首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A fate map has been constructed for the embryo of Crania. The animal half of the egg forms the ectodermal epithelium of the larva's apical lobe. The vegetal half of the egg forms endoderm, mesoderm, and the ectoderm of the mantle lobe. The vegetal pole is the site of gastrulation; this site becomes the posterior ventral region of the mantle lobe of the larva. The plane of the first cleavage goes through the animal-vegetal axis of the egg; it bears no relationship to the future plane of bilateral symmetry of the larva. The timing of regional specification was examined by isolating animal, vegetal, or meridional halves from oocytes, eggs, or embryos from prior to germinal vesicle breakdown through gastrulation. Animal halves isolated from oocytes formed either the epithelium of the apical lobe or a larva with all three germ layers. Animal halves isolated from unfertilized eggs and eight-cell embryos formed only apical lobe epithelium. Beginning at the blastula stage, animal halves formed mantle in addition to apical lobe epithelium. In animal halves isolated after gastrulation, the mantle lobe was always truncated. Vegetal halves isolated at all stages prior to gastrulation gastrulated and formed apical and mantle lobes with endoderm and mesoderm; however, the relative size of the apical lobe that formed decreased substantially when vegetal halves were isolated at later developmental stages. When meridional halves were isolated from unfertilized eggs and two- to four-cell embryos, both halves frequently formed normally proportioned larvae. Beginning at the blastula stage, a number of pairs frequently had a member that lacked dorsal setae on its mantle lobe while the other member of the pair formed setae, indicating that the dorsoventral axis had been set up. The process of regional specification in Crania is compared to those of Discinisca and Glottidia in the brachiopod subphylum Linguliformea and Phoronis in the phylum Phoronida.  相似文献   

2.
Furrow Formation in the Vegetal Hemisphere of Xenopus Eggs   总被引:1,自引:1,他引:0  
The mechanism of furrow formation in the vegetal hemisphere of amphibian eggs was studied using Xenopus eggs. Injection of colchicine into the eggs after the furrow tip had entered the vegetal hemisphere arrested the subsequent cleavage. The effect of impairing the continuity between the animal and vegetal hemispheres was examined by squeezing the equator of uncleaved eggs from both sides with the edges of coverslips. On gentle squeezing a shallow vegetal furrow was formed at the first cleavage, whereas on strong squeezing furrowing was arrested at the equator. The mechanism of furrow formation in the vegetal hemisphere of amphibian eggs is discussed on the basis of these findings.  相似文献   

3.
Fertilized eggs of the sea urchin, Hemicentrotus pulcherrimus and the starfish, Asterina pectinifera were separated by manual bisection to obtain pairs of nucleate and non-nucleate fragments. Simultaneous observation on the pair revealed that the cyclic change in the cortical tension in the non-nucleate fragment was definitely prolonged than the cleavage interval of nucleate partner by about 30%. Activated non-nucleate cytoplasmic fragments derived from the unfertilized eggs and colchicine treated whole eggs of H. pulcherrimus still showed the same degree of prolongation.  相似文献   

4.
Mitosis of sea urchin eggs was inhibited when exposed to 3 micrograms/ml aphidicolin from the 2-cell stage onwards. Nevertheless the nuclei migrated to the vegetal pole at the time of the fourth unequal division in control eggs. Two or four equal or unequal asters developed. Asters in proximity to the vegetal pole were always considerably smaller than those close to the center of the two blastomeres. In contrast to colchicine, cytokinesis but not migration of the nuclei in the vegetal half was prevented by treatments with 5 microM cytochalasin B or D. Various mitotic figures were formed in the vegetal blastomeres of eggs treated with 0.4 mM colchicine or 3 microM griseofulvin after the third cleavage. In some eggs a centrally localized monaster with chromosomes in sphere-like arrangement was formed in others a monopolar mitotic figure pushed the chromosomes in bowl-like arrangements to the most vegetal cortex. In anaphase one set of chromatids migrated to the monopole leaving the scattered sister-chromatids behind. The mechanism of migration of the nuclei and of chromosome arrangement in the metaphase plate is discussed.  相似文献   

5.
The distribution of mitochondrial profiles at the level of the frontal plane dividing dorsal and ventral halves of the Xenopus 2-cell stage embryo was studied. It was found that the mitochondria are distributed asymmetrically in the two embryo sides which appear non-equivalent in terms of mitochondrial density. Egg rotation experiments indicated that the observed asymmetry is coupled with sidedness and essential to it. Cold shock of the eggs resulted in a disturbed mitochondrial distribution, suggesting involvement of cytoskeletal elements. In cold-treated eggs, the most impressive changes were in the animal and vegetal areas where a 3-4-fold inversion of mitochondrial density was found. The results are discussed taking into consideration the involvement of cytoskeleton in cytoplasmic rearrangements in various cell types and the effect that cleavage has on the segregation of cytoplasmic contents in the embryos of many species.  相似文献   

6.
7.
Axis determination in polyspermic Xenopus laevis eggs   总被引:4,自引:0,他引:4  
Polyspermic Xenopus laevis eggs can be identified easily because of regions of pigment accumulation and white stripes, which arise by a nocodazole-sensitive process. Eggs containing up to four sperm are capable of forming a single embryonic axis. Dispermic eggs display two regions of pigment accumulation, one around each sperm entry point (SEP), and one white stripe between the SEPs. Such eggs with a 180 degree separation between the SEPs were bisected before first cleavage along the white stripe, creating dorsal and ventral halves in many cases. Each half cleaved and formed a tadpole. When eggs were bisected early in the period of cytoplasmic reorganization (0.5-0.6 normalized time), each half could form a complete tadpole. When eggs were bisected after the period of reorganization (0.8-0.9), often one half formed a tadpole with a complete head but reduced or absent tail and the other half formed a tadpole with a complete tail but reduced or absent head. These results demonstrate that sperm cooperate to give a single embryonic axis in polyspermic eggs and the development of dorsal and ventral egg halves differs after egg reorganization before first cleavage.  相似文献   

8.
Deep cytoplasmic rearrangements during early development in Xenopus laevis   总被引:4,自引:0,他引:4  
The egg of the frog Xenopus is cylindrically symmetrical about its animal-vegetal axis before fertilization. Midway through the first cell cycle, the yolky subcortical cytoplasm rotates 30 degrees relative to the cortex and plasma membrane, usually toward the side of the sperm entry point. Dorsal embryonic structures always develop on the side away from which the cytoplasm moves. Details of the deep cytoplasmic movements associated with the cortical rotation were studied in eggs vitally stained during oogenesis with a yolk platelet-specific fluorescent dye. During the first cell cycle, eggs labelled in this way develop a complicated swirl of cytoplasm in the animal hemisphere. This pattern is most prominent on the side away from which the vegetal yolk moves, and thus correlates in position with the prospective dorsal side of the embryo. Although the pattern is initially most evident near the egg's equator or marginal zone, extensive rearrangements associated with cleavage furrowing (cytoplasmic ingression) relocate portions of the swirl to vegetal blastomeres on the prospective dorsal side.  相似文献   

9.
The process of embryogenesis is described for the inarticulate brachiopod Discinisca strigata of the family Discinidae. A fate map has been constructed for the early embryo. The animal half of the egg forms the dorsal ectoderm of the apical and mantle lobes. The vegetal half forms mesoderm and endoderm and is the site of gastrulation; it also forms the ectoderm of the ventral regions of the apical and mantle lobes of the larva. The plane of the first cleavage goes through the animal-vegetal axis of the egg along the future plane of bilateral symmetry of the larva. The timing of regional specification in these embryos was examined by isolating animal, vegetal, or lateral regions at different times from the 2-cell stage through gastrulation. Animal halves isolated at the 8-cell and blastula stages formed an epithelial vesicle and did not gastrulate. When these halves were isolated from blastulae they formed the cell types typical of apical and mantle lobes. Vegetal halves isolated at all stages gastrulated and formed a more or less normal larva; the only defect these larvae had was the lack of an apical tuft, which normally forms from cells at the animal pole of the embryo. When lateral isolates were created at all developmental stages, these halves gastrulated. Cuts which separated presumptive anterior and posterior regions generated isolates at the 4-cell and blastula stages that formed essentially normal larvae; however, at the midgastrula stage these halves formed primarily anterior or posterior structures indicating that regional specification had taken place along the anterior-posterior axis. The plane of the first cleavage, which predicts the plane of bilateral symmetry, can be shifted by either changing the cleavage pattern that generates the bilateral 16-cell blastomere configuration or by isolating embryo halves prior to, or during, the 16-cell stage. These results indicate that while the plane of the first cleavage predicts the axis of bilateral symmetry, the axis is not established until the fourth cleavage. The development of Discinisca is compared to development in the inarticulate brachiopod Glottidia of the family Lingulidae and to Phoronis in the phylum Phoronida.  相似文献   

10.
The spatial distribution of voltage-dependent ionic currents was characterized in Boltenia villosa eggs before and after fertilization using two-microelectrode voltage clamp of paired animal-vegetal halves of eggs (merogones) made surgically. Major voltage-dependent conductances in the Boltenia egg are a transient inward Na current, a transient inward Ca current, and an inwardly rectifying K current. These currents were randomly distributed along the animal-vegetal axis in the unfertilized egg. When paired merogones (surgically prepared egg fragments) were made at the vegetal cap stage, 15-30 min after fertilization, Ca and K currents remained randomly distributed along the animal-vegetal axis. In contrast, the relative Na current density was found to be twofold lower in the vegetal vs the animal merogones made at the vegetal cap stage. By making pairs of merogones from unfertilized eggs and subsequently fertilizing one merogone of a pair, we showed that this change in current density ratio was due to a loss of absolute Na current density in the vegetal hemisphere shortly after fertilization. These results also show that this loss was intrinsic to the vegetal hemisphere, rather than being determined solely by the point of sperm entry. A second decrease in Na current was observed during the hour before first cleavage, 60-120 min after fertilization (M.L. Block and W.J. Moody, 1987, J. Physiol. 393, 619-634), both in fertilized eggs and in animal merogones fertilized after isolation. This second loss of Na current was not observed in vegetal merogones fertilized after isolation or in either animal or vegetal merogones made from fertilized eggs at the vegetal cap stage. Possible mechanisms for te rapid (complete by 40 min after fertilization) and the late (occurring from ca. 60 to 120 minutes after fertilization) Na current losses are discussed.  相似文献   

11.
To gain information on the process of ectoderm patterning, the animal halves of sea urchin embryos were isolated at various stages, and their morphology was examined when control embryos developed into pluteus larvae. The animal halves separated at the 8-cell stage developed into 'dauerblastula', without showing any conspicuous ectoderm differentiation. In contrast, some of the animal halves isolated at the 60-cell stage (after the sixth cleavage) formed a ciliated band and oral opening, suggesting that some patterning signal was transmitted from the vegetal to animal hemisphere during early cleavage. Further patterning of the animal hemisphere did not seem to occur until hatching, since both the animal halves isolated at the 60-cell stage and hatching stage showed the same degree of ectoderm patterning. After hatching, the later animal halves were isolated, the more patterned ectoderm they formed. The animal halves isolated just prior to gastrulation differentiated well-patterned ectoderm. It is of note, however, that the level of separation was a more crucial factor than the timing of separation; even the animal fragments of newly hatched embryos differentiated well-patterned ectoderm if they had been separated at a subequatorial level. This suggests that the signal for ectoderm patterning is transmitted over the equator after hatching, and once the cells in the supra-equatorial region receive the signal, they, in turn, can transmit the signal upwardly. Interestingly, if the third cleavage plane was shifted toward the vegetal pole, the isolated animal pole-side fragments developed into 'embryoids' with fully patterned ectoderm. These results indicate that not the micromere descendants but the subequatorial cytoplasm plays an important role in ectoderm patterning.  相似文献   

12.
Cytoplasmic phases in the first cell cycle of the activated frog egg   总被引:2,自引:0,他引:2  
The first cell cycle of the activated frog egg is longer than subsequent cycles and several developmentally important events such as the determination of bilateral symmetry occur at this time. When eggs of Rana pipiens or Xenopus laevis are dissected at times after activation, differences in the consistency of the animal half cytoplasm can be detected visually, and the first cell cycle has been divided into four cytoplasmic phases on this basis. Phase 1 includes the events of activation and lasts about one-third of the first cycle. In phase 2, the cytoplasm becomes fluid except for the rigid, growing sperm aster, and most of the migration of the pronuclei occurs in phase 2. In phase 3, the cytoplasm becomes firm whether or not a sperm aster had been present, and the grey crescent forms, indicating the plane of bilateral symmetry. The firmness of the cytoplasm is colchicine sensitive but cytochalasin B insensitive as is grey crescent formation. In phase 4, the cortex detaches from the firm cytoplasm, and the firmness is now cytochalasin B sensitive and colchicine insensitive. The changes in cytoplasmic consistency during the first cell cycle probably reflect changes in the cytoskeleton, and the cytoplasmic consistency is functionally correlated with developmental events in the first cell cycle.  相似文献   

13.
Two-dimensional protein patterns were compared from sections along the longitudinal axis of oocytes and fertilized eggs of the Mexican axolotl (Ambystoma mexicanum). Only a few differences were observed between four different sections through both oocyte and fertilized eggs. A set of proteins (14 out of 120 proteins) were found that reside only in the germinal vesicles (GV) of the fully grown oocyte. Two of these were observed exclusively in the vegetal half, and one in the animal half after GV breakdown, while other proteins were randomly distributed within the fertilized egg. One cytoplasmic protein was present only in the vegetal half of the mature oocyte and became present also in the animal half of the fertilized egg. Additional proteins were observed in all transverse sections of both mature oocyte and fertilized eggs. It is proposed that these proteins are modified rather than newly synthesized proteins.  相似文献   

14.
Development of the Asian amphioxus, Branchiostoma belcheri tsingtauense, was investigated by scanning and transmission electron microscopy (SEM and TEM) from the fertilized egg through the blastula stage. The fertilized egg is spherical (mean diameter 115 μm after SEM preparation) and is covered with microvilli. Throughout cleavage, the second polar body remains attached to the animal pole. The cleavage type in this species is essentially radial, as revealed by SEM observations. At the third cleavage or 8-cell stage, and at later stages, a size difference between blastomeres in the animal and the vegetal halves is clearly discernible, but less marked than that reported for the European amphioxus, B. lanceolatum. During the period spanning the third to the fifth cleavage (8–32-cell) stages, blastomeres are arranged in tiers along the animal-vegetal axis. After the sixth cleavage, or 64-cell stage, the tiered arrangement of the blastomeres is no longer seen. At the 4-cell stage, the blastocoel or cleavage cavity is seen as an intercellular space, opening to the outside. The blastocoel remains open at the animal and the vegetal poles in later stages. Throughout early development, the cytoplasm of the blastomeres includes yolk granules, mitochondria, Golgi complexes, and rough and smooth endoplasmic reticulum. Chromatin in the interphase nucleus is not clearly demonstrated, and chromosomes in the mitotic phase are also extremely difficult to detect. As yet, regional differences have not been found in distribution and organization of cytoplasmic components with respect to prospective ectodermal, mesodermal, and endodermal areas in the fertilized egg and later cleaved embryos, although there are possibly fewer yolk granules in the region of the animal pole than in the vegetal polar zone.  相似文献   

15.
Two microtubule-containing structures are implicated in dorsoventral polarization of the frog egg, and we examined the relationship between them. The sperm aster provides a directional cue for a cortical rotation specifying polarity, and a vegetal cortical array of parallel microtubules is likely part of the rotational machinery. The growing aster has an accumulation of microtubules marking the path of the sperm pronucleus, and its microtubules extend into the egg cortex as well as the cytoplasm. To test whether the vegetal parallel array was an extension of astral cortical growth, fertilized or activated eggs were bisected into animal and vegetal fragments. The vegetal fragments formed parallel arrays, even when isolated within a few minutes of egg activation. Neither the sperm centrosome nor another microtubule organizing center in the animal half of the egg is required for formation of the parallel array, but some animal half activity is involved in its disappearance. Correspondence to: R.P. Elinson  相似文献   

16.
Anti-tubulin antibodies and confocal immunofluorescence microscopy were used to examine the organization and regulation of cytoplasmic and cortical microtubules during the first cell cycle of fertilized Xenopus eggs. Appearance of microtubules in the egg cortex temporally coincided with the outgrowth of the sperm aster. Microtubules of the sperm aster first reached the animal cortex at 0.25, (times normalized to first cleavage), forming a radially organized array of cortical microtubules. A disordered network of microtubules was apparent in the vegetal cortex as early as 0.35. Cortical microtubule networks of both animal and vegetal hemispheres were reorganized at times corresponding to the cortical rotation responsible for specification of the dorsal-ventral (D-V) axis. Optical sections suggest that the cortical microtubules are continuous with the microtubules of the sperm aster in fertilized eggs, or an extensive activation aster in activated eggs. Neither assembly and organization, nor disassembly of the cortical microtubules coincided with MPF activation during mitosis. However, cycloheximide or 6-dimethylaminopurine, which arrest fertilized eggs at interphase, blocked cortical microtubule disassembly. Injection of p13, a protein that specifically inhibits MPF activation, delayed or inhibited cortical microtubule breakdown. In contrast, eggs injected with cyc delta 90, a truncated cyclin that arrest eggs in M-phase, showed normal microtubule disassembly. Finally, injection of partially purified MPF into cycloheximide-arrested eggs induced cortical microtubule breakdown. These results suggest that, despite a lack of temporal coincidence, breakdown of the cortical microtubules is dependent on the activation of MPF.  相似文献   

17.
One-cell parthenogenetic haploid embryos and blastomeres of the 2- and 4-cell diploid mouse embryos were observed in vitro for the occurrence of two cytoplasmic activities: the cortical activity and the chromatin condensation activity. For this purpose anucleated halves (AHs) and nucleated halves (NHs) were produced by bisection of one-cell embryos and of blastomeres. The cortical activity (manifested by surface deformations) was observed only during the first cleavage cycle. In AHs the surface activity began at the same time as in NHs and disappeared before the time of the cleavage division of nucleated halves. Anucleate fragments of blastomeres from 2- and 4-cell embryos did not exhibit any cortical activity. In the absence of the native nucleus the chromatin condensation activity (assayed by premature chromatin condensation of interphase thymocyte nuclei introduced into cytoplasts by cell fusion) could also have been detected only in the first cleavage cycle. In AHs this activity appeared at the time when NHs started to cleave and disappeared after the NHs finished the first cleavage division. AHs obtained from 2-cell and 4-cell stage blastomeres did not reveal condensation activity. © 1995 Wiley-Liss, Inc.  相似文献   

18.
The most animal part of the ciliated band of sea urchin larvae, the animal plate, is a specialized region in which elongated cells form long and non-beating cilia. To learn how this region is specified, animal halves were isolated from the early cleavage to pregastrulation stages. As is well known, the animal half that is isolated at the eight-cell stage develops into a 'dauerblastula', which forms long and non-beating cilia all around the surface. The region with long cilia, however, became restricted toward the animal pole when separation was delayed. If separated before primary mesenchyme ingression, even a small animal-pole-side fragment formed a normal-sized animal plate. Thus, the prospective animal plate region is gradually restricted by some signal from the vegetal hemisphere, and the specification process terminates before the mesenchyme blastula stage. It was also known that a normal-sized animal plate was formed in micromere-less embryos, indicating that the signal does not depend on micromeres or their descendants. Further, the animal-pole-side fragments were isolated from embryos in which the third cleavage plane was shifted toward the vegetal pole. They formed a normal-sized animal plate, containing more than 75% of the egg volume from the animal pole. This indicates that the egg cytoplasm delivered to veg1 -lineage blastomeres plays an important role in the animal plate specification. Interestingly, the an1-less embryo formed long and non-beating cilia at its top region, but thickening did not occur. The cytoplasm near the animal pole might contain some factors necessary for the animal plate to become thick.  相似文献   

19.
Embryos of the indirect developing sea urchin, Heliocidaris tuberculata, and of Heliocidaris erythrogramma which develops directly without the formation of a pluteus larva, were bisected at the two- and four-cell stages. Paired half-embryos resulting from the bisection of H. tuberculata embryos along either the first or the second cleavage plane develop identically into miniature prism stage larvae. As in other indirect developing sea urchins, no differential segregation of developmental potential takes place as a result of the first and second cleavage divisions. Although half-embryos resulting from bisection along the second cleavage plane differentiate all cell types and develop equivalently in H. erythrogramma, the isolated first cleavage blastomeres do not. One of these two cells always forms significantly more mesodermal and endodermal cells. These patterns of differentiation are consistent with fate-mapping studies indicating that most mesodermal and endodermal cells are derived from the prospective ventral blastomere. Therefore, a differential segregation of developmental potential takes place at the first cleavage division in H. erythrogramma. When embryos of H. erythrogramma were bisected during the eight-cell stage, isolated tiers of animal blastomeres typically formed only ectodermal structures including the vestibule, whereas vegetal embryo halves formed all differentiated cell types. We propose that animal-vegetal cell determination and differentiation takes place along an axis which has been shifted relative to the pattern of cell cleavages in the embryos of H. erythrogramma. Vegetal morphogenetic potential for the formation of mesodermal and endodermal structures has become more closely associated with the prospective ventral side of the embryo during the evolution of direct development in Heliocidaris.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号