共查询到20条相似文献,搜索用时 15 毫秒
1.
A. A. Levy M. Fridlender U. Hanania E. Rubin Y. Sitrit 《Molecular & general genetics : MGG》1996,251(4):436-441
Specific binding ofNicotiana nuclear protein(s) to subterminal regions of theAc transposable element was detected using gel mobility shift assays. A sequence motif (GGTAAA) repeated in both terminal regions ofAc, was identified as the protein binding site. Mutation of two nucleotides in this motif was sufficient to abolish binding. Based on a series of competition assays, it is deduced that there is cooperative binding between two repeats, each similar to the GGTAAA motif. The binding protein is probably similar to a previously characterized maize protein which binds to a GGTAAA-containing motif located in the ends ofMutator. Moreover, we show that DNA fromDs1 competes for protein binding toAc termini, and we show, by sequence analysis, that GGTAAA binding sites are present in the terminal region ofTgm1, Tpn1, En/Spm, Tam3 andDs1-like elements. This suggests that the binding protein(s) might be involved in the transposition process. 相似文献
2.
Transposition depends on DNA sequences located at or near the termini of the transposon. In the maize transposable element Ds, these sequences were studied by site-directed mutagenesis followed by a transient excision assay in Petunia protoplasts. The transposase-binding AAACGG motifs found in large numbers in the element are important, but none of them is in itself indispensable, for excision. However, mutation of an isolated motif at the 3 end considerably reduced excisability. The inverted termini were confirmed to be indispensable. Point mutations in regions outside the inverted termini of Ds and not located in the transposase-binding motifs had, in some cases, a pronounced effect on excision frequency. The implications of these findings are discussed. 相似文献
3.
Timothy P. Robbins Matthew Jenkin Neal Courtney-Gutterson 《Molecular & general genetics : MGG》1994,244(5):491-500
Many of the systems currently employed for heterologous transposon tagging in plants rely on an excision assay to monitor transposon activity. We have used the streptomycin phosphotransferase (SPT) reporter system to assayAc activity inPetunia hybrida. In other species, such as tobacco orArabidopsis, excision ofAc from the SPT gene in sporogenous tissue gives rise to streptomycin-resistant seedlings in the following generation. The frequency of fully streptomycin-resistant seedlings in petunia was low (0.4%) but molecular analysis of these indicated that the actual excision frequency may be as low as 0.05%. This indicates that the SPT assay is not a reliable selection criterion for germinal excision in petunia. Extensive molecular screening for reinsertion ofAc was consistent with a low primary transposition frequency (0%–0.6%). In contrast to these findings, the progeny of confirmed germinal transpositions for three independent transformants showed frequent transposition to new sites (9.5%–17.0%). This suggests a high frequency of secondary transposition compared with primary transposition from the T-DNA. Segregation analysis indicates that the high transposition activity is closely associated with transposed copies ofAc. No evidence was found for an altered methylation state forAc following transposition. The implications of these results for heterologous transposon tagging in petunia are discussed in the context of the reliability of excision reporter systems in general. 相似文献
4.
Genetic data suggest that transposition of the maize elementActivator (Ac) is modulated by host factors. Using gel retardation and DNase I protection assays we identified maize proteins which bind to seven subterminal sites in both ends ofAc. Four DNase I-protected sites contain a GGTAAA sequence, the other three include either GATAAA or GTTAAA. The specificity of the maize protein binding toAc was verified by using a synthetic fragment containing four GGTAAA motifs as probe and competitor in gel retardation assays. All seven binding sites are located within regions requiredin cis for transposition. A maize protein binding site with the same sequence has previously been identified in the terminal inverted repeats of the maizeMutator element. Thus, the protein, that recognizes this sequence is a good candidate for a regulatory host factor forAc transposition. 相似文献
5.
Summary Nuclear protein extracts from Mu-active, Mu-inactive and non-Mutator lines of maize were used to identify the binding sites for maize nuclear proteins in the terminal inverted repeats (TIR) of the Mul transposable element. We found binding activities of nuclear proteins that specifically interact with both TIRs of the Mu1 element. DNase I footprinting was performed to localize the binding sites. We found that the nuclear proteins from Mu-active lines and non-Mu lines bound to the Mu1 TIR at two different sites, i.e. a 13 by sequence (CGGGAACGGTAAA, designated as site I) and another 8 by sequence (CGGCGTCT, designated as site II). However, the nuclear proteins from Mu-inactive lines bound only one of these sites, i.e. site I. Mobility shift assays with synthetic oligonucleotides containing site I and 11 respectively confirmed the specificities of these binding activities. Site I was shown to be an imperfect direct repeat of a hexamer binding site (CGGGAA CGGTAA). Oligonucleotides containing either of the hexamers showed specific binding activity to nuclear protein from both Mu-active and Mu-inactive lines. The possible role of these proteins in Mu transposition is discussed. 相似文献
6.
Summary We have previously shown that the maize transposable element Ds1 introduced into maize plants by agroinfection can be excised from the genome of geminivirus maize streak virus (MSV). Excision depended strictly on the presence of an active Ac element in the plants. In this study, the excision products or footprints left in the MSV genome after Ds1 excision were extensively characterized and the effects of flanking sequences on Ds1 excision were analysed. Most types of footprints obtained were comparable to those described for Ds1 excision in the maize genome, and could be explained by the models proposed for excision of plant transposable elements. In two revertants, however, some terminal sequences of the Ds1 element were found to have been left behind at the excision site. The finding of this novel type of Ds1 footprint indicated that gene conversion events occurred during and/or after Ds1 excision from the MSV genome. A partial deletion of one copy of the 8 by duplications flanking the Ds1 element had no effect on the frequency or on the types of footprints of Ds1 excision from the MSV genome. Thus, the duplicated 8 by sequences flanking the transposable element are not involved in Ds1 excision. These results, as well as a statistical analysis of the modifications of the bases flanking the Ds1 element after excision, are discussed in terms of excision models. 相似文献
7.
Annie Marion-Poll Elena Marin Nathalie Bonnefoy Véronique Pautot 《Molecular & general genetics : MGG》1993,238(1-2):209-217
The maize autonomous transposable element Ac was introduced into haploid Nicotiana plumbaginifolia via Agrobacterium tumefaciens transformation of leaf disks. All the regenerated transformants (R0) were diploid and either homozygous or heterozygous for the hygromycin resistance gene used to select primary transformants. The Ac excision frequency was determined using the phenotypic assay of restoration of neomycin phosphotransferase activity and expression of kanamycin resistance among progeny seedlings. Some of the R0 plants segregated kanamycin-resistant seedlings in selfed progeny at a high frequency (34 to 100%) and contained one or more transposed Ac elements. In the primary transformants Ac transposition probably occurred during plant regeneration or early development. Other R0 transformants segregated kanamycin-resistant plants at a low frequency ( 4%). Two transformants of this latter class, containing a unique unexcised Ac element, were chosen for further study in the expectation that their kanamycin resistant progeny would result from independent germinal transposition events. Southern blot analysis of 32 kanamycin-resistant plants (R1 or R2), selected after respectively one or two selfings of these primary transformants, showed that 27 had a transposed Ac at a new location and 5 did not have any Ac element. Transposed Ac copy number varied from one to six and almost all transposition events were independent. Southern analysis of the R2 and R3 progeny of these kanamycin-resistant plants showed that Ac continued to transpose during four generations, and its activity increased with its copy number. The frequency of Ac transposition, from different loci, remained low ( 7%) from R0 to R3 generations when only one Ac copy was present. The strategy of choosing R0 plants that undergo a low frequency of germinal excision will provide a means to avoid screening non-independent transpositions and increase the efficiency of transposon tagging. 相似文献
8.
H. Hartings C. Spilmont N. Lazzaroni V. Rossi F. Salamini R. D. Thompson M. Motto 《Molecular & general genetics : MGG》1991,227(1):91-96
Summary The two components of theBg-rbg transposable element system of maize have been cloned. TheBg element, isolated from the mutable allelewx-m32 :: Bg is inserted in the intron of theWaxy (Wx) gene between exons 12 and 13. The length of the element is of 4869 bp.Bg has 5 by terminal inverted repeats, and generates upon insertion an 8 by direct duplication of the target sequence. Both
ends of theBg element contain a 76 by direct repeat adjacent to the terminal inverted repeats. The hexamer motif TATCGkC
G is here repeated several times in direct or inverse orientation. Therbg element was isolated from the mutable alleleo2m(r) where it is located in the promoter region of theOpaque-2 (O2) gene.rbg is approximately 4.5 kb in length, has terminal inverted repeats identical to those of theBg element, and is also flanked by an 8 by direct duplication at the target site. LikeBg, rbg carries the 76 by direct repeats. Restriction enzyme analysis reveals that, compared toBg, the receptor element is distinguishable by small deletion and insertion events. Sequence data indicate that not more than
75% homology exists at the DNA level between therbg element and the autonomousBg element. 相似文献
9.
Susanne Knapp George Coupland Helmut Uhrig Peter Starlinger Francesco Salamini 《Molecular & general genetics : MGG》1988,213(2-3):285-290
Summary The maize transposable element Ac has been introduced into potato via the T-DNA (transferred DNA) of Agrobacterium tumefaciens. Ac was inserted within the untranslated leader region of a neomycin phosphotransferase II (NPT-II) gene such that excision restored NPT-II activity. Two approaches to monitor Ac excision were used. (i) Using an Agrobacterium strain harbouring plasmid pGV3850::pKU3, leaf discs were selected on kanamycin (Km) after exposure to Agrobacterium. (ii) Using a strain containing plasmid pGV3850HPT::pKU3, the leaf discs were selected on hygromycin (Hm) and the resulting shoots were checked for NPT-II expression. Thirteen kanamycin resistant shoots transformed with pGV3850::pKU3 were isolated, suggesting that Ac had excised from the NPT-II gene. Out of 43 hygromycin resistant shoots transformed with pGV3850HPT::pKU3, 22 expressed the NPT-II gene, indicating that Ac had undergone excision in approximately 50% of the hygromycin resistant shoots. Southern analysis revealed that all kanamycin resistant plants contained the DNA restriction fragments expected when Ac excises from the NPT-II gene. The presence of Ac at new locations within the genomic DNA of several transformants was also detected. 相似文献
10.
Manfred Heinlein 《Molecular & general genetics : MGG》1995,246(1):1-9
The Ac elements present in the unstable wxm7 and wx-m9 alleles of maize trigger different patterns of Ds excision in trans. To determine whether this differential regulation is a feature of the Ac alleles themselves or is mediated by genetically distinct factors, maize plants heterozygous for the wx-m7 and wx-m9 alleles were crossed to tester strains homozygous for Ds reporter alleles. Kernels showing the variegation pattern characteristic for the Ac elements carried in the wx-m7 and wx-m9 alleles were found to be present in the ratios expected from the genetic constitution of the strains. The aleurone variegation caused by excision of the Ds reporter element and the endosperm variegation caused by excision of Ac from the wx-m7 and wx-m9 alleles themselves segregated with the original wx-m alleles. In addition, stable Wx and wx derivatives of wx-m9 that have lost Ac no longer exert any trans effect on the wx-m7 allele (and vice versa). Therefore it is concluded that the observed variegation patterns are autonomously determined by specific trans effects of the particular Ac element. 相似文献
11.
Craig J. Coates Catherine L. Turney Marianne Frommer David A. O'Brochta W. D. Warren Peter W. Atkinson 《Molecular & general genetics : MGG》1995,249(2):246-252
Plasmid-based excision assays performed in embryos of two non-drosophilid species using the mariner transposable element from Drosophila mauritiana resulted in empty excision sites identical to those observed after the excision of mariner from D. mauritiana chromosomes. In the presence of the autonomous mariner element Mos1, excision products were recovered from D. melanogaster, D. mauritiana and the blowfly Lucilia cuprina. When a hsp82 heat shock promoter-Mos1 construct was used to supply mariner transposase, excision products were also recovered from the Queensland fruitfly Bactrocera tryoni. Analysis of DNA sequences at empty excision sites led us to hypothesise that the mariner excision/repair process involves the formation of a heteroduplex at the excision breakpoint. The success of these assays suggests that they will provide a valuable tool for assessing the ability of mariner and mariner-like elements to function in non-drosophilid insects and for investigating the basic mechanisms of mariner excision and repair. 相似文献
12.
A. A. Levy M. Fridlender U. Hanania E. Rubin Y. Sitrit 《Molecular genetics and genomics : MGG》1996,251(4):436-441
Specific binding ofNicotiana nuclear protein(s) to subterminal regions of theAc transposable element was detected using gel mobility shift assays. A sequence motif (GGTAAA) repeated in both terminal regions ofAc, was identified as the protein binding site. Mutation of two nucleotides in this motif was sufficient to abolish binding. Based on a series of competition assays, it is deduced that there is cooperative binding between two repeats, each similar to the GGTAAA motif. The binding protein is probably similar to a previously characterized maize protein which binds to a GGTAAA-containing motif located in the ends ofMutator. Moreover, we show that DNA fromDs1 competes for protein binding toAc termini, and we show, by sequence analysis, that GGTAAA binding sites are present in the terminal region ofTgm1, Tpn1, En/Spm, Tam3 andDs1-like elements. This suggests that the binding protein(s) might be involved in the transposition process. 相似文献
13.
Ko Shimamoto Chikara Miyazaki Hisako Hashimoto Takeshi Izawa Kimiko Itoh Rie Terada Yoshishige Inagaki Shigeru Iida 《Molecular & general genetics : MGG》1993,239(3):354-360
To develop an efficient gene tagging system in rice, a plasmid was constructed carrying a non-autonomous maize Ds element in the untranslated leader sequence of a hygromycin B resistance gene fused with the 35S promoter of cauliflower mosaic virus. This plasmid was cotransfected by electroporation into rice protoplasts together with a plasmid containing the maize Ac transposase gene transcribed from the 35S promoter. Five lines of evidence obtained from the analyses of hygromycin B-resistant calli, regenerated plants and their progeny showed that the introduced Ds was trans-activated by the Ac transposase gene in rice. (1) Cotransfection of the two plasmids is necessary for generation of hygromycin B resistant transformants. (2) Ds excision sites are detected by Southern blot hybridization. (3) Characteristic sequence alterations are found at Ds excision sites. (4) Newly integrated Ds is detected in the rice genome. (5) Generation of 8 by target duplications is observed at the Ds integration sites on the rice chromosomes. Our results also show that Ds can be trans-activated by the transiently expressed Ac transposase at early stages of protoplast culture and integrated stably into the rice genome, while the cotransfected Ac transposase gene is not integrated. Segregation data from such a transgenic rice plant carrying no Ac transposase gene showed that four Ds copies were stably integrated into three different chromosomes, one of which also contained the functional hph gene restored by Ds excision. The results indicate that a dispersed distribution of Ds throughout genomes not bearing the active Ac transposase gene can be achieved by simultaneous transfection with Ds and the Ac transposase gene. 相似文献
14.
The cloning and characterization ofGandalf, a new DNA-transposing mobile element obtained from theDrosophila koepferae (repleta group) genome is described. A fragment ofGandalf was found in a middle repetitive clone that shows variable chromosomal localization. Restriction, Southern blot, PCR and sequencing analyses have shown that mostGandalf copies are about 1 kb long, are flanked by 12 by inverted terminal repeats and contain subterminal repetitive regions on both sides of the element. As with other elements of the DNA-transposing type (known as the Ac family), theGandalf element generates 8 by direct duplications at the insertion point. Coding region analysis has shown that the longer open reading frame found inGandalf copies could encode part of a protein. However, whether or not the 1 kb copies of the element are actually the active transposons remains to be elucidated.Gandalf shows a very low copy number inD. buzzatii, a sibling species ofD. koepferae. An attempt to induce interspecific hybrid dysgenesis in hybrids of these two species has been unsuccessful. 相似文献
15.
Introduction and transposition of the maize transposable element Ac in rice (Oryza sativa L.). 总被引:3,自引:0,他引:3
Takeshi Izawa Chikara Miyazaki Mikihiro Yamamoto Rie Terada Shigeru Iida Ko Shimamoto 《Molecular & general genetics : MGG》1991,227(3):391-396
Summary To develop a transposon tagging system in an important cereal plant, rice (Oryza sativa L.), the maize transposable element Ac (Activator) was introduced into rice protoplasts by electroporation. We employed a phenotypic assay for excision of Ac from the selectable hph gene encoding resistance to hygromycin B. Southern blot analysis of hygromycin B-resistant calli showed that the Ac element can transpose from the introduced hph gene into the rice chromosomes. Sequence analysis of several Ac excision sites in the hph gene revealed sequence alterations characteristic of the excision sites of this plant transposable element. The Ac element appears to be active during development of transgenic rice plants from calli. Moreover, hybridization patterns of different leaves from the same plant indicated that some Ac elements are stable whereas others are able to transpose further during development of leaves. The results indicate that the introduced Ac element can transpose efficiently in transgenic rice plants. 相似文献
16.
John P. Mottinger 《Molecular & general genetics : MGG》1992,236(1):96-104
Summary The unstable mutant bz-x3m arose in a plant subjected to X-irradiation. The element at the bronze locus is non-autonomous and recombination data indicate that an autonomous element is tightly linked. The autonomous element has been designated Mx (mobile element induced by X-rays) and the non-autonomous element, rMx (responder to Mx). Linkage data indicate that a second Mx lies near the end of the short arm of chromosome 9; in one plant, an Mx that is unlinked was detected. Distinguishing characteristics of bz-x3m are a large window of time in endosperm development during which somatic reversions can arise and a wide range in the frequency at which they occur; these features are heritable. With increasing doses of bz-x3m and Mx, the window expands and the frequency range increases. In kernels containing the bz-x3m allele and the tightly linked Mx, breakage occurs in chromosome 9 distal to the C locus, resulting in breakage-fusion-bridge patterns for endosperm markers that lie proximal to the break. The frequency of breaks and the developmental time at which they occur exhibit the same dosage effect as the somatic reversions of the bz-x3m allele. These observations suggest that an rMx (designated rMxBr) that causes chromosome breakage is positioned distal to the C locus. At the molecular level, the bz-x3m allele is associated with a 0.5 kb increase in fragment size in DNA samples digested with BglII, EcoRI, HindIII and PstI; in germinal revertants, the fragment size returns to that of the progenitor. 相似文献
17.
V. M. Peschke R. L. Phillips 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1991,81(1):90-97
Summary Previous experiments have revealed that the maize transposable element Activator (Ac) may become active during tissue culture. The objective of the present study was to determine whether a second transposable element, Suppressor-mutator (Spm), could also be activated in tissue culture and detected in regenerated maize plants. Approximately 500 R1 progeny of 143 regenerated plants (derived from 49 embryo cell lines) were crossed as males onto an Spm-responsive tester stock. Spm activity was observed in two R1 progeny of a single regenerated plant. This plant had been regenerated from Type II (friable embryogenic) callus of an A188 × B73 genetic background after 8 months in culture; the absence of Spm activity in four other plants regenerated from this same callus demonstrates that Spm activity was not present before culturing. Approximately 20 Spm-homologous DNA sequences were detected in each of the inbreds used to initiate the tissue cultures; it is presumed that one of these became active to give rise to Spm activity. 相似文献
18.
P. Grappin C. Audeon M. -C. Chupeau M. -A. Grandbastien 《Molecular & general genetics : MGG》1996,252(4):386-397
A new transposable element of tobacco, Slide, was isolated from thetl mutant line, which shows somatic instability, after its transposition into a locus encoding nitrate reductase (NR). The Slide-124 element is 3733 bp long and its coding sequences show similarities with conserved domains of the transposases ofAc, Tam3 andhobo. Excision from the NR locus is detectable in somatic leaf tissues and Slide mobility is triggered by in vitro tissue culture. Slide excision events create footprints similar to those left byAc and Tam3. Tobacco lines derived from thetl mutant line seem characterized by unmethylated copies of a few members of the highly repetitive Slide family. Slide mobility was monitored in transient expression assays. In wild-type tobacco protoplasts, the complete Slide element, as well as a defective copy, is able to excise. The complete Slide element, but not the defective version, is able to excise in protoplasts of the heterologous species lettuce (Lactuca sativa). These results show that Slide carries the functions required for its own mobility, and represents the first autonomousAc-like element characterized inSolanaceae species. 相似文献
19.
Summary The Robertson's Mutator stock of maize exhibits a high mutation rate due to the transposition of theMu family of transposable elements. All characterizedMu elements contain similar 200-bp terminal inverted repeats, yet the internal sequences of the elements may be completely unrelated. Non-Mutator stocks of maize have a 20–100-fold lower mutation rate relative to Mutator stocks, yet they contain multiple sequences that hybridize to theMu terminal inverted repeats. Most of these sequences do not cohybridize to internal regions of previously clonedMu elements. We have cloned two such sequences from the maize line B37, a non-Mutator inbred line. These sequences, termedMu4 andMu5, have an organization characteristic of transposable elements and possess 200-bpMu terminal inverted repeats that flank internal DNA, which is unrelated to other clonedMu elements.Mu4 andMu5 are both flanked by 9-bp direct repeats as has been observed for otherMu elements. However, we have no direct evidence that they have recently transposed because they have not been found in known genes. Although the internal regions ofMu4 andMu5 are not related by sequence similarity, both elements share an unusual structural feature: the terminal inverted repeats extend more than 100 bp internally fromMu-similar termini. The distribution of these elements in maize lines and related species suggests thatMu elements are an ancient component of the maize genome. Moreover, the structure of theMu termini and the fact thatMu termini are found flanking different internal sequences leads us to speculate thatMu termini once may have been capable of transposing as independent entities. 相似文献