首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Summary In the area of Haidach (Northern Calcareous Alps, Austria), coral-rudist mounds, rudist biostromes, and bioclastic limestones and marls constitute an Upper Cretaceous shelf succession approximately 100 meters thick. The succession is part of the mixed siliciclasticcarbonate Gosau Group that was deposited at the northern margin of the Austroalpine microplate. In its lower part, the carbonate succession at Haidach comprises two stratal packages that each consists, from bottom to top, of a coral-rudist mound capped by a rudist biostrome which, in turn, is overlain by bioclastic limestones and, locally, marls. The coral-rudist mounds consist mainly of floatstones. The coral assemblage is dominated by Fungiina, Astreoina, Heterocoeniina andAgathelia asperella (stylinina). From the rudists, elevators (Vaccinites spp., radiolitids) and recumbents (Plagioptychus) are present. Calcareous sponges, sclerosponges, and octocorals are subordinate. The elevator rudists commonly are small; they settled on branched corals, coral heads, on rudists, and on biolastic debris. The rudists, in turn, provided settlement sites for corals. Predominantly plocoid and thamnasteroid coral growth forms indicate soft substrata and high sedimentation rates. The mounds were episodically smothered by carbonate mud. Many corals and rudists are coated by thick and diverse encrustations that indicate high nutrient level and/or turbid waters. The coral-rudist mounds are capped byVaccinites biostromes up to 5 m thick. The establishment of these biostromes may result from unfavourable environmental conditions for corals, coupled with the potential of the elevator rudists for effective substrate colonization. TheVaccinites biostromes are locally topped by a thin radiolitid biostrome. The biostromes, in turn, are overlain by bioclastic limestones; these are arranged in stratal packages that were deposited from carbonate sand bodies. Approximately midsection, an interval of marls with abundantPhelopteria is present. These marls were deposited in a quiet lagoonal area where meadows of sea grass or algae, coupled with an elevated nutrient level, triggered the mass occurrence ofPhelopteria. The upper part of the Haidach section consists of stratal packages that each is composed of a rudist biostrome overlain by bioclastic wackestones to packstones with diverse smaller benthic foraminifera and calcareous green algae. The biostromes are either built by radiolitids,Vaccinites, andPleurocora, or consist exclusively of radiolitids (mainlyRadiolites). Both the biostromes and the bioclastic limestones were deposited in a low-energy lagoonal environment that was punctuated by high-energy events.In situ-rudist fabrics typically have a matrix of mudstone to rudistclastic wackestone; other biogens (incl. smaller benthic foraminifera) are absent or very rare. The matrix of rudist fabrics that indicate episodic destruction by high-energy events contain a fossil assemblage similar to the vertically associated bioclastic limestones. Substrata colonized by rudists thus were unfavourable at least for smaller benthic foraminifera. The described succession was deposited on a gently inclined shelf segment, where coral-rudist mounds and hippuritid biostromes were separated by a belt of bioclastic sand bodies from a lagoon with radiolitid biostromes. The mounds document that corals and Late Cretaceous elevator rudists may co-occur in close association. On the scale of the entire succession, however, mainly as a result of the wide ecologic range of the rudists relative to corals, the coral-dominated mounds and the rudist biostromes are vertically separated.  相似文献   

2.
Due to the variety of their systematic origins, the building organisms constitute a heterogeneous entity whose treatment in the “Annales de Paléontologie” can be appreciated according to multiple keys. The general systematic trend expressed through 100 years of history of the review is illustrated by many and rich monographic articles. The building organisms were only very rarely studied on their building capacity point of view. Thus the microbial organisms were only recently approached, with the study of the carbonated non-marine buildups, primarily resulting from the activity of cyanobacteries and algae. However various methods and approaches leaded significantly advances in the debate concerning taxonomic affinities of various building organisms as archeocyathids, stromatoporoids and chaetetids. Regarding the corals, the major contributions in the “Annales de Paléontologie” concern the methods privileging the skeletal microstructures analysis and the paleoecological considerations. Among the bivalves, the group of the rudists, which played an important role in the genesis of builded masses in Mesozoïc times, is treated under paleobiological point of view. Finally, acting of the building organisms, the “Annales de Paléontologie” reflects very well the topics of a paleontological community attached to the best possible use of effective systematic tools.  相似文献   

3.
4.
The macrofaunal distribution of the mid-Cretaceous El Abra Limestone reef core is quantified from two measured sections in Taninul Quarry, San Luis Potosi, central Mexico. The faunal structure is transitional between typical Lower Cretaceous reefs dominated by corals with low-density rudist bivalve packing; and densely-packed, rudist-dominated Upper Cretaceous reefs. The macrofauna is predominantly associations of unconnected individuals of caprinid rudists, with a low diversity of other shelly mollusks and corals. An examination of the alternation of paleocommunities defined by the dominant caprinid taxa reveals no pattern of biotic succession within the reef core. Large-scale sedimentologic features of mud and debris content, coupled with rudist growth type, suggest that paleocommunities may have been physically controlled.  相似文献   

5.
The Late Paleocene Salt Mountain Limestone from southwestern Alabama is a coral-algal-sponge buildup which further characterizes the faunal makeup of early post-Cretaceous reefs. Thin sectioning has disclosed a variety of lithologies, including large foram-algal packstone, algal bindstone, and sponge bafflestone. A low-diversity fauna of massive scleractinian corals caps the sequence, but may be developed intermittently throughout the section as well. The constructional importance of coralline algae and the low diversity of scleractinian corals are characteristic of Paleocene reefs in general. Sponges, however, are virtually unknown in earliest Tertiary sediments. Their abundance in the Salt Mountain demonstrates not only their local contribution to Early Tertiary reefs, but may also reflect an opportunistic response of sponges as reef constructors following the extinction of oligotrophic, rudist-coral reef communities of the Late Cretaceous. □ Paleocene, reef, paleoecology, sponges, extinction.  相似文献   

6.
Summary Analysis of the taxonomic composition, diversity and guild structure of five “typical” reef and mud mound communities ranging in age from Late Devonian-Early Carboniferous indicates that each of these aspects of community organization changed dramatically in relation to three extinction events. These events include a major or mass extinction at the end of the Frasnian; reef communities were also effected by less drastic end-Givetian and mid-late Famennian extinctions of reef-building higher taxa. Peak Paleozoic generic diversities for reef-building stromatoporoids and rugose corals occurred in the Eifelian-Givetian; reef-building calcareous algal taxa were longranging with peak diversity in the Devonian. These three higher taxa dominated all reef-building guilds (Constructor, Binder, Baffler) in the Frasnian and formed fossil reef communities with balanced guild structures. The extinction of nearly all reef-building stromatoporoids and rugose corals at the end of the Frasnian and the survival of nearly all calcareous algac produced mid-late Famennian reef communities dominated by the Binder Guild. Despite the survival of most calcareous algae and tabulate corals, the mid-late Famennian extinction of all remaining Paleozoic stromatoporoids and nearly all shelf-dwelling Rugosa brought the already diminished Devonian reef-building to a halt. These Devonian extinctions differ from mass extinctions by the absence of a statistically significant drop in taxonomic diversity and by their successional and cumulative effects on reef communities. Tournaisian mud mounds contain communities markedly different from the frame-building communities in Late Devonian and Visean reefs. Mound-building biotas consist of an unusual association dominated by erect, weakly skeletonized members of the Baffler Guild (chiefly fenestrate Bryozoa; Pelmatozoa) and laterally expanded, mud-binding algae/stromatolites and reptant Bryozoa. The initial recovery to reefs with skeletal frameworks in the Visean was largely due to the re-appearance of new species of abundant colonial rugose corals (Constructor Guild) and fenestrate Bryozoa. This Frasnian-Visean evolution in the taxonomic composition and structure of the reef-building guilds is also expressed by abrupt changes in biofacies and petrology of the reef limestones they produced. Thus, “typical” Frasnian reef limestones with balanced guild structures are framestones-boundstones-bafflestones, Famennian reefs are predominantly boundstones, Tournaisian mud mounds are bafflestones and Visean reefs are bafflestones-framestones.  相似文献   

7.
8.
Fossiliferous mounds of carbonate mud are a distinctive facies in the middle Chazy Group (Crown Point Formation) at Isle La Motte, Lake Champlain. The mounds are surrounded by bedded calcarenite of spar-cemented pelmatozoan debris. Channels which cut into the mounds during mound growth are filled with the same calcarenite. The mud-free intermound rocks and the mound biota suggest agitated, normal marine shallow-water environments. The principal lime-secreting organisms within the mounds are stromatoporoids, calcareous algae, tabulate corals, sponges, and bryozoans. Each mound is dominated in terms of biomass by one of three groups: stromatoporoids, calcareous algae, and bryozoans. Most of the mound biota first appear at the base of the Crown Point Formation. In the lower Crown Point Formation the organisms increase in number and species. Both changes in the biota are related to periods of shallowing of the Chazy sea which are also reflected in the character of the carbonate sands.  相似文献   

9.
Middle Ordovician reefs of Norway   总被引:1,自引:0,他引:1  
The Middle Ordovician reefs of Norway were the first to develop in the western part of the Balto-scandian epicontinental sea and are the earliest coral-stromatoporoid reefs so far reported in Europe. Small patch reefs in the Steinvika Limestone, Langesund-Skien district, consist mainly of algae, echinoderms, corals and stromatoporoids. Bryozoans, molluscs, arthropods and brachiopods are also present. The reefs developed on pelmatozoan-rich substrates and are organically zoned, consisting of a pioneer community of stemmed echinoderms and sheet algae, a high-diversity intermediate community dominated by fasciculate corals and a low diversity climax community of massive corals and stromatoporoids. These communities are interpreted as the seral stages of an autogenic ecological succession. Small patch reefs are also present in the laterally equivalent Mjøsa Limestone, Toten and Nes-Hamar districts. These are organically very similar to those in the Steinvika Limestone and developed in an identical way. A large complex, consisting of several reefs, is also present in the Mjøsa Limestone. Unlike the reefs elsewhere, which developed within shallow inshore areas, this complex developed at the outer edge of the inshore shelf. The outstanding feature of the complex is the main reef forming the offshore limit which is totally dominated by stromatoporoids and lacks a sequential development. This is due to the influence of the harsher environment at the shelf edge.  相似文献   

10.
A coral-rudist biostrome exposed in Campanian limestones near the village of Tabernas de Valldigna in south-east Spain was analysed with respect to its palaeontology, sedimentology and palaeoecology. Special attention was given to possible evidence for synecological interactions between corals and rudists. Changes in the rudist shell accretion process are evident in some polished slabs and thin sections and resulted from in vivo contact with coral-colonies. These unusual balcony-like shell protuberances exist where the rudist’s commissure was in contact with corals. They likely represent defence-reactions of rudists against the coral cnidia. Nevertheless, the fossil record of these biotic interactions is rare. This may be due to different growth-rates of rudists and corals, differing shape and size of interacting areas, or different life-spans. In consequence, the discrete ‘window’ of intergroup biotic interaction was small. Sedimentation and resuspension rates were high in the biostrome and corals only established pioneer associations under these unfavourable conditions. A higher diversity of corals is reached, however, when rudists are present. This increase in diversity resulted from the availability of additional ecological niches such as rudist-shell hard substrates and elevation above mobile sediment surface. Rudists on the other hand, received support from stabilisation of their shells through coral encrustation and framework building. In consequence, both groups benefited from their co-existence.  相似文献   

11.
The biostratigraphy (larger foraminifers, dasycladaleans), microfacies, sedimentology, and geochemistry (δ 13C, strontium-isotope stratigraphy) of a continuous, 148-m-thick section of shallow-water platform carbonates that contain the Cretaceous/Paleogene (K/P) boundary were analyzed. The boundary is constrained within a 7-m-thick interval, between the last occurrence of Maastrichtian larger benthic foraminifers and the first occurrence of Danian benthic foraminifers. Although this interval is intensively dolomitized, there is no sedimentological evidence of a major hiatus at the K/P boundary. The correlation of bulk rock δ 13C values with stable isotope data from DSDP Site 384 (NW Atlantic Ocean) supports this interpretation and indicates a Selandian age for the top of the section. The Qalhat section is a unique example of a carbonate platform that has recorded persisting open marine environmental conditions across the K/P boundary (Maastrichtian–Selandian), as indicated by the abundance of rudists, larger benthic foraminifers (Maastrichtian), calcareous algae and scleractinian corals.  相似文献   

12.
Summary The Upper Triassic reefal limestones of the Oman Mountains were investigated with respect to their microfacies, palaeontology and community structure. The reef fauna described and figured for the first time occurs in parautochthonous slope deposits of the Arabian platform (Sumeini Group) and in allochthonous reefal blocks (‘Oman Exotics’, Hawasina Complex). The ‘Oman Exotics’ are tectonically dislocated blocks, derived from isolated carbonate platforms on seamounts in the Hawasina basin or in the South Tethys Sea. The lithofacies and fauna of these blocks comprise a cyclic platform facies with megalodonts, reef and reef debris facies. The reefal limestones are dated as Norian/Rhaetian by benthic foraminiferal associations (Costifera, Siculocosta, Galeanella) and typical encrusting organisms (Alpinophragmium, Microtubus). Some small ‘Oman Exotics’ are of Carnian age. The shallow-marine organisms include scleractinian corals of different growth forms, ‘sphinctozoans’, ‘inozoans’ chaetetids, spongiomorphids, disjectoporids and solenoporacean algae as the main reef builders, various encrusters like microbes, foraminifers, sponges and many different problematical organisms for the stabilisation of the reef framework and a group of dwellers including benthic foraminifers, gastropods, bivalves and a few dasycladacean algae. The reef communities are characterized by the coverage of organisms and distributional pattern. Analogies with the coeval reef deposits from the European part of the Tethys have been recognized. Some species, now collected in Oman, were also reported from American and Asian localities.  相似文献   

13.
塔里木板块塔中井区上奥陶统凯迪阶良里塔格组灰岩中底栖固着型的钙质微生物、钙藻以及动物苔藓虫、珊瑚、层孔虫,可通过障积、盖覆和粘结等方式形成多种类型的生物绑结岩。对15口井部分岩芯以常用的绑结岩分类方案作岩石学微相分析,并描记底栖固着型生物颗粒的形成特征。菌藻类可在内碎屑表面以包结方式形成粘结岩;钙藻,特别是分枝状钙藻可形成障积岩;层孔虫可被隐藻层纹包结,也可单独形成小型盖覆岩;床板珊瑚格架岩可大量障积生屑和灰泥基质;苔藓虫在动物格架岩比例上占优,可与菌藻类粘结岩互相包结生长,也可独立形成局部小型障积岩。对比巴楚露头区同期藻丘中的绑结岩特征,显示塔中良里塔格组代表晚奥陶世由高生物多样性形成的礁滩复合体生态群落。  相似文献   

14.
Four stromatoporoid species from a stromatoporoid biostrome in the middle Ludlow Hemse Beds, Gotland, Sweden, show intergrowths with syringoporid tabulate and rugose corals, and indicate close relationships between particular coral and stromatoporoid species. The stromatoporoid Clathrodictyon convictum always contains ?Syringopora and this tabulate is rarely found in the other stromatoporoids. C. convictum is also closely associated with Tryplasma flexuosum (rugosa) while Petrozium pelagicum (rugosa) occurs only in the stromatoporoids Plectostroma intermedium and Parallelostroma typicum. The microstructure of ?Syringopora within the stromatoporoids is composed of an inner lamellar layer and an outer radial layer of calcite crystals. Diagenetic alteration has affected the microstructure which differs from recently described Devonian forms having only a radial layer. This shows variability in the structure of the tabulates within stromatoporoids. Information is sparse on the range of such variation and assessment of the relative importance of taxonomic, palaeoenvironmental and diagenetic effects is not possible in the present sample. No evidence is found to prove the precise nature of the relationships; they were not parasitic but may have been mutually symbiotic, or (most probably) commensal. The results suggest that the corals selected the most suitable stromatoporoid species for their requirements. Stromatoporoid morphology may have had an important influence on the association, where corals are more abundantly associated with those stromatoporoid species which adopted a high profile. Overall the associations appear to have allowed the corals to explore higher energy habitats otherwise unavailable to their delicate branching structure.  相似文献   

15.
Dr. Andreas May 《Facies》1992,26(1):103-116
Summary The prevailing sandy/silty lower part of the Middle Devonian in the northwestern Sauerland includes two coral limestone horizons, which contain a rich fauna of corals, stromatoporoids, and calcareous algae. The Ihmert-Formation is subdvided into three parts. The older coral limestone horizon is the Grünewiese-Member of the Ihmert-Formation (uppermost Eifelian), the younger is in the Bredenbruch-Member of the Unterhonsel-Formation (lower Lower Givetian). Conclusions about the environmental constraints are drawn from the sedimentology and the fossil content of the coral limestones. Predominant biostromes are built between storm wave base and normal wave base. Only the few bioherms grew above the normal wave base. These coral limestones were deposited in a tropical or subtropical normal marine environment in the shallow euphotic zone. Among the reef-builders epoecism is very frequent, and until now this phenomenon has not been investigated in detail. Fragile rugose and tabulate corals lived as commensals with stromatoporoids. Some other aspects of paleoecology are concisely presented.  相似文献   

16.
Sedimentological analysis of the Keyser Limestone (Upper Silurian - Lower Devonian of the central Appalachians) indicates that its sediments were deposited in a range of marginal and shallow marine environments. Major depositional environments include: tidal flat, lagoon, barrier bar and island, and open marine shelf. Each major environment is represented by a lithofacies which is lithologically and faunally distinct. Tidal flat lithofacies are characterized by eurytopic organisms, including ostracodes, gastropods, stromatoporoids and blue-green algae. Lagoon lithofacies are dominated by bryozoans, brachiopods, ostracodes and stromatoporoids. Barrier lithofacies are characterized by rooted crinoids, encrusting bryozoans and robust brachiopods. Open shelf lithofacies contain a diverse fauna of cystoids, crinoids, bryozoans and brachiopods.
The distributions of faunal assemblages in the Keyser show no simple relationship to either water depth or distance from shore. They are, in general, related to the distributions of depositional environments.
Recurring associations of brachiopod genera were not found in the Keyser. With few exceptions, any genus may be found in any subtidal environment. Abundance of brachiopods is related to the abundance of local hard substrates (usually bryozoans).  相似文献   

17.
Mediterranean gorgonian forests are threatened by several human activities and are affected by climatic anomalies that have led to mass mortality events in recent decades. The ecological role of these habitats and the possible consequence of their loss are poorly understood. Effects of gorgonians on the recruitment of epibenthic organisms were investigated by manipulating presence of gorgonians on experimental panels at 24 m depth, for Eunicella cavolinii, and at 40 m depth, for Paramuricea clavata, at two sites: Tavolara Island (Tyrrhenian Sea) and Portofino Promontory (Ligurian Sea). After 4 months, the most abundant taxa on the panels were encrusting green algae, erect red algae and crustose coralline algae at 24 m depth and encrusting brown algae and erect red algae at 40 m depth. Assemblages on the panels were significantly affected by the presence of the gorgonians, although effects varied across sites and between gorgonian species. Species diversity and evenness were lower on panels with gorgonian branches. Growth of erect algae and recruitment of serpulid polychaetes were also affected by the presence of the gorgonians, primarily at Tavolara. Crustose coralline algae and erect sponges were more abundant on E. cavolinii panels at 24 m depth, while encrusting bryozoans were more abundant on P. clavata panels at 40 m depth. Effects of gorgonians on recruited assemblages could be due to microscale modification of hydrodynamics and sediment deposition rate, or by a shading effect reducing light intensity. Gorgonians may also intercept settling propagules, compete for food with the filter-feeders and/or for space by producing allelochemicals. Presence of gorgonians mainly limits the growth of erect algae and enhances the abundance of encrusting algae and sessile invertebrates. Therefore, the gorgonian disappearances may cause a shift from assemblages characterised by crustose coralline algae to filamentous algae assemblages, decreasing complexity and resilience of coralligenous bioconstructions.  相似文献   

18.
Patch reefs occur near the top of the transgressive sequence of Ordovician Trenton Group limestones in the Chicoutimi area of Quebec, eastern Canada. Despite their small sue, these reefs comprise diverse assemblages dominated by bryozoans, corals, stromatoporoids and receptaculitid algae. Pelmatozoans and gastropods are also conspicuous. The reefs were initiated and grew in a fully marine, open shelf setting. Available substrates varied from loose skeletal lenses to soft, firm or hardened bioturbated wackestones, and the earliest stages of reef growth reflect this heterogeneity. Loose or less firm substrates were colonised by bryozoans and pelmatozoans and/or by receptaculitids, which, together with accessory organisms, stabilised the sediments and provided the basis for further reef development. The resultant firmer, slightly elevated substrates provided sites for attachment of stromatoporoids and colonial corals which spread over earlier reef organisms and sediments and dominated the later stages of reef growth. On hardened areas of sediment, stromatoporoids and corals colonised the surface directly and the early stabilising stage of reef growth is absent. The compositions and developmental stages of these Trenton Group reefs are comparable with those seen in broadly contemporaneous and often larger reefs elsewhere, and are among the earliest in which corals played an important role.  相似文献   

19.
The outcrops at Jesús Maria (Turrialba, Cartago Province, Costa Rica) present limestone sequences 12 to 30 m thick (packstones: biolithites, biomicrites; and wackstones: biosparites, biomicrosparites), sandstones and conglomerates of Upper Oligocene-Lower Miocene age, correlated to the Punta Pelada Formation. The limestones are characterized by patch reefs with an irregular distribution and a reduced lateral extension (50 m), composed of corals (40%), calcareous algae and foraminiferans (30%), mollusks (20%), and in minor amounts fragments of barnacles, decapods, echinoderms and bryozoans. They consisted of low diversity communities possibly due to diverse geographical, geological and tectonic factors: a narrow continental shelf, very shallow and isolated environments, sea level fluctuations, and exposure to clastic sedimentation associated with intermitent volcanic activity. Equity was also low, with corals making up 40% of all macrofossils, and one species, Antiguastrea cellulosa, as predominant (80% of the corals present). These bioconstructions were developed in an open circulation lagoon environment with transitions, in several occasions, to shallower environments represented by elastic sediments.  相似文献   

20.
Summary Carbonate-dominated successions of the Gipsdalen and Tempelfjorden Groups from Svalbard record a significant shift from Photozoan to Heterozoan particle associations in neritic settings during the late Palaeozoic. During the Bashkirian, benthic particle associations which included photoautotrophs such as phylloid algae (Chloroforam Association) characterised shallow subtidal environments. Most depositional settings which endured siliciclastic terrestrial input exhibited poorly diversified associations dominated by brachiopods, bryozoans and siliceous sponges (Bryonoderm Association). During the Moscovian to Asselian, highly diversified associations typified by various calcareous green algae,Palaeoaplysina, Tubiphytes, fusulinids, smaller and encrusting foraminifers (Chloroforam Association) prevailed in carbonate sediments from supratidal to shallow subtidal environments. During the Sakmarian and Early Artinskian, oolitic carbonate sands (Chloroforam Association) typified intertidal flats, whereas shallow subtidal environments were occupied by moderately diversified associations with fusulinids, smaller foraminifers, echinoderms and bryozoans (Bryonoderm-extended Association) and poorly diversified associations with echinoderms, brachiopods and bryozoans (Bryonoderm Association). During the Late Artinskian to Kazanian, poorly diversified associations characterised by brachiopods, echinoderms and bryozoans (Bryonoderm Association), and sponge-dominated associations (Hyalosponge Association) reigned within siliceous carbonates of intertidal and shallow subtidal environments. This trend is interpreted as a result of climatic cooling and fluctuations of prevailing levels of trophic resources within shallow-water settings during the studied time period. While raised nutrient levels were restricted to near-shore settings during the Bashkirian, steady mesotrophic conditions arose from the Sakmarian onward and increased to late Permian times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号