated by human P450 1B1/NPR membranes. 1,8-Dinitropyrene (1,8-DNP) was most highly activated by P450 1A1 and 1B1 systems for the three DNPs tested. In contrast, 1,3-DNP was inactivated by P450 1A1/NPR, 1A2/NPR, and 1B1/NPR systems and slightly activated by NPR membranes. 2-Nitrofluoranthene (2-NF) and 3-nitrofluoranthene (3-NF) showed activities similar to 1-NP after bioactivation by P450 1B1/NPR membranes. However, the genotoxicities of 6-nitrochrysene, 7-nitrobenz[a]anthracene, and 6-nitrobenzo[a]pyrene were all weak in the present assay system. Apparent genotoxic activities of DEPE were very low compared with standard nitroarenes in the presence of P450s, possibly because unknown component(s) of DEPE had inhibitory effects on the bioactivation of 1-NP and 1,8-DNP catalyzed by human P450 1B1. These results suggest that environmental chemicals existing in airborne DEP, in addition to 1-NP, 1,6-DNP, 1,8-DNP, 2-NF, and 3-NF, can be activated by human P450 1B1. Biological actions of air pollutants such as nitroarenes to human extrahepatic tissues may be of concern in tissues in which P450 1B1 is expressed.  相似文献   

4.
Drug oxidation activities of 12 recombinant human cytochrome P450s (P450) coexpressed with human NADPH-P450 reductase (NPR) in bacterial membranes (P450/NPR membranes) were determined and compared with those of other recombinant systems and those of human liver microsomes. Addition of exogenous membrane-bound NPR to the P450/NPR membranes enhanced the catalytic activities of CYP2C8, CYP2C9, CYP2C19, CYP3A4, and CYP3A5. Enhancement of activities of CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2B6, CYP2D6, and CYP2E1 in membranes was not observed after the addition of NPR (4 molar excess to each P450). Exogenous purified human cytochrome b5 (b5) further enhanced catalytic activities of CYP2A6, CYP2B6, CYP2C8, CYP2E1, CYP3A4, and CYP3A5/NPR membranes. Catalytic activities of CYP2C9 and CYP2C19 were enhanced by addition of b5 in reconstituted systems but not in the P450/NPR membranes. Apo b5 (devoid of heme) enhanced catalytic activities when added to both membrane and reconstituted systems, except for CYP2E1/NPR membranes and the reconstituted system containing purified CYP2E1 and NPR. Catalytic activities in P450/NPR membranes fortified with b5 were roughly similar to those measured with microsomes of insect cells coexpressing P450 with NPR (and b5) and/or human liver microsomes, based on equivalent P450 contents. These results suggest that interactions of P450 and NPR coexpressed in membranes or mixed in reconstituted systems appear to be different in some human CYP2 family enzymes, possibly due to a conformational role of b5. P450/NPR membrane systems containing b5 are useful models for prediction of the rates for liver microsomal P450-dependent drug oxidations.  相似文献   

5.
Formation of indigo by recombinant mammalian cytochrome P450   总被引:5,自引:0,他引:5  
The development of bicistronic systems for coexpression of recombinant human cytochrome P450 enzymes (P450s) with their redox partner, NADPH-cytochrome P450 reductase (NPR), has enabled P450 activity to be reconstituted within bacterial cells. During expression of recombinant P450 2E1 and some other forms, we observed the formation of a blue pigment in bacterial cultures. The pigment was extracted from cultures and shown to comigrate with standard indigo on TLC. UV-visible spectroscopy and mass spectrometric analysis provided further support for identification of the pigment as indigo. Indigo is known to form following the spontaneous oxidation of 3-hydroxyindole. Accordingly, we speculated that indole, formed as a breakdown product of tryptophan in bacteria, was hydroxylated by the P450 system, leading to indigo formation. Bacterial membranes containing recombinant P450 2E1 and human NPR were incubated in vitro with indole and shown to catalyze formation of a blue pigment in a time- and cofactor-dependent manner. These studies suggest potential applications of mammalian P450 enzymes in industrial indigo production or in the development of novel colorimetric assays based on indole hydroxylation.  相似文献   

6.
Mutagenic activation of aflatoxin B1 by P-450 HFLa in human fetal livers   总被引:2,自引:0,他引:2  
The genotoxic and mutagenic activation of promutagens by human fetal livers was measured by the induction of umu gene expression in Salmonella typhimurium TA1535/pSk1002. Liver homogenates of human fetuses were the most active for the mutagenic activation of aflatoxin B1 (AFB1), followed by 2-amino-3-methylimidazo(4,5-f)quinoline (IQ), and to a lesser extent by 2-amino-6-methyldipyrido(1,2-a:3',2'-d)imidazole (Glu-P-1). The amounts of P-450 HFLa immunochemically determined in human fetal livers correlated highly with the induction of umu gene expression by AFB1 (r = 0.98, n = 5). P-450 HFLa catalyzed the mutagenic activation of AFB1 in a reconstituted system: cytochrome b5 markedly stimulated the activation. Anti-P-450 HFLa antibodies inhibited the mutagenic activation of AFB1 in a dose-dependent manner. These results strongly support the idea that P-450 HFLa is responsible for the mutagenic activation of AFB1 in human fetal livers.  相似文献   

7.
We investigated roles of different forms of cytochrome P450 (P450 or CYP) in the metabolic activation of heterocyclic amines (HCAs) and other procarcinogens to genotoxic metabolite(s) in the newly developed umu tester strains Salmonella typhimurium (S. typhimurium) OY1002/1A1, OY1002/1A2, OY1002/1B1, OY1002/2C9, OY1002/2D6, OY1002/2E1 and OY1002/3A4, which express respective human P450 enzymes and NADPH-cytochrome P450 reductase (reductase) and bacterial O-acetyltransferase (O-AT). These strains were established by introducing two plasmids into S. typhimurium TA1535, one carrying both P450 and the reductase cDNA in a bicistronic construct under control of an IPTG-inducible double tac promoter and the other, pOA102, carrying O-AT and umuC"lacZ fusion genes. Expression levels of CYP were found to range between 35 to 550 nmol/l cell culture in the strains tested. O-AT activities in different strains ranged from 52 to 125 nmol isoniazid acetylated/min/mg protein. All HCAs tested, and 2-aminoanthracene and 2-aminofluorene exhibited high genotoxicity in the OY1002/1A2 strain, and genotoxicity of 2-amino-3-methylimidazo [4,5-f]quinoline was detected in both the OY1002/1A1 and OY1002/1A2 strains. 3-Amino-1,4-dimethyl-5H-pyrido[4,3-b]-indole and 3-amino-1-methyl-5H-pyrido[4,3-b]-indole were activated in the OY1002/1A1, OY1002/1B1, OY1002/1A2, and OY1002/3A4 strains. Aflatoxin B(1) exhibited genotoxicity in the OY1002/1A2, OY1002/1A1, and OY1002/3A4 strains. beta-Naphthylamine and benzo[a]pyrene did not exhibit genotoxicity in any of the strains. These results suggest that CYP1A2 is the major cytochrome P450 enzyme involved in bioactivation of HCAs.  相似文献   

8.
Four 2-phenylbenzotriazole (PBTA)-type compounds (PBTA-4, PBTA-6, PBTA-7, and PBTA-8) were identified as major mutagens in blue cotton/rayon-adsorbed substances collected at sites below textile dyeing factories or municipal water treatment plants treating domestic waste and effluents from textile dyeing factories in several rivers in Japan. The main purpose of this study is to understand the basis of the roles of human cytochrome P450 (CYP) and N-acetyltransferases (NATs) in genotoxic activation of PBTA derivatives. We compared the induction of umuC gene expression as a measure of genotoxicity using Salmonella typhimurium TA1535/pSK1002 (parental strain), NM2009 (bacterial O-acetyltransferase-overexpressing strain) established in our laboratories. PBTA-4, PBTA-6, PBTA-7, and PBTA-8 induced the umuC gene expression more strongly in the bacterial O-acetyltransferase-overproducing strain than in the parental strain in the presence of rat S9 mix. We determined the activation of PBTA derivatives by cDNA-based recombinant (Trichoplusia ni) systems expressing human or rat cytochrome P450 enzymes (P450 or CYP) and NADPH-P450 reductase using S. typhimurium NM2009. The results showed that human recombinant CYP1A1 enzyme was much more active than CYP1A2 and CYP3A4 in the genotoxic activation of PBTA-4, PBTA-6, PBTA-7, and PBTA-8. Similarly, rat recombinant CYP1A1 enzyme catalyzed the activation of these chemicals at high rates. α-Naphthoflavone, a known inhibitor of CYP1A1, was found to inhibit genotoxic activation caused by PBTA derivatives. We further determined the activation of PBTA derivatives using S. typhimurium NM6001 (human NAT1-expressing strain), S. typhimurium NM6002 (human NAT2-expressing strain), and S. typhimurium NM6000 (O-AT-deficient parent strain) in the presence of S9 mix. PBTA-4 showed almost similar sensitivity in the NAT1-expressing strain and the NAT2-expressing strain, although NAT2-expressing strain exhibited relatively higher sensitivity to PBTA-6, PBTA-7, and PBTA-8 than NAT1-expressing strain. The results support the view that O-acetylation by human NAT1 and NAT2 enzymes is involved in the genotoxic activation of PBTA compounds. These results demonstrate for the first time that human P4501A1 and NATs (NAT1 and NAT2) contribute significantly to the activation of PBTA-type compounds to genotoxic metabolites that induce umuC gene expression in S. typhimurium tester strains.  相似文献   

9.
Malassezia globosa is a common pathogenic fungus that causes skin diseases including dandruff and seborrheic dermatitis in humans. Analysis of its genome identified a gene (MGL_1677) coding for a putative NADPH-P450 reductase (NPR) to support the fungal cytochrome P450 enzymes. The heterologously expressed recombinant M. globosa NPR protein was purified, and its functional features were characterized. The purified protein generated a single band on SDS-PAGE at 80.74 kDa and had an absorption maximum at 452 nm, indicating its possible function as an oxidized flavin cofactor. It evidenced NADPH-dependent reducing activity for cytochrome c or nitroblue tetrazolium. Human P450 1A2 and 2A6 were able to successfully catalyze the O-deethylation of 7- ethoxyresorufin and the 7-hydroxylation of coumarin, respectively, with the support of the purified NPR. These results demonstrate that purified NPR is an orthologous reductase protein that supports cytochrome P450 enzymes in M. globosa.  相似文献   

10.
Four 2-phenylbenzotriazole (PBTA)-type compounds (PBTA-4, PBTA-6, PBTA-7, and PBTA-8) were identified as major mutagens in blue cotton/rayon-adsorbed substances collected at sites below textile dyeing factories or municipal water treatment plants treating domestic waste and effluents from textile dyeing factories in several rivers in Japan. The main purpose of this study is to understand the basis of the roles of human cytochrome P450 (CYP) and N-acetyltransferases (NATs) in genotoxic activation of PBTA derivatives. We compared the induction of umuC gene expression as a measure of genotoxicity using Salmonella typhimurium TA1535/pSK1002 (parental strain), NM2009 (bacterial O-acetyltransferase-overexpressing strain) established in our laboratories. PBTA-4, PBTA-6, PBTA-7, and PBTA-8 induced the umuC gene expression more strongly in the bacterial O-acetyltransferase-overproducing strain than in the parental strain in the presence of rat S9 mix. We determined the activation of PBTA derivatives by cDNA-based recombinant (Trichoplusia ni) systems expressing human or rat cytochrome P450 enzymes (P450 or CYP) and NADPH-P450 reductase using S. typhimurium NM2009. The results showed that human recombinant CYP1A1 enzyme was much more active than CYP1A2 and CYP3A4 in the genotoxic activation of PBTA-4, PBTA-6, PBTA-7, and PBTA-8. Similarly, rat recombinant CYP1A1 enzyme catalyzed the activation of these chemicals at high rates. alpha-Naphthoflavone, a known inhibitor of CYP1A1, was found to inhibit genotoxic activation caused by PBTA derivatives. We further determined the activation of PBTA derivatives using S. typhimurium NM6001 (human NAT1-expressing strain), S. typhimurium NM6002 (human NAT2-expressing strain), and S. typhimurium NM6000 (O-AT-deficient parent strain) in the presence of S9 mix. PBTA-4 showed almost similar sensitivity in the NAT1-expressing strain and the NAT2-expressing strain, although NAT2-expressing strain exhibited relatively higher sensitivity to PBTA-6, PBTA-7, and PBTA-8 than NAT1-expressing strain. The results support the view that O-acetylation by human NAT1 and NAT2 enzymes is involved in the genotoxic activation of PBTA compounds. These results demonstrate for the first time that human P4501A1 and NATs (NAT1 and NAT2) contribute significantly to the activation of PBTA-type compounds to genotoxic metabolites that induce umuC gene expression in S. typhimurium tester strains.  相似文献   

11.
Candida albicans is responsible for serious fungal infections in humans. Analysis of its genome identified NCP1 gene coding for a putative NADPH-P450 reductase (NPR) enzyme. This enzyme appears to supply reducing equivalents to cytochrome P450 or heme oxygenase enzymes for fungal survival and virulence. In this study, we report the characterization of the functional features of NADPH-P450 reductase from C. albicans. The recombinant C. albicans NPR protein harboring a 6×(His)-tag was expressed heterologously in Escherichia coli, and was purified. Purified C. albicans NPR has an absorption maximum at 453 nm, indicating the feature of an oxidized flavin cofactor, which was decreased by the addition of NADPH. It also evidenced NADPH-dependent cytochrome c or nitroblue tetrazolium reducing activity. This purified reductase protein was successfully able to substitute for purified mammalian NPR in the reconstitution of the human P450 1A2-catalyzed O-deethylation of 7-ethoxyresorufin. These results indicate that purified C. albicans NPR is an orthologous reductase protein that supports cytochrome P450 or heme oxygenase enzymes in C. albicans.  相似文献   

12.
Oda Y 《Mutation research》2004,554(1-2):399-406
Human acetyltransferase genes NAT1 or NAT2 were expressed in a Salmonella typhimurium strain used to detect the genotoxicity of bladder carcinogens. To clarify whether the human and rodent bladder carcinogenic arylamines are activated via either NAT1 or NAT2 to cause genotoxicity, a SOS/umu genotoxicity assay was used, with the strains S. typhimurium NM6001 (NAT1-overexpressing strain), S. typhimurium NM6002 (NAT2-overexpressing strain), and S. typhimurium NM6000 (O-AT-deficient parent strain). Genotoxicity was measured by induction of SOS/umuC gene expression in the system, which contained both an umuC"lacZ fusion gene and NAT1 or NAT2 plasmids. 4-Aminobiphenyl, 2-acetylaminofluorene, beta-naphthylamine, o-tolidine, o-anisidine, and benzidine exhibited dose-dependent induction of the umuC gene in strain NM6001. Although the induction of umuC by these chemicals was observed in the NM6002 strain, the induction was considerably lower than in the NM6001 strain. In the parent strain, NM6000, none of these compounds induced umuC gene expression. We also determined activation of these chemicals by recombinant human cytochrome P450 (P450 or CYP) 1A2 enzyme in three S. typhimurium tester strains. The activation of the chemicals was stronger in the NM6001 strain than that in NM6002. The specific NAT1 inhibitor 5-iodosalicylic acid inhibited umuC gene expression induced by aromatic amines used. These results could provide evidence that the bladder carcinogenic aromatic amines are mainly activated by the NAT1 enzyme to produce DNA damage rather than NAT2. The NAT1-overexpressing strain can be used to determine the genotoxic activation of bladder carcinogenic arylamines in the umu test and could provide a tool for predicting the carcinogenic potential of arylamines.  相似文献   

13.
We have studied the activation of aflatoxin B1 by hamster liver microsomes and purified hamster cytochrome P-450 isozymes using a umu mutagen test. The hamster liver microsomes or S-9 fractions were much more active than rat liver microsomes or S-9 fractions in the activation of umu gene expression by aflatoxin B1 metabolites. 3-Methyl-cholanthrene treatment increased aflatoxin B1 activation by hamster liver microsomes. Two major 3-methylcholanthrene-inducible cytochrome P-450 isozymes, P-450 MC1 (IIA) and P-450 MC4 (IA2), were purified from 3-methylcholanthrene-treated hamster liver microsomes, and the metabolism of aflatoxin B1 by these two cytochromes was studied. In the reconstituted enzyme system, both P-450 MC1 and P-450 MC4 were highly active in the activation of aflatoxin B1, and antibodies against these P-450s specifically inhibited these activities. Antibody against P-450 MC1 inhibited the activation of aflatoxin B1 by 20% in the presence of 3-methyl-cholanthrene-treated hamster liver microsomes. In contrast, antibody against P-450 MC4 stimulated the activity by 175%. These results indicated that hamster P-450 MC1 might convert aflatoxin B1 to more toxic metabolite(s), whereas P-450 MC4 might convert aflatoxin B1 to less toxic metabolite(s), than aflatoxin B1 in liver microsomes. The metabolite(s) produced by both hamster cytochrome P-450 MC1 and MC4 were genotoxic in the umu mutagen test.  相似文献   

14.
Random mutagenesis is an approach that has the potential to provide useful information about cytochrome P450 (P450) enzymes but has not been extensively used to date. We applied our previously developed systems for generation of random libraries of human P450 1A2 with the putative substrate recognition sequences mutated (individual residues) and an Escherichia coli genotoxity assay involving reversion to lac prototrophy as a response to activation of the heterocyclic amine 2-amino-3,5-dimethylimidazo[4,5-f]quinoline (MeIQ). A total of 27 mutants were screened from 6000 clones, a small portion of the library. The sequence changes were identified, and E. coli membranes containing each P450 (with NADPH-P450 reductase expressed using a bicistronic vector) were used to determine kcat and Km values for 7-ethoxyresorufin and phenacetin O-deethylation and the (in vitro) activation of MeIQ with another bacterial genotoxicity system (Salmonella typhimurium umu). Within each assay, the values of kcat/Km varied by 2 orders of magnitude, and in some cases these parameters were 3-4-fold higher than for the native enzyme. The profiles of the mutants varied considerably for the three different reactions. Some of the mutants in the Asp-320 region may be compared with site-directed mutants of rat P450 1A2 already reported, with several differences noted. Other mutants have not been studied before in human P450 1A2 or homologues and are of interest; i.e., all Phe-226 mutants showed considerably reduced activity but Glu-225 mutants had increased catalytic activities. In principle, this approach may be applied to random mutagenesis of any enzyme that converts chemicals to mutagens and can be expressed in bacteria.  相似文献   

15.
1. The possibility of Aroclor 1254 and beta-naphthoflavone treated fish Mugil auratus and fish sampled in low and high polluted areas to convert some premutagens to active intermediers in the SOS umu-test have been investigated. 2. Genotoxicity of Aflatoxin b1 differed markedly upon activation with liver S9 fractions from fish with different pollution histories, with the highest activation potency in fish living near a fish cannery. 3. Inhibition of umu gene expression by 7,8-benzoflavone in vitro clearly demonstrates a cytochrome P-450 mediated activation of aflatoxin b1. 4. 2-Aminoanthracene and 2-aminofluorene were weakly activated to genotoxic products and the induction of umu gene expression could be detected only in the presence of S9 fractions from fish treated with beta-naphthoflavone and Aroclor 1254 in the laboratory. 5. The capability of S9 from fish living near a fish cannery to convert 2-aminoanthracene and 2-aminofluorene was not observed.  相似文献   

16.
The recombinant expression of cytochrome P450 enzymes involved in drug metabolism is of interest to the pharmaceutical and biotechnological industries due to the versatile catalytic properties of these enzymes. Accurate quantification of cytochrome P450 enzymes expressed in bacterial culture generally depends on disruption and fractionation of cells to prepare membranes for spectral analysis. Although whole-cell methods for spectral determination have been reported, problems with poor reproducibility and low signal-to-noise ratio confound the use of such techniques where P450 hemoprotein expression levels are relatively low, such as in cultures of certain mammalian forms. In particular, interference from bacterial hemoproteins often obscures the P450 peak. In the current study, the combination of culture concentration, incubation under microaerobic conditions, and a modified method of baseline correction enabled reproducible quantification of cytochrome P450s in whole cells. This whole-cell method is well suited to high-throughput application, as large sets or libraries of enzymes can be expressed in parallel and relative expression levels measured without downstream cell processing.  相似文献   

17.
Mutations in the TP53 tumor suppressor gene are the most common alteration in cancer, and human primary liver cancers related to previous dietary exposure to the mycotoxin aflatoxin B1 (AFB1) exhibit a specific hot spot mutation at TP53 codon 249. We have asked whether the 249 hot spot is related to a particular susceptibility to AFB1 of this TP53 region or whether it is related to a phenotype of the 249S p53 mutant protein. This was addressed by constructing a metabolically competent variant of Saccharomyces cerevisiae strain yIG397 expressing human cytochrome P450 1A2 and P450-reductase and isolating AFB1-induced mutants that failed to express the genomic ADE2 reporter gene. Molecular analysis revealed that only 8/40 mutants had a mutation in the TP53 target gene, whereas 32/40 mutants were due to a recombination event eliminating the ADE2 reporter gene. None of 19 mutations identified in the eight mutant TP53 plasmids altered codon 249, thus this codon was no hot spot if the TP53 gene was in the heterologous background yeast. The genotoxic action of AFB1 was completely different from that of the alkylating agent ethyl-methane-sulfonate, where 28/30 induced mutations were linked to the TP53 target gene.  相似文献   

18.
Properties and applications of human DNA repair genes   总被引:3,自引:0,他引:3  
The importance of understanding DNA repair processes is discussed in terms of the origins of human cancer. Several human repair genes have been mapped to specific human chromosomes using somatic cell hybrids. It is noteworthy that 3 of these genes lie in the same region of chromosome 19: genes ERCC1 and ERCC2, which are involved in nucleotide excision repair, and XRCC1, which is involved in the repair of strand breaks. The genes XRCC1 and ERCC2 were cloned from cosmid libraries prepared from DNA transformants of the CHO mutants EM9 and UV5, respectively. Analysis of the cDNA sequence of ERCC2 showed that the protein encoded by this gene is highly homologous (73%) to the RAD3 repair protein in the yeast Saccharomyces cerevisiae. Thus, the known properties of RAD3 combined with the high homology provide the first insight about the biochemical role of a human repair protein involved in the incision step of nucleotide excision repair. So far XRCC1 is the only cloned mammalian gene involved in repairing damage from ionizing radiation. The UV5 mutant line was also applied to problems in environmental mutagenesis by introducing the mouse cytochrome P(3)450 (P450IA2 subfamily) gene for metabolic activation of aromatic amines. We show in a rapid differential cytotoxicity assay with 2 compounds found in cooked beef (IQ, 2-amino-3-methylimidazo[4,5-f]quinoline and PhIP, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine) that this gene is efficiently expressed in the transformed UV5P3 cells. Reversion of the repair deficiency in these cells will give a matched pair of cell lines that are metabolically proficient and repair deficient. Such lines will provide a rapid assay for genotoxic heterocyclic amines requiring activation.  相似文献   

19.
Steroid hydroxylation specificities were determined for 11 forms of human cytochrome P450, representing four gene families and eight subfamilies, that were synthesized in human hepatoma Hep G2 cells by means of cDNA-directed expression using vaccinia virus. Microsomes isolated from the P450-expressing Hep G2 cells were isolated and then assayed for their regioselectivity of hydroxylation toward testosterone, androstenedione, and progesterone. Four of the eleven P450s exhibited high steroid hydroxylase activity (150-900 pmol hydroxysteroid/min/mg Hep G2 microsomal protein), one was moderately active (30-50 pmol/min/mg) and six were inactive. In contrast, 10 of the P450s effectively catalyzed O-deethylation of 7-ethoxycoumarin, a model drug substrate, while only one (P450 2A6) catalyzed significant coumarin 7-hydroxylation. Human P450 4B1, which is expressed in lung but not liver, catalyzed the 6 beta-hydroxylation of all three steroids at similar rates and with only minor formation of other hydroxylated products. Three members of human P450 family 3A, which are expressed in liver and other tissues, also catalyzed steroid 6 beta-hydroxylation as their major activity but, additionally, formed several minor products that include 2 beta-hydroxy and 15 beta-hydroxy derivatives in the case of testosterone. These patterns are similar to those exhibited by rat family 3A P450s. Although several rodent P450s belonging to subfamilies 2A, 2B, 2C, 2D are active steroid hydroxylases, four of five human P450s belonging to these subfamilies exhibited very low activity or were inactive, as were the human 1A and 2E P450s examined in the present study. These studies demonstrate that individual human cytochrome P450 enzymes can hydroxylate endogenous steroid hormones with a high degree of stereospecificity and regioselectivity, and that some, but not all of the human cytochromes exhibit metabolite profiles similar to their rodent counterparts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号