首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A polypeptide structurally related to the thaumatin family of proteins has been purified from soybean (Glycine max) leaves and the complete amino acid sequence has been determined. The mature protein, which we have termed P21, has a calculated molecular weight of 21,461 and an isoelectric point of 4.6. The soybean protein shows 64% amino acid identity with thaumatin, a sweet-tasting protein found in the West African shrub Thaumatococcus danielli, and as much as 71% identity with thaumatin-like polypeptides present in tobacco and maize.  相似文献   

2.
Reports from a number of laboratories describe the presence of a family of proteins (the major intrinsic protein family) in a variety of organisms. These proteins are postulated to form channels that function in metabolite transport. In plants, this family is represented by the product of NOD26, a nodulation gene in soybean that encodes a protein of the peribacteroid membrane, and tonoplast intrinsic protein (TIP), an abundant protein in the tonoplast of protein storage vacuoles of bean seeds (KD Johnson, H Höfte, MJ Chrispeels [1990] Plant Cell 2: 525-532). Other homologs that are induced by water stress in pea and in Arabidopsis thaliana and that are expressed in the roots of tobacco have been reported, but the location of the proteins they encode is not known. We now report the presence and derived amino acid sequences of two different TIP proteins in A. thaliana. α-TIP is a seed-specific protein that has 68% amino acid sequence identity with bean seed TIP; γ-TIP is expressed in the entire vegetative body of A. thaliana and has 58% amino acid identity with bean seed TIP. Both proteins are associated with the tonoplast. Comparisons of the derived amino acid sequences of the seven known plant proteins in the major intrinsic protein family show that genes with similar expression patterns (e.g. water stress-induced or seed specific) are more closely related to each other than the three A. thaliana homologs are related. We propose that the nonoverlapping gene expression patterns reported here, and the evolutionary relationships indicated by the phylogenetic tree, suggest a functional specialization of these proteins.  相似文献   

3.
桂蓓  王瑛 《植物生理学通讯》2007,43(6):1050-1056
根据番茄中控制果实形状的主效数量性状基因ovate的序列,用生物信息学方法从茄科植物烟草中获得直系同源ovate基因(NTovate)的特异片段,经鉴定,此基因在烟草中至少有2个拷贝。在此基础上用cDNA末端快速扩增(RACE)方法,获得其中1个拷贝的1059bpNTovate全长cDNA序列。序列分析表明,NTovate cDNA序列编码352个氨基酸,其蛋白序列与番茄ovate蛋白序列和拟南芥ovate蛋白家族AtOFP7蛋白分别为70%和36%的序列一致率,而与此家族中其他蛋白以及水稻ovate蛋白仅在保守的ovate结构域有较低的同源性。此基因已在GenBank中登录(EU043369)。  相似文献   

4.
The wheat mitochondrial orf25 nucleotide sequence of 576 pb has been determined. Its derived protein sequence shares 88% and 75% amino acid identity with those of maize and tobacco mitochondria, respectively. The wheat and tobacco orf25 sequences lack four inserts, of 6 bp to 36 bp, that are present in the maize homologue. The wheat orf25 gene is actively transcribed and is preceded by a regulatory sequence block very similar to those located upstream of the wheat coxII and atp6 genes. Our observations support the view that orf25 sequences encode a functional polypeptide in plant mitochondria.  相似文献   

5.
6.
7.
8.
9.
10.
Profilin is a small (12–15 kDa) actin- and phospholipid-binding protein previously known only from studies on animals and lower eukaryotes but recently identified as a birch pollen allergen. Here we have identified and characterized three members of the profilin multigene family from the plant Zea mays . Two cDNAs isolated from a maize pollen library ( ZmPRO 1 and ZmPRO 3) each have a single, large open reading frame encoding a putative polypeptide 131 amino acids long with a predicted molecular weight of approximately 14 kDa. A third maize pollen cDNA ( ZmPRO 2) has two in-frame translation initiation codons. Use of the first ATG would result in a polypeptide 137 amino acids long with a molecular weight of 14.8 kDa. The three maize profilins are highly homologous to each other (>90% nucleotide and amino acid sequence identity) as well as other plant profilins but show far less similarity (30–40% amino acid sequence identity) to animal and lower eukaryote profilins. Multiple sequence alignments indicate that only nine residues are shared by all eukaryotic profilins examined. However, limited comparisons reveal domains in the NH2 and COOH termini that have a high degree of similarity suggesting functional conservation. The maize gene family size is estimated to contain three to six members based on Southern blot experiments with gene-specific and coding region probes. Northern blot analysis demonstrates that the three maize profilin cDNAs characterized here are utilized in a tissue-specific manner and are anther or pollen specific.  相似文献   

11.
12.
13.
The α subunit of the F1-ATPase complex of maize is a mitochondrial translational product, presumably encoded by the mitochondrial genome. Based on nucleotide and amino acid homology, we have identified a mitochondrial gene, designated atpα, that appears to code for the F1-ATPase α subunit of Zea mays. The atpα gene is present as a single copy in the maize. Texas cytoplasm and is actively transcribed. The maize α polypeptide has a predicted length of 508 amino acids and a molecular mass of 55,187 daltons. Amino acid homologies between the maize mitochondrial α subunit and the tobacco chloroplast CF1 and Escherichia coli α subunits are 54 and 51%, respectively. The origin of the atpα gene is discussed.  相似文献   

14.
Guanylate kinase is an essential enzyme in the nucleotide biosynthetic pathway, catalyzing the reversible transfer of the terminal phospharyl group of ATP to GMP or dGMP. This enzyme has been well studied from several organisms and many structural and functional details have been characterized. Animal GMP kinases have also been implicated in signal transduction pathways. However, the corresponding role by plant derived GMP kinases remains to be elucidated. Full-length cDNA clones encoding enzymatically active guanylate kinases were isolated from cDNA libraries of lily and tobacco. Lily cDNA is predicted to encode a 392-amino acid protein with a molecular mass of 43.1 kDa and carries amino- and carboxy- terminal extensions of the guanylate kinase (GK)-like domain. But tobacco cDNA is predicted to encode a smaller protein of 297-amino acids with a molecular mass of 32.7 kDa. The amino acid residues known to participate in the catalytic activity of functionally characterized GMP kinases, are also conserved in GK domains of LGK-1 and NGK-1. The GK domains of NGK-1, LGK-1 and previously characterized AGK-1 from Arabidopsis exhibit 74–84% identity, whereas their N- and C-terminal domains are more divergent with amino acid conservation in the order of 48-55%. Phylogenetic analysis on the deduced amino acid sequences reveals that NGK-1 and LGK-1 form one distinct subgroup along with AGK-1 and AGK-2 homologues from Arabidopsis. Isolation of GMP kinases from diverse plant species like lily and tobacco adds a new dimension in understanding their role in cell signaling pathways that are associated with plant growth and development.  相似文献   

15.
A cDNA clone for ascorbate oxidase (AAO) has been isolated from a cDNA library of tobacco (Nicotiana tabacum) cells. The identity of the amino acid sequence deduced from tobacco AAO cDNA to that from pumpkin AAO cDNA was 68%, which was much lower than the identity (80%) between pumpkin and cucumber AAO. AAO activity in tobacco cells was much lower than that in pumpkin cells, whereas the immunoreactive protein in tobacco cells was more abundant than that in pumpkin cells. We suppose that AAO protein in tobacco cells may be less active than that in pumpkin cells. Genomic Southern blotting suggested that AAO in tobacco was encoded by a single-copy gene. Northern blotting revealed that mRNA of AAO was highly expressed in young and growing tissues of tobacco plant.  相似文献   

16.
Recent genetic and molecular studies in Arabidopsis and Antirrhinum suggest that mechanisms controlling floral development are well conserved among dicotyledonous species. To assess whether similar mechanisms also operate in more distantly related monocotyledonous species, we have begun to clone homologs of Arabidopsis floral genes from maize. Here we report the characterization of two genes, designated ZAG1 and ZAG2 (for Zea AG), that were cloned from a maize inflorescence cDNA library by low stringency hybridization with the AGAMOUS (AG) cDNA from Arabidopsis. ZAG1 encodes a putative polypeptide of 286 amino acids having 61% identity with the AGAMOUS (AG) protein. Through a stretch of 56 amino acids, constituting the MADS domain, the two proteins are identical except for two conservative amino acid substitutions. The ZAG2 protein is less similar to AG, with 49% identity overall and substantially less similarity than ZAG1 outside the well-conserved MADS domain. Like AG, ZAG1 RNA accumulates early in stamen and carpel primordia. In contrast, ZAG2 expression begins later and is restricted to developing carpels. Hybridization to genomic DNA with the full-length ZAG1 cDNA under moderately stringent conditions indicated the presence of a large family of related genes. Mapping data using maize recombinant inbreds placed ZAG1 and ZAG2 near two loci that are known to affect maize flower development, Polytypic ear (Pt) and Tassel seed4 (Ts4), respectively. The ZAG1 protein from in vitro translations binds to a consensus target site that is recognized by the AG protein. These data suggest that maize contains a homolog of the Arabidopsis floral identity gene AG and that this gene is conserved in sequence and function.  相似文献   

17.
The stromal derived factor (SDFs) family comprises a group of molecules generated by stromal cells. SDF1 and SDF4 are chemokines; SDF2 and SDF5 are not yet functionally and structurally defined. In human and mouse, Sdf2 has a paralogous gene, Sdf2l1, whose protein sequences are 78% similar and 68% identical. Human SDF2L1 is an endoplasmic reticulum-stress inducible-gene. In Arabidopsis thaliana, SDF2-like (39% and 37% amino acid sequence identity with Mus musculus Sdf2 and Sdf2l1) has also been implicated in activating the UPR in ER-stress. Here we have cloned, expressed and purified recombinant Sdf2 and raised an anti-Sdf2 antibody. We demonstrated that the protein is expressed in several tissues and is localized in the endoplasmic reticulum. We suggest that Sdf2, initially predicted as a secretory protein because it lacks the canonical ER retention signals in its C-terminal, could be ER-resident through accessory binding proteins or other amino acid sequence motifs, as suggested for the homolog protein SDF2-like. Furthermore, the crystal structure of SDF2-like from Arabidopsis thaliana is a typical β-trefoil containing three MIR motifs; all hydrophobic residues considered important for maintaining the bottom layer of the β-trefoil barrel seem to be conserved in the Sdf2 family. Multiple alignment using 43 sequences for SDF2 and 38 for SDF2L1 paralogous families also revealed a very similar residue conservation profile. Comparing the amino acid sequence and predicted 3D structure with other Sdf2-like proteins we suggest a role of mouse Sdf2 in the Unfolded Protein Response and ER-stress, similar to that of Sdf2l1 from human and mouse and SDF2-like from Arabidopsis thaliana. Chronic ER stress has been associated with many human diseases including cancer and diabetes. Identification of new factors associated with the ER stress pathway can help to identify and define key targets of this response.  相似文献   

18.
Poly(A)+ mRNA isolated from Nicotiana tabacum (cv. Petite Havana) leaves was used to prepare a cDNA library in the expression vector lambda gt11. Recombinant phage containing cDNAs coding for chloroplast ribosomal protein L12 were identified and sequenced. Mature tobacco L12 protein has 44% amino acid identity with ribosomal protein L7/L12 of Escherichia coli. The longest L12 cDNA (733 nucleotides) codes for a 13,823 molecular weight polypeptide with a transit peptide of 53 amino acids and a mature protein of 133 amino acids. The transit peptide and mature protein share 43% and 79% amino acid identity, respectively, with corresponding regions of spinach chloroplast ribosomal protein L12. The predicted amino terminus of the mature protein was confirmed by partial sequence analysis of HPLC-purified tobacco chloroplast ribosomal protein L12. A single L12 mRNA of about 0.8 kb was detected by hybridization of L12 cDNA to poly(A)+ and total leaf RNA. Hybridization patterns of restriction fragments of tobacco genomic DNA probed with the L12 cDNA suggested the existence of more than one gene for ribosomal protein L12. Characterization of a second cDNA with an identical L12 coding sequence but a different 3'-noncoding sequence provided evidence that at least two L12 genes are expressed in tobacco.  相似文献   

19.
A Lycopersicon esculentum cDNA clone encoding an acidic-type pathogenesis-related protein (PR-lal) was isolated, sequenced and characterized. It contains an open reading frame of 175 amino acids and the mature protein, after cleavage of the 21 amino acid signals peptide, has a pl of 5.24. The protein shows highest homology (75% identity) with the basic pathogenesis-related prb-lb protein from tobacco. The PR-lal gene shows constitutive expression in roots from tomato plants. It is expressed in leaves and stems upon viroid infection, and appears to be induced by ethylene. Comparative studies of this gene and a related basic isoform of PR-1 indicate that the expression of these two members of the PR-1 gene family in tomato may be differentially regulated upon viroid infection.The nucleotide sequence data reported in this paper will appear in the EMBL, GenBank and DDBJ Nucleotide Sequence Databases under the accession number X71592.  相似文献   

20.
Purification and cDNA Cloning of Maize Poly(ADP)-Ribose Polymerase   总被引:1,自引:0,他引:1       下载免费PDF全文
Poly(ADP)-ribose polymerase (PADPRP) has been purified to apparent homogeneity from suspension cultures of the maize (Zea mays) callus line. The purified enzyme is a single polypeptide of approximately 115 kD, which appears to dimerize through an S-S linkage. The catalytic properties of the maize enzyme are very similar to those of its animal counterpart. The amino acid sequences of three tryptic peptides were obtained by microsequencing. Antibodies raised against peptides from maize PADPRP cross-reacted specifically with the maize enzyme but not with the enzyme from human cells, and vice versa. We have also characterized a 3.45-kb expressed-sequence-tag clone that contains a full-length cDNA for maize PADPRP. An open reading frame of 2943 bp within this clone encodes a protein of 980 amino acids. The deduced amino acid sequence of the maize PADPRP shows 40% to 42% identity and about 50% similarity to the known vertebrate PADPRP sequences. All important features of the modular structure of the PADPRP molecule, such as two zinc fingers, a putative nuclear localization signal, the automodification domain, and the NAD+-binding domain, are conserved in the maize enzyme. Northern-blot analysis indicated that the cDNA probe hybridizes to a message of about 4 kb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号