首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In experiments reported here, we compared tension and thin filament Ca(2+) signaling in preparations containing either wild-type cardiac troponin I (cTnI) or a mutant cTnI with an R146G mutation [cTnI(146G)] linked to familial hypertrophic cardiomyopathy. Myofilament function is altered in association with cTnI phosphorylation by protein kinase C (PKC), which is activated in hypertrophy. Whether there are differential effects of PKC phosphorylation on cTnI compared to cTnI(146G) remains unknown. We therefore also studied cTnI and cTnI(146G) with PKC sites mutated to Glu, which mimics phosphorylation. Compared to cTnI controls, binary complexes with either cTnI(146G) or cTnI(43E/45E/144E) had a small effect on Ca(2+)-dependent structural opening of the N-terminal regulatory domain of cTnC as measured using F?rster resonance energy transfer. However, this structural change was significantly reduced in the cTnC-cTnI(43E/45E/144E/146G) complex. Exchange of cTnI in skinned fiber bundles with cTnI(146G) induced enhanced Ca(2+) sensitivity and an elevated resting tension. Exchange of cTnI with cTnI(43E/45E/144E) induced a depression in Ca(2+) sensitivity and maximum tension. However, compared to cTnI(146G), cTnI(43E/45E/144E/146G) had little additional effects on myofilament response to Ca(2+). By comparing activation of tension to the open state of the N-domain of cTnC with variations in the state of cTnI, we were able to provide data supporting the hypothesis that activation of cardiac myofilaments is tightly coupled to the open state of the N-domain of cTnC. Our data also support the hypothesis that pathological effects of phosphorylation are influenced by mutations in cTnI.  相似文献   

2.
Aberrant myofilament Ca(2+) sensitivity is commonly observed with multiple cardiac diseases, especially familial cardiomyopathies. Although the etiology of the cardiomyopathies remains unclear, improving cardiac muscle Ca(2+) sensitivity through either pharmacological or genetic approaches shows promise of alleviating the disease-related symptoms. Due to its central role as the Ca(2+) sensor for cardiac muscle contraction, troponin C (TnC) stands out as an obvious and versatile target to reset disease-associated myofilament Ca(2+) sensitivity back to normal. To test the hypothesis that aberrant myofilament Ca(2+) sensitivity and its related function can be corrected through rationally engineered TnC constructs, three thin filament protein modifications representing different proteins (troponin I or troponin T), modifications (missense mutation, deletion, or truncation), and disease subtypes (familial or acquired) were studied. A fluorescent TnC was utilized to measure Ca(2+) binding to TnC in the physiologically relevant biochemical model system of reconstituted thin filaments. Consistent with the pathophysiology, the restrictive cardiomyopathy mutation, troponin I R192H, and ischemia-induced truncation of troponin I (residues 1-192) increased the Ca(2+) sensitivity of TnC on the thin filament, whereas the dilated cardiomyopathy mutation, troponin T ΔK210, decreased the Ca(2+) sensitivity of TnC on the thin filament. Rationally engineered TnC constructs corrected the abnormal Ca(2+) sensitivities of the thin filament, reconstituted actomyosin ATPase activity, and force generation in skinned trabeculae. Thus, the present study provides a novel and versatile therapeutic strategy to restore diseased cardiac muscle Ca(2+) sensitivity.  相似文献   

3.
4.
A fluorescently labeled, biphenylalanine-rich peptide was identified as a should be cardiac troponin I-specific binding agent with preferential staining affinity to myocardium tissues and extremely low staining to other stromal components. Fluorescence images demonstrate that this new peptide is an excellent contrast agent useful for examining troponin I structural distribution and expression density within heart tissue sections. It provides a clear contrast between myocardial cells and the surrounding collagen matrix.  相似文献   

5.
Li MX  Wang X  Lindhout DA  Buscemi N  Van Eyk JE  Sykes BD 《Biochemistry》2003,42(49):14460-14468
We have utilized 2D [(1)H,(15)N]HSQC NMR spectroscopy to elucidate the binding of three segments of cTnI in native, phosphorylated, and mutated states to cTnC. The near N-terminal region (cRp; residues 34-71) contains the protein kinase C (PKC) phosphorylation sites S41 and S43, the inhibitory region (cIp; residues 128-147) contains another PKC site T142 and a familial hypertrophic cardiomyopathy (FHC) mutation R144G, and the switch region (cSp; residues 147-163) contains the novel p21-activated kinase (PAK) site S149 and another FHC mutation R161W. While S41/S43 phosphorylation of cRp had minimal disruption in the interaction of cRp and cTnC.3Ca(2+), T142 phosphorylation reduced the affinity of cIp for cCTnC.2Ca(2+) by approximately 14-fold and S149 phosphorylation reduced the affinity of cSp for cNTnC.Ca(2+) by approximately 10-fold. The mutation R144G caused an approximately 6-fold affinity decrease of cIp for cCTnC.2Ca(2+) and mutation R161W destabilized the interaction of cSp and cNTnC.Ca(2+) by approximately 1.4-fold. When cIp was both T142 phosphorylated and R144G mutated, its affinity for cCTnC.2Ca(2+) was reduced approximately 19-fold, and when cSp was both S149 phosphorylated and R161W mutated, its affinity for cNTnC.Ca(2+) was reduced approximately 4-fold. Thus, while the FHC mutation R144G enhances the effect of T142 phosphorylation on the interaction of cIp and cCTnC.2Ca(2+), the FHC mutation R161W suppresses the effect of S149 phosphorylation on the interaction of cSp and cNTnC.Ca(2+), demonstrating linkages between the FHC mutation and phosphorylation of cTnI. The observed alterations corroborate well with structural data. These results suggest that while the modifications in the cRp region have minimal influence, those in the key functional cIp-cSp region have a pronounced effect on the interaction of cTnI and cTnC, which may correlate with the altered myofilament function and cardiac muscle contraction under pathophysiological conditions.  相似文献   

6.
Calcium binding to cardiac troponin C   总被引:1,自引:0,他引:1  
The binding of Ca2+ to cardiac troponin C was studied by determining changes in the fluorescence and circular dichroism of the protein and by following changes in the free Ca2+ concentration by means of a Ca2+-specific electrode. Cardiac troponin C contains three Ca2+-binding sites which fall into two classes —two sites with a higher affinity and one with a lower affinity. The higher-affinity sites also bind Mg2+ which competes with the Ca2+.  相似文献   

7.
NMR spectroscopy has been employed to elucidate the molecular consequences of the DCM G159D mutation on the structure and dynamics of troponin C, and its interaction with troponin I (TnI). Since the molecular effects of human mutations are often subtle, all NMR experiments were conducted as direct side-by-side comparisons of the wild-type C-domain of troponin C (cCTnC) and the mutant protein, G159D. With the mutation, the affinity toward the anchoring region of cTnI (cTnI 34-71) was reduced ( K D = 3.0 +/- 0.6 microM) compared to that of the wild type ( K D < 1 microM). Overall, the structure and dynamics of the G159D.cTnI 34-71 complex were very similar to those of the cCTnC.cTnI 34-71 complex. There were, however, significant changes in the (1)H, (13)C, and (15)N NMR chemical shifts, especially for the residues in direct contact with cTnI 34-71, and the changes in NOE connectivity patterns between the G159D.cTnI 34-71 and cCTnC.cTnI 34-71 complexes. Thus, the most parsimonious hypothesis is that the development of disease results from the poor anchoring of cTnI to cCTnC, with the resulting increase in the level of acto-myosin inhibition in agreement with physiological data. Another possibility is that long-range electrostatic interactions affect the binding of the inhibitory and switch regions of cTnI (cTnI 128-147 and cTnI 147-163) and/or the cardiac specific N-terminus of cTnI (cTnI 1-29) to the N-domain of cTnC. These important interactions are all spatially close in the X-ray structure of the cardiac TnC core.  相似文献   

8.
Ca2+ and human cardiac troponin I (cTnI) peptide binding to human cardiac troponin C (cTnC) have been investigated with the use of 2D [1H,15N] HSQC NMR spectroscopy. The spectral intensity, chemical shift, and line-shape changes were analyzed to obtain the dissociation ( K(D)) and off-rate ( k(off)) constants at 30 degrees C. The results show that sites III and IV exhibit 100-fold higher Ca2+ affinity than site II ( K(D(III,IV)) approximately 0.2 microM, K(D(II)) approximately 20 microM), but site II is partially occupied before sites III and IV are saturated. The addition of the first two equivalents of Ca2+ saturates 90% of sites III and IV and 20% of site II. This suggests that the Ca2+ occupancy of all three sites may contribute to the Ca2+-dependent regulation in muscle contraction. We have determined a k(off) of 5000 s(-1) for site II Ca2+ dissociation at 30 degrees C. Such a rapid off-rate had not been previously measured. Three cTnI peptides, cTnI(34-71), cTnI(128-147), and cTnI(147-163), were titrated to Ca2+-saturated cTnC. In each case, the binding occurs with a 1:1 stoichiometry. The determined K(D) and k(off) values are 1 microM and 5 s(-1) for cTnI(34-71), 78+/-10 microM and 5000 s(-1) for cTnI(128-147), and 150+/-10 microM and 5000 s(-1) for cTnI(147-163), respectively. Thus, the dissociation of Ca2+ from site II and cTnI(128-147) and cTnI(147-163) from cTnC are rapid enough to be involved in the contraction/relaxation cycle of cardiac muscle, while that of cTnI(34-71) from cTnC may be too slow for this process.  相似文献   

9.
The effects of rigor and cycling cross-bridges on distributions of calcium (Ca) bound within sarcomeres of rabbit psoas muscle fibers were compared using electron probe x-ray microanalysis. Calcium in the overlap region of rigor fibers, after correction for that bound to thick filaments, was significantly higher than in the I-band at all pCa levels tested between 6.9 and 4.8, but the difference was greatest at pCa 6.9. With addition of MgATP, differences were significant at high levels of activation (pCa 5.6 and 4.9); near and below the threshold for activation, Ca was the same in I-band and overlap regions. Comparison of Ca and mass profiles at the A-I junction showed elevation of Ca extending 55-110 nm (up to three regulatory units) into the I-band. Extraction of TnC-reduced I-band and overlap Ca in rigor fibers at pCa 5.6 to the same levels found in unextracted fibers at pCa 8.9, suggesting that variations reported here reflect changes in Ca bound to troponin C (TnC). Taken together, these observations provide evidence for near-neighbor cooperative effects of both rigor and cycling cross-bridges on Ca(2+) binding to TnC.  相似文献   

10.
The N-terminal extension of cardiac troponin I (TnI) is bisphosphorylated by protein kinase A in response to beta-adrenergic stimulation. How this signal is transmitted between TnI and troponin C (TnC), resulting in accelerated Ca(2+) release, remains unclear. We recently proposed that the unphosphorylated extension interacts with the N-terminal domain of TnC stabilizing Ca(2+) binding and that phosphorylation prevents this interaction. We now use (1)H NMR to study the interactions between several N-terminal fragments of TnI, residues 1-18 (I1-18), residues 1-29 (I1-29), and residues 1-64 (I1-64), and TnC. The shorter fragments provide unambiguous information on the N-terminal regions of TnI that interact with TnC: I1-18 does not bind to TnC whereas the C-terminal region of unphosphorylated I1-29 does bind. Bisphosphorylation greatly weakens this interaction. I1-64 contains the phosphorylatable N-terminal extension and a region that anchors I1-64 to the C-terminal domain of TnC. I1-64 binding to TnC influences NMR signals arising from both domains of TnC, providing evidence that the N-terminal extension of TnI interacts with the N-terminal domain of TnC. TnC binding to I1-64 broadens NMR signals from the side chains of residues immediately C-terminal to the phosphorylation sites. Binding of TnC to bisphosphorylated I1-64 does not broaden these NMR signals to the same extent. Circular dichroism spectra of I1-64 indicate that bisphosphorylation does not produce major secondary structure changes in I1-64. We conclude that bisphosphorylation of cardiac TnI elicits its effects by weakening the interaction between the region of TnI immediately C-terminal to the phosphorylation sites and TnC either directly, due to electrostatic repulsion, or via localized conformational changes.  相似文献   

11.
Interaction of bepridil with the cardiac troponin C/troponin I complex   总被引:1,自引:0,他引:1  
Mammalian cells are characterized by an endomembrane system. Nevertheless, some cells lose these membranes during their terminal differentiation, e.g. red blood cells and lens fiber cells of the eye. 15-Lipoxygenase is believed to be critical for this membrane degradation. Here we use cultivated rabbit reticulocytes in the presence or absence of a lipoxygenase inhibitor to provide further evidence for the importance of 15-lipoxygenase for the in vivo degradation of mitochondria. We find that inhibitor treatment retarded mitochondrial degradation, as shown by persistence of marker proteins and by direct visualization of mitochondria by electron microscopy.  相似文献   

12.
Compounds that sensitize cardiac muscle to Ca(2+) by intervening at the level of regulatory thin filament proteins would have potential therapeutic benefit in the treatment of myocardial infarctions. Two putative Ca(2+) sensitizers, EMD 57033 and levosimendan, are reported to bind to cardiac troponin C (cTnC). In this study, we use heteronuclear NMR techniques to study drug binding to [methyl-(13)C]methionine-labeled cTnC when free or when complexed with cardiac troponin I (cTnI). In the absence of Ca(2+), neither drug interacted with cTnC. In the presence of Ca(2+), one molecule of EMD 57033 bound specifically to the C-terminal domain of free cTnC. NMR and equilibrium dialysis failed to demonstrate binding of levosimendan to free cTnC, and the presence of levosimendan had no apparent effect on the Ca(2+) binding affinity of cTnC. Changes in the N-terminal methionine methyl chemical shifts in cTnC upon association with cTnI suggest that cTnI associates with the A-B helical interface and the N terminus of the central helix in cTnC. NMR experiments failed to show evidence of binding of levosimendan to the cTnC.cTnI complex. However, levosimendan covalently bound to a small percentage of free cTnC after prolonged incubation with the protein. These findings suggest that levosimendan exerts its positive inotropic effect by mechanisms that do not involve binding to cTnC.  相似文献   

13.
Cardiac troponin C (TnC) is composed of two globular domains connected by a flexible linker. In solution, linker flexibility results in an ill defined orientation of the two globular domains relative to one another. We have previously shown a decrease in linker flexibility in response to cardiac troponin I (cTnI) binding. To investigate the relative orientation of calcium-saturated TnC domains when bound to cTnI, (1)H-(15)N residual dipolar couplings were measured in two different alignment media. Similarity in alignment tensor orientation for the two TnC domains supports restriction of domain motion in the presence of cTnI. The relative spatial orientation of TnC domains bound to TnI was calculated from measured residual dipolar couplings and long-range distance restraints utilizing a rigid body molecular dynamics protocol. The relative domain orientation is such that hydrophobic pockets face each other, forming a latch to constrain separate helical segments of TnI. We have utilized this structure to successfully explain the observed functional consequences of linker region deletion mutants. Together, these studies suggest that, although linker plasticity is important, the ability of TnC to function in muscle contraction can be correlated with a preferred domain orientation and interdomain distance.  相似文献   

14.
We investigated the distribution of troponin C.I and troponin I along tropomyosin-actin filaments by immunoelectron microscopy and found that anti-troponin I antibody formed transverse striations at 38 nm intervals along the bundle of filaments of both troponin C.I-tropomyosin-actin and troponin I-tropomyosin-actin. Since the length of 38 nm corresponds to the repeating period of filamentous tropomyosin along actin double strands, the present study indicates that troponin I is located at a specific region of each tropomyosin, suggesting that a specific interaction between troponin I and tropomyosin is involved in determining the periodic distribution of troponin I along tropomyosin-actin filaments.  相似文献   

15.
Calcium activation of fast striated muscle results from an opening of the regulatory N-terminal domain of fast skeletal troponin C (fsTnC), and a substantial exposure of a hydrophobic patch, essential for Ca(2+)-dependent interaction with fast skeletal troponin I (fsTnI). This interaction is obligatory to relieve the inhibition of strong, force-generating actin-myosin interactions. We have determined intersite distances in the N-terminal domain of cardiac TnC (cTnC) by fluorescence resonance energy transfer measurements and found negligible increases in these distances when the single regulatory site is saturated with Ca(2+). However, in the presence of bound cardiac TnI (cTnI), activator Ca(2+) induces significant increases in the distances and a substantial opening of the N-domain. This open conformation within the cTnC.cTnI complex has properties favorable for the Ca(2+)-induced interaction with an additional segment of cTnI. Thus, the binding of cTnI to cTnC is a prerequisite to achieve a Ca(2+)-induced open N-domain similar to that previously observed in fsTnC with no bound fsTnI. This role of cardiac TnI has not been previously recognized. Our results also indicate that structural information derived from a single protein may not be sufficient for inference of a structure/function relationship.  相似文献   

16.
Troponin I is the putative molecular switch for Ca(2+)-activated contraction within the myofilament of striated muscles. To gain insight into functional troponin I domain(s) in the context of the intact myofilament, adenovirus-mediated gene transfer was used to replace endogenous cardiac troponin I within the myofilaments of adult cardiac myocytes with the slow skeletal isoform or a chimera of the slow skeletal and cardiac isoforms. Efficient expression and myofilament incorporation were observed in myocytes with each exogenous troponin I protein without detected changes in the stoichiometry of other contractile proteins and/or sarcomere architecture. Contractile function studies in single, permeabilized myocytes expressing exogenous troponin I provided support for the presence of a Ca(2+)-sensitive regulatory domain in the carboxyl terminus of troponin I and a second, newly defined Ca(2+)-sensitive domain residing in the amino terminus of troponin I. Additional experiments demonstrated that the isoform-specific, acidic pH-induced contractile dysfunction in myocytes appears to lie in the carboxyl terminus of troponin I. Functional results obtained from adult cardiac myocytes expressing the chimera or isoforms of troponin I now define multiple troponin I regulatory domains operating in the intact myofilament and provide new insight into the Ca(2+)-sensitive properties of troponin I during contraction.  相似文献   

17.
The Spot method of multiple peptide synthesis was used to map in a systematic manner regions of the human cardiac troponin I sequence (hcTnI) involved in interactions with its physiological partner, troponin C (cTnC). Ninety-six 20-mer peptides describing the entire hcTnI sequence were chemically assembled; their reactivity with [125I]cTnC, in the presence of 3 mM Ca2+, enabled the assignment of six sites of interaction (residues 19-32, 45-54, 129-138, 145-164, 161-178 and 191-210). For several sites, a good correlation with literature data was obtained, thus validating this methodological approach. Synthetic peptides, each containing in their sequence an interaction site, were prepared. As assessed by BIACORE, all of them exhibited an affinity for cTnC in the range of 10(-6)-10(-7) M, except for hcTnI [39-58] which showed a nanomolar affinity. This peptide was also able to block the interaction between hcTnI and cTnC. We therefore postulate that despite the existence of multiple cTnC interaction sites on the hcTnI molecule, only that region of hcTnI allows a stabilization of the complex. Residues 19-32 from the N-terminal cardio-specific extension of hcTnI were also found to be involved in interaction with cTnC; residues 19-32 may correspond to the minimal sequence of the extension which could switch between the N- and C-terminal TnC domains, depending on its phosphorylation state. Finally, two Ca(2+)-dependent cTnC binding domains within the C-terminal part of hcTnI (residues 164-178 and 191-210) were also mapped. The latter site may be linked with the cardiac dysfunction observed in stunned myocardium.  相似文献   

18.
Lindhout DA  Boyko RF  Corson DC  Li MX  Sykes BD 《Biochemistry》2005,44(45):14750-14759
We have addressed the electrostatic interactions occurring between the inhibitory region of cardiac troponin I with the C-lobe of troponin C using scanning glycine mutagenesis of the inhibitory region. We report variations in the electric potentials due to mutation of charged residues within this complex based upon the solved NMR structure (1OZS). These results demonstrate the importance of electrostatics within this complex, and it is proposed that electrostatic interactions are integral to the formation and function of larger ternary troponin complexes. To address this hypothesis, we report (15)N NMR relaxation measurements, which suggest that, within a ternary complex involving the C-lobe and the N-terminal region of troponin I (residues 34-71), the inhibitory region maintains the electrostatic interactions with the E-helix of the C-lobe as observed within the binary complex. These results imply that, in solution, the cardiac troponin complex behaves in a manner consistent with that of the crystal structure of the skeletal isoform (1YTZ). A cardiac troponin complex possessing domain orientations similar to that of the skeletal isoform provides structural insights into altered troponin I activities as observed for the familial hypertrophic cardiomyopathy mutation R144G and phosphorylation of Thr142.  相似文献   

19.
We have quantitated the interactions of two rabbit skeletal troponin C fragments with troponin I and the troponin I inhibitory peptide. The calcium binding properties of the fragments and the ability of the fragments to exert control in the regulated actomyosin ATPase assay have also been studied. The N- and C-terminal divalent metal binding domains of rabbit skeletal troponin C, residues 1-97 and residues 98-159, respectively, were prepared by specific cleavage at cysteine-98 and separation by gel exclusion chromatography. Both of the troponin C fragments bind calcium. The calcium affinity of the weak sites within the N-terminal fragment is about an order of magnitude greater than is reported for these sites in troponin C, suggesting interaction between the calcium-saturated strong sites and the weak sites. Stoichiometric binding (1:1) of the troponin I inhibitory peptide to each fragment and to troponin C increased the calcium affinities of the fragments and troponin C. Complex formation was detected by fluorescence quenching or enhancement using dansyl-labeled troponin C (and fragments) or tryptophan-labeled troponin I inhibitory peptide. The troponin C fragments bind to troponin I with 1:1 stoichiometry and approximately equal affinities (1.6 x 10(6) M-1) which are decreased 4-fold in the presence of magnesium versus calcium. These calcium effects are much smaller than is observed for troponin C. The summed free energies for the binding of the troponin C fragments to troponin I are much larger than the free energy of binding troponin C. This suggests a large positive interaction free energy for troponin C binding to troponin I relative to the fragments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Cardiac troponin I(129-149) binds to the calcium saturated cardiac troponin C/troponin I(1-80) complex at two distinct sites. Binding of the first equivalent of troponin I(129-149) was found to primarily affect amide proton chemical shifts in the regulatory domain, while the second equivalent perturbed amide proton chemical shifts within the D/E linker region. Nitrogen-15 transverse relaxation rates showed that binding the first equivalent of inhibitory peptide to the regulatory domain decreased conformational exchange in defunct calcium binding site I and that addition of the second equivalent of inhibitory peptide decreased flexibility in the D/E linker region. No interactions between the inhibitory peptide and the C-domain of cardiac troponin C were detected by these methods demonstrating that the inhibitory peptide cannot displace cTnI(1-80) from the C-domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号