首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A. S. Kallimanis 《Oikos》2010,119(1):197-200
One possible response of species to climate change is shifting their geographical range so as to track their climatic niche. Many concerns have been raised about the species ability to disperse effectively. I argue that species may have mechanisms, like temperature-dependent sex determination (TSD), that are responsive to climate change and may facilitate an appropriate shift in their geographical range. More specifically, I hypothesize that, under stable climatic conditions, populations of some TSD species at the edge of their range are regulated by reduced growth rate (due to skewed sex ratios or due to limited availability of suitable nesting sites). Under climate change, these populations face new climatic conditions that trigger fast population growth (e.g. by more balanced sex ratio, or greater availability of nesting sites). Increased population size may lead to increased dispersal, and thus efficient colonization of the newly created habitat patches. So, the species rapidly tracks the geographical position of its climatic niche. This conceptual model is speculative but it leads to specific hypotheses, and opens up new research questions about the existence of prior adaptations that will enable the appropriate response to climate change.  相似文献   

2.
Studies examining species range shifts in the face of climate change have consistently found that response patterns are complex and varied, suggesting that ecological traits might be affecting species response. However, knowledge of how the traits of a species determine its response to climate change is still poorly understood. Here we investigate the role of species-specific climate niche breadth in forecasting bumblebee (Bombus spp.) responses to regional climate warming in the Cantabrian Range (north-western Iberian Peninsula). Climate niche breadth was defined using known data for occurrences of specific species at their continental (i.e., European) scale of distribution. For each bumblebee species, climate niche breadth was found to be related to (1) the elevational range shifts of species between their historical (1988–1989) and recent (2007–2009) distribution and (2) the variation in the climatic conditions of the localities they inhabited (i.e., the local climate space) between both study periods. Our results show a strong relationship between climate niche breadth, particularly thermal niche breadth, and the response of bumblebee species to climate warming, but only when this response was determined as variations in local climate space. The main conclusions of our work are thus twofold. First, variations in the climatic conditions underlying range shifts are useful in making accurate assessments of the impact of climate change on species distributions. Second, climate niche breadth is a particularly informative ecological trait for forecasting variations in species responses to climate change.  相似文献   

3.
Vulnerability of South African animal taxa to climate change   总被引:7,自引:1,他引:6  
The responsiveness of South African fauna to climate change events is poorly documented and not routinely incorporated into regional conservation planning. We model the likely range alterations of a representative suite of 179 animal species to climate change brought about by the doubling of CO2 concentrations. This scenario is expected to cause a mean temperature increase of 2 °C. We applied a multivariate climate envelope approach and evaluated model performance using the most comprehensive bird data set. The results were encouraging, although model performance was inconsistent in the eastern coastal area of the country. The levels of climate change induced impacts on species ranges varied from little impact to local extinction. Some 17% of species expanded their ranges, 78% displayed range contraction (4–98%), 3% showed no response and 2% became locally extinct. The majority of range shifts (41%) were in an easterly direction, reflecting the east–west aridity gradient across the country. Species losses were highest in the west. Substantially smaller westward shifts were present in some eastern species. This may reflect a response to the strong altitudinal gradient in this region, or may be a model artifact. Species range change (composite measure reflecting range contraction and displacement) identified selected species that could act as climate change indicator taxa. Red‐data and vulnerable species showed similar responses but were more likely to display range change (58% vs. 43% for all species). Predictions suggest that the flagship, Kruger National Park conservation area may loose up to 66% of the species included in this analysis. This highlights the extent of the predicted range shifts, and indicates why conflicts between conservation and other land uses are likely to escalate under conditions of climate change.  相似文献   

4.
Range shift, a widespread response to climate change, will depend on species abilities to withstand warmer climates. However, these abilities may vary within species and such intraspecific variation can strongly impact species responses to climate change. Facing warmer climates, individuals should disperse according to their thermal optimum with consequences for species range shifts. Here, we studied individual dispersal of a reptile in response to climate warming and preferred temperature using a semi‐natural warming experiment. Individuals with low preferred temperatures dispersed more from warmer semi‐natural habitats, whereas individuals with higher preferred temperatures dispersed more from cooler habitats. These dispersal decisions partly matched phenotype‐dependent survival rates in the different thermal habitats, suggesting adaptive dispersal decisions. This process should result into a spatial segregation of thermal phenotypes along species moving ranges which should facilitate local adaptation to warming climates. We therefore call for range shift models including intraspecific variation in thermal phenotype and dispersal decision.  相似文献   

5.
The occurrence and location of long-term refugia determine the current patterns of biodiversity on Earth. The importance of the refugial debate is certain to increase in response to observed and expected species extinctions caused by climate change. Small areas where species survive outside their core range are important, as unique natural phenomena and model systems for observing the response of species to climate change. They can play a crucial role as potential sources for species recovery in the future or can act as progenitors of a new species. While most authors believe that sites connected with only long-term isolation should be included into the refugium concept, this approach can result in the loss of linkage between the ecological and evolutionary processes taking place during different phases of the species range dynamics. Moreover, the papers often interpret the nature of described phenomena in different ways. In response, the conceptual scheme given in our letter summarises the patterns which occur during species range shift. It proposes an equivalent scheme for small refugial sites according to their function and capacity, based on the relict species concept. This approach and proposed terminology is tested on the example of two plant species with different pattern of the long term range dynamics. Our paper highlights the importance of sites harboring ‘trailing-edge’ young relicts for the future long-term persistence of the species (as old relicts) under unfavorable regional conditions. By considering the age gradients of small refugial sites it is possible to reveal community interactions, species traits or genes that drive the responses of biota to climate changes.  相似文献   

6.
AimPredictions of how the geographical ranges of species change implicitly assume that range can be determined without invoking climate change. The aim here was to determine how accurate predictions of range change might be before entertaining global climatic change. LocationWorldwide. MethodsAll the documented global biological control translocations of ladybirds (Coccinellidae: Chilocorus spp.) were analysed with the ecoclimatic program, CLIMEX. This program determines species distributions in relation to climate, and can be used to express the favourableness of different localities for a species. CLIMEX is also a useful exploratory tool for determining the likelihood of establishment of species introduced from one area to another. ResultsPredictive models were developed based on the likelihood of establishment of fifteen Chilocorus spp. relative to their physiological characteristics and climatic tolerances. This likelihood was compared with actual establishment with a resultant range of 0% accuracy to 100% accuracy. Only four (26.7%) species climatic tolerances could the predicted with 100% certainty. The general lack of accurate prediction was because climate is not always the overriding feature determining whether a species will establish or not. Other determinants, such as localized response to microclimate, phenology, host type and availability, presence of natural enemies and hibernation sites play a varying role over and above climate in determining whether a species will establish at a new locality. Main conclusionsThis study shows that even in the absence of climate change, range cannot always be determined, which means that most predictions of range change with climate change are likely to be wrong.  相似文献   

7.
Because species affect ecosystem functioning, understanding migration processes is a key component of predicting future ecosystem responses to climate change. This study provides evidence of range expansion under current climatic conditions of an indigenous species with strong ecosystem effects. Surveys of stands along the northern distribution limit of lodgepole pine (Pinus contorta var. latifolia) in central Yukon Territory, Canada showed consistent increases in pine dominance following fire. These patterns differed strongly from those observed at sites where pine has been present for several thousand years. Differences in species thinning rates are unlikely to account for the observed increases in pine dominance. Rates of pine regeneration at its range limits were equivalent to those of spruce, indicating a capacity for rapid local population expansion. The study also found no evidence of strong climatic limitation of pine population growth at the northern distribution limit. We interpret these data as evidence of current pine expansion at its range limits and conclude that the northern distribution of lodgepole pine is not in equilibrium with current climate. This study has implications for our ability to predict vegetation response to climate change when populations may lag in their response to climate.  相似文献   

8.
This study assessed potential changes in the distributions of Australian butterfly species in response to global warming. The bioclimatic program, BIOCLIM, was used to determine the current climatic ranges of 77 butterfly species restricted to Australia. We found that the majority of these species had fairly wide climatic ranges in comparison to other taxa, with only 8% of butterfly species having a mean annual temperature range spanning less than 3 °C. The potential changes in the distributions of 24 butterfly species under four climate change scenarios for 2050 were also modelled using BIOCLIM. Results suggested that even species with currently wide climatic ranges may still be vulnerable to climate change; under a very conservative climate change scenario (with a temperature increase of 0.8–1.4 °C by 2050) 88% of species distributions decreased, and 54% of species distributions decreased by at least 20%. Under an extreme scenario (temperature increase of 2.1–3.9 °C by 2050) 92% of species distributions decreased, and 83% of species distributions decreased by at least 50%. Furthermore, the proportion of the current range that was contained within the predicted range decreased from an average of 63% under a very conservative scenario to less than 22% under the most extreme scenario. By assessing the climatic ranges that species are currently exposed to, the extent of potential changes in distributions in response to climate change and details of their life histories, we identified species whose characteristics may make them particularly vulnerable to climate change in the future.  相似文献   

9.
Understanding how biodiversity will respond to future climate change is a major conservation and societal challenge. Climate change is predicted to force many species to shift their ranges in pursuit of suitable conditions. This study aims to use landscape genetics, the study of the effects of environmental heterogeneity on the spatial distribution of genetic variation, as a predictive tool to assess how species will shift their ranges to track climatic changes and inform conservation measures that will facilitate movement. The approach is based on three steps: 1) using species distribution models (SDMs) to predict suitable ranges under future climate change, 2) using the landscape genetics framework to identify landscape variables that impede or facilitate movement, and 3) extrapolating the effect of landscape connectivity on range shifts in response to future climate change. I show how this approach can be implemented using the publicly available genetic dataset of the grey long-eared bat, Plecotus austriacus, in the Iberian Peninsula. Forest cover gradient was the main landscape variable affecting genetic connectivity between colonies. Forest availability is likely to limit future range shifts in response to climate change, primarily over the central plateau, but important range shift pathways have been identified along the eastern and western coasts. I provide outputs that can be directly used by conservation managers and review the viability of the approach. Using landscape genetics as a predictive tool in combination with SDMs enables the identification of potential pathways, whose loss can affect the ability of species to shift their range into future climatically suitable areas, and the appropriate conservation management measures to increase landscape connectivity and facilitate movement.  相似文献   

10.
Global climate change affects the distributions of ectotherms and may be the cause of several conservation problems, such as great displacement of climatic suitable spaces for species and, consequently, important reductions of the extent of liveable places, threatening the existence of many of them. Species exposure (and hence vulnerability) to global climate change is linked to features of their climatic niches (such as the relative position of the inhabited localities of each species in the climatic space), and therefore to characteristics of their geographic ranges (such as the extent of the distributions or altitudinal range inhabited by the species). In order to analyze the pattern of response of Argentine reptiles to global climate change, we ran phylogenetic generalized least squares models using species exposure to global climate change as a response variable, and (i) niche properties (breadth and position of the species in the climate space) and (ii) general features of the distribution of species (maximum latitude, altitudinal range, maximum elevation, distributional range and proximity to the most important dispersal barrier) as predictors. Our results suggest that the best way to explain climate change exposure is by combining breadth and position of climatic niche of the species or combining geographic features that are indicators of both niche characteristics. Our best model shows that in our study area, species with the narrowest distributional ranges that also inhabit the highest elevations are the most exposed to the effects of global climate change. In this sense, reptile species from Yungas, Puna and Andes ecoregions could be especially vulnerable to the effects of climate change. We believe that these types of models may represent an interesting tool for determining species and places particularly threatened by the effects of global climate change, which should be strongly considered in conservation planning.  相似文献   

11.
Understanding the biological correlates of range sizes in plant species is important to predict the response of species to climate change. We used climate envelope models to estimate species’ potential range size and range filling for 48 European tree species. We hypothesized that potential range size relates to the climatic tolerances of plant species, and that the degree of range filling is influenced by species dispersal. We tested these hypotheses using, for each species, estimates for tolerance to cold and drought, type of dispersal, fruit size and seed size. Consistent with previous observations, we found that both the size of potential ranges and range filling increase from south to north. Species tolerance to temperature and water stress, as well as their dispersal-related traits also showed marked spatial patterns. There was, moreover, a significant positive partial correlation between cold tolerance and potential range size, when drought tolerance was partialed out, and a non-significant partial correlation between drought tolerance and potential range size, with cold tolerance partialed out. Range filling was not significantly larger in species dispersed by wind than in those dispersed by animals. There was a negative correlation between seed mass and range filling, but its statistical significance varied across different subsets of species and climate envelope algorithms; the correlation between fruit length and range filling was not significant. We conclude that climatic tolerances and dispersal traits influence species range size and range filling, and thus affect the range dynamics of species in response to global change. Using traits will therefore help to predict future distribution of species under climate change.  相似文献   

12.
Plant populations migrating in response to climate change will have to colonize established communities. Even if a population disperses to a new region with a favorable climate, interactions with other species may prevent its establishment and further spread. The potential of these species to grow along with residents will be a critical factor controlling their response to climate change. To determine the capacity of migrating species to colonize established communities we conducted extensive long-term transplant experiments where potential tree migrant species, i.e. species within 'migration range,' were planted side by side with resident ones. Potential immigrants were selected to be representative species of their native communities. For both groups, residents and potential migrants (17 species), we compared their growth response along gradients in soil moisture and light availability. Rather than manipulate climate directly, we exploited natural microclimatic gradients and the fluctuations in climate that occurred during the 5-year experiment. Experimental results were used to estimate growth in the context of novel climate and relevant establishment factors. Results suggest that potential immigrant species had similar growth rates in the new environment than those from resident species ensuring their ability to establish in the area. However, contrary to our expectations, the soil moisture requirements for the immigrant group were similar to those of the resident species. These results could have major implications for vegetation changes under the predicted drier climate for the region. If it is the case that neither resident species nor potential migrants are able to maintain stable populations, the region may experience a decline in local biodiversity.  相似文献   

13.
While poleward species migration in response to recent climatic warming is widely documented, few studies have examined entire range responses of broadly distributed sessile organisms, including changes on both the trailing (equatorward) and the leading (poleward) range edges. From a detailed population census throughout the entire geographical range of Aloe dichotoma Masson, a long-lived Namib Desert tree, together with data from repeat photographs, we present strong evidence that a developing range shift in this species is a 'fingerprint' of anthropogenic climate change. This is explained at a high level of statistical significance by population level impacts of observed regional warming and resulting water balance constraints. Generalized linear models suggest that greater mortalities and population declines in equatorward populations are virtually certainly the result, due to anthropogenic climate change, of the progressive exceedance of critical climate thresholds that are relatively closer to the species' tolerance limits in equatorward sites. Equatorward population declines are also broadly consistent with bioclimatically modelled projections under anticipated anthropogenic climate change but, as yet, there is no evidence of poleward range expansion into the area predicted to become suitable in future, despite good evidence for positive population growth trends in poleward populations. This study is among the first to show a marked lag between trailing edge population extinction and leading edge range expansion in a species experiencing anthropogenic climate change impacts, a pattern likely to apply to most sessile and poorly dispersed organisms. This provides support for conservative assumptions of species' migration rates when modelling climate change impacts for such species. Aloe dichotoma 's response to climate change suggests that desert ecosystems may be more sensitive to climate change than previously suspected.  相似文献   

14.
Shifts in species ranges are a global phenomenon, well known to occur in response to a changing climate. New species arriving in an area may become pest species, modify ecosystem structure, or represent challenges or opportunities for fisheries and recreation. Early detection of range shifts and prompt implementation of any appropriate management strategies is therefore crucial. This study investigates whether ‘first sightings’ of marine species outside their normal ranges could provide an early warning of impending climate‐driven range shifts. We examine the relationships between first sightings and marine regions defined by patterns of local climate velocities (calculated on a 50‐year timescale), while also considering the distribution of observational effort (i.e. number of sampling days recorded with biological observations in global databases). The marine trajectory regions include climate ‘source’ regions (areas lacking connections to warmer areas), ‘corridor’ regions (areas where moving isotherms converge), and ‘sink’ regions (areas where isotherms locally disappear). Additionally, we investigate the latitudinal band in which first sightings were recorded, and species’ thermal affiliations. We found that first sightings are more likely to occur in climate sink and ‘divergent’ regions (areas where many rapid and diverging climate trajectories pass through) indicating a role of temperature in driving changes in marine species distributions. The majority of our fish first sightings appear to be tropical and subtropical species moving towards high latitudes, as would be expected in climate warming. Our results indicate that first sightings are likely related to longer‐term climatic processes, and therefore have potential use to indicate likely climate‐driven range shifts. The development of an approach to detect impending range shifts at an early stage will allow resource managers and researchers to better manage opportunities resulting from range‐shifting species before they potentially colonize.  相似文献   

15.
Beyond the effects of temperature increase on local population trends and on species distribution shifts, how populations of a given species are affected by climate change along a species range is still unclear. We tested whether and how species responses to climate change are related to the populations locations within the species thermal range. We compared the average 20 year growth rates of 62 terrestrial breeding birds in three European countries along the latitudinal gradient of the species ranges. After controlling for factors already reported to affect bird population trends (habitat specialization, migration distance and body mass), we found that populations breeding close to the species thermal maximum have lower growth rates than those in other parts of the thermal range, while those breeding close to the species thermal minimum have higher growth rates. These results were maintained even after having controlled for the effect of latitude per se. Therefore, the results cannot solely be explained by latitudinal clines linked to the geographical structure in local spring warming. Indeed, we found that populations are not just responding to changes in temperature at the hottest and coolest parts of the species range, but that they show a linear graded response across their European thermal range. We thus provide insights into how populations respond to climate changes. We suggest that projections of future species distributions, and also management options and conservation assessments, cannot be based on the assumption of a uniform response to climate change across a species range or at range edges only.  相似文献   

16.
Aim Evidence indicates that species are responding to climate change through distributional range shifts that track suitable climatic conditions. We aim to elucidate the role of meso‐scale dispersal barriers in climate‐tracking responses. Location South coast of England (the English Channel). Methods Historical distributional data of four intertidal invertebrate species were logistically regressed against sea surface temperature (SST) to determine a climate envelope. This envelope was used to estimate the expected climate‐tracking response since 1990 along the coast, which was compared with observed range expansions. A hydrodynamic modelling approach was used to identify dispersal barriers and explore disparities between expected and observed climate tracking. Results Range shifts detected by field survey over the past 20 years were less than those predicted by the changes that have occurred in SST. Hydrodynamic model simulations indicated that physical barriers produced by complex tidal currents have variably restricted dispersal of pelagic larvae amongst the four species. Main conclusions We provide the first evidence that meso‐scale hydrodynamic barriers have limited climate‐induced range shifts and demonstrate that life history traits affect the ability of species to overcome such barriers. This suggests that current forecasts may be flawed, both by overestimating range shifts and by underestimating climatic tolerances of species. This has implications for our understanding of climate change impacts on global biodiversity.  相似文献   

17.
Species occurrence databases and climate databases were used to examine differences in patterns of species experienced climate across latitude for wide‐ranging rodents in the central‐eastern and western North America. The accumulated data were used to address three questions: (1) Do rodent species in the central and eastern region of North America select habitat at range edges to remain closer to climate conditions at the range core? (2) Is there a trend toward species having greater experienced climate variation consistent with smaller effects of orbitally controlled climate oscillations in the south vs. north? (3) How do species experienced temperature, precipitation, and elevation means and variation in this region compare to rodent species in the adjacent but more heterogeneous western North America? Results showed that central‐eastern North American species occur in as wide a range of environmental conditions as available throughout their ranges. These patterns are different from previous findings for rodents in the adjacent western USA and highlight major differences in current structure of species experienced environmental means and variation over latitude for species in spatially heterogeneous, mountainous areas vs. those that occupy flatter lands. The differences are likely important for determining differential response to climate changes.  相似文献   

18.
The altitudinal shifts of many montane populations are lagging behind climate change. Understanding habitual, daily behavioural rhythms, and their climatic and environmental influences, could shed light on the constraints on long‐term upslope range‐shifts. In addition, behavioural rhythms can be affected by interspecific interactions, which can ameliorate or exacerbate climate‐driven effects on ecology. Here, we investigate the relative influences of ambient temperature and an interaction with domestic sheep (Ovis aries) on the altitude use and activity budgets of a mountain ungulate, the Alpine chamois (Rupicapra rupicapra). Chamois moved upslope when it was hotter but this effect was modest compared to that of the presence of sheep, to which they reacted by moving 89–103 m upslope, into an entirely novel altitudinal range. Across the European Alps, a range‐shift of this magnitude corresponds to a 46% decrease in the availability of suitable foraging habitat. This highlights the importance of understanding how factors such as competition and disturbance shape a given species’ realised niche when predicting potential future responses to change. Furthermore, it exposes the potential for manipulations of species interactions to ameliorate the impacts of climate change, in this case by the careful management of livestock. Such manipulations could be particularly appropriate for species where competition or disturbance already strongly restricts their available niche. Our results also reveal the potential role of behavioural flexibility in responses to climate change. Chamois reduced their activity when it was warmer, which could explain their modest altitudinal migrations. Considering this behavioural flexibility, our model predicts a small 15–30 m upslope shift by 2100 in response to climate change, less than 4% of the altitudinal shift that would be predicted using a traditional species distribution model‐type approach (SDM), which assumes that species’ behaviour remains unchanged as climate changes. Behavioural modifications could strongly affect how species respond to a changing climate.  相似文献   

19.
Many species are expanding at their leading‐edge range boundaries in response to climate warming. Species are known to respond individualistically to climate change, but there has been little consideration of whether responses are consistent over time. We compared responses of 37 southerly distributed British butterflies over two study periods, first between 1970–1982 and 1995–1999 and then between 1995–1999 and 2005–2009, when mean annual temperature increased regionally by 0.03 °C yr?1 (a significant rate of increase) and 0.01 °C yr?1(a nonsignificant increase) respectively. Our study species might be expected to benefit from climate warming. We measured three responses to climate to investigate this; changes in range margin, distribution area and abundance. In general, the responses of species were inconsistent over time. Species that increased their distribution areas during the first period tended to do so again during the second period, but the relationship was weak. Changes in range margins and abundance were not consistent. In addition, only 5/37 species showed qualitatively similar responses in all three response variables over time (three species increased and two species declined in all variables in both periods). Overall rates of range expansion and distribution area change were significantly greater in the second study period, despite the lower rate of warming, perhaps due to species exploiting climate‐distribution lags remaining from the earlier, warmer period. However, there was a significantly greater decline in abundance during the second study period, so range expansions northwards were not necessarily accompanied by increases in distribution area and/or abundance. Hence, species ranges have been thinning as they have expanded northwards. The idiosyncratic responses of these species likely reflect the balance of climatic and habitat drivers of species distribution and abundance changes.  相似文献   

20.
Climate change is expected to strongly impact biodiversity in Alpine ecosystems and species distribution modelling is increasingly used to provide anticipatory information to guide conservation. In this study, (1) we quantified the range loss, range gain, range change and range turnover caused by climate change in the genus Peltigera a group of terricolous lichens widespread across the Alps, and then (2) we evaluated the relationships between the predictors of range dynamics and functional traits. Our results indicate moderate range dynamics for species of the genus Peltigera across the Alps under a climate change scenario. This would imply a relative stability and resistance of these lichens to climate change that may reflect the local persistence of the species under sub-optimal conditions. Our results also suggest that range dynamics could be associated with functional traits mainly related to water-use strategies and to a trade-off between dispersal and establishment ability. This finding suggests that functional traits may strongly modulate the lichen response to climate change and that species with similar functional traits are prone to similar selective pressures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号