首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cytoplasmic peptide:N-glycanase has been implicated in the proteasomal degradation of newly synthesized misfolded glycoproteins that are exported from the endoplasmic reticulum to the cytosol. Recently, the gene encoding this enzyme (Png1p) was identified in yeast and shown to bind to the 26S proteasome through its interaction with a component of the DNA repair system, Rad23p. Moreover, a mouse homologue of Png1p (mPng1p), which has an extended N-terminal domain, was found to bind not only to the Rad23 protein, but also to various proteins related to the ubiquitin/proteasome pathway. An extended N-terminus of mPng1p, which is not found in yeast, contains a potential site of protein-protein interaction called the PUB/PUG domain. The PUB/PUG domain is predicted to be helix-rich and is found in various proteins that may be involved in the ubiquitin/proteasome-related pathway. This review will discuss the consequence of the deglycosylation reaction by peptide:N-glycanase in cellular processes. In addition, the potential importance of the PUB/PUG domain for the formation of a putative "glycoprotein-degradation complex" will be discussed.  相似文献   

2.
Yeast peptide:N-glycanase (Png1p; PNGase), a deglycosylation enzyme involved in the proteasome dependent degradation of proteins, has been reported to be a member of the transglutaminase superfamily based on sequence alignment. In this study we have investigated the structure-function relationship of Png1p by site-directed mutagenesis. Cys-191, His-218, and Asp-235 of Png1p are conserved in the sequence of factor XIIIa, where these amino acids constitute a catalytic triad. Point mutations of these residues in Png1p resulted in complete loss in activity, consistent with a role for each in catalyzing deglycosylation of glycoproteins. Other conserved amino acid residues, Trp-220, Trp-231, Arg-210, and Glu-222, were also vitally important for folding and structure stability of the enzyme as revealed by circular dichroism analysis. The potential effects of the mutations were predicted by mapping the conserved amino acids of Png1p within the known three-dimensional structure of factor XIIIa. Our data suggest that the lack in enzyme activity when any of the catalytic triad residues is mutated is either due to the absence of charge relay in the case of the triad or due to the disruption of the native fold of the enzyme. These findings strongly suggest a common evolutionary lineage for the PNGases and transglutaminases.  相似文献   

3.
It has been proposed that cytoplasmic peptide:N-glycanase (PNGase) may be involved in the proteasome-dependent quality control machinery used to degrade newly synthesized glycoproteins that do not correctly fold in the ER. However, a lack of information about the structure of the enzyme has limited our ability to obtain insight into its precise biological function. A PNGase-defective mutant (png1-1) was identified by screening a collection of mutagenized strains for the absence of PNGase activity in cell extracts. The PNG1 gene was mapped to the left arm of chromosome XVI by genetic approaches and its open reading frame was identified. PNG1 encodes a soluble protein that, when expressed in Escherichia coli, exhibited PNGase activity. PNG1 may be required for efficient proteasome-mediated degradation of a misfolded glycoprotein. Subcellular localization studies indicate that Png1p is present in the nucleus as well as the cytosol. Sequencing of expressed sequence tag clones revealed that Png1p is highly conserved in a wide variety of eukaryotes including mammals, suggesting that the enzyme has an important function.  相似文献   

4.
p62/SQSTM1/A170 is a multimodular protein that is found in ubiquitin-positive inclusions associated with neurodegenerative diseases. Recent findings indicate that p62 mediates the interaction between ubiquitinated proteins and autophagosomes, leading these proteins to be degraded via the autophagy-lysosomal pathway. This ubiquitin-mediated selective autophagy is thought to begin with recognition of the ubiquitinated proteins by the C-terminal ubiquitin-associated (UBA) domain of p62. We present here the crystal structure of the UBA domain of mouse p62 and the solution structure of its ubiquitin-bound form. The p62 UBA domain adopts a novel dimeric structure in crystals, which is distinctive from those of other UBA domains. NMR analyses reveal that in solution the domain exists in equilibrium between the dimer and monomer forms, and binding ubiquitin shifts the equilibrium toward the monomer to form a 1:1 complex between the UBA domain and ubiquitin. The dimer-to-monomer transition is associated with a structural change of the very C-terminal end of the p62 UBA domain, although the UBA fold itself is essentially maintained. Our data illustrate that dimerization and ubiquitin binding of the p62 UBA domain are incompatible with each other. These observations reveal an autoinhibitory mechanism in the p62 UBA domain and suggest that autoinhibition plays a role in the function of p62.  相似文献   

5.
真核多肽∶N-寡糖酶(peptide∶N-glycanase或PNGase)可切除错误折叠糖蛋白上的N-寡糖链,并可与内质网关联降解(endoplasmic reticulum-associated degradation, ERAD)途径中的多种关键成分相结合.然而,对于PNGase的生理功能及其与疾病的关系尚无明确报道.本研究利用重组技术表达和纯化了包含人PNGase N末端片段的融合蛋白,并经融合蛋白免疫与亲和层析纯化家兔抗血清,制备了PNGase的特异性抗体.利用该抗体和Western 印迹技术研究了PNGase在小鼠组织中的表达.结果显示PNGase在7种小鼠组织(脑、心、肺、肝、脾、肾、睾丸)中均有不同程度的表达,其中表达量最高者为睾丸;PNGase表达水平在不同品系小鼠(C57BL/6N、BALB/cAnN和昆明小鼠)间有显著差异.在小鼠单侧隐睾模型中首次观察到,与对照侧阴囊内的正常睾丸相比,隐睾内PNGase含量明显下降,提示PNGase在睾丸生精过程中可能有重要作用.  相似文献   

6.
Peptide:N-glycanase (PNGase) is the deglycosylating enzyme, which releases N-linked glycan chains from N-linked glycopeptides and glycoproteins. Recent studies have revealed that the cytoplasmic PNGase is involved in the degradation of misfolded/unassembled glycoproteins. This enzyme has a Cys, His, and Asp catalytic triad, which is required for its enzymatic activity and can be inhibited by "free" N-linked glycans. These observations prompted us to investigate the possible use of haloacetamidyl derivatives of N-glycans as potent inhibitors and labeling reagents of this enzyme. Using a cytoplasmic PNGase from budding yeast (Png1), Man9GlcNAc2-iodoacetoamide was shown to be a strong inhibitor of this enzyme. The inhibition was found to be through covalent binding of the carbohydrate to a single Cys residue on Png1, and the binding was highly selective. The mutant enzyme in which Cys191 of the catalytic triad was changed to Ala did not bind to the carbohydrate probe, suggesting that the catalytic Cys is the binding site for this compound. Precise determination of the carbohydrate attachment site by mass spectrometry clearly identified Cys191 as the site of covalent attachment. Molecular modeling of N,N'-diacetylchitobiose (chitobiose) binding to the protein suggests that the carbohydrate binding site is distinct from but adjacent to that of Z-VAD-fmk, a peptide-based inhibitor of this enzyme. These results suggest that cytoplasmic PNGase has a separate binding site for chitobiose and other carbohydrates, and haloacetamide derivatives can irreversibly inhibit that catalytic Cys in a highly specific manner.  相似文献   

7.
Monoubiquitination is a general mechanism for downregulating the activity of cell surface receptors by consigning these proteins for lysosome-mediated degradation through the endocytic pathway. The yeast Ede1 protein functions at the internalization step of endocytosis and binds monoubiquitinated proteins through a ubiquitin associated (UBA) domain. UBA domains are found in a broad range of cellular proteins but previous studies have suggested that the mode of ubiquitin recognition might not be universally conserved. Here we present the solution structure of the Ede1 UBA domain in complex with monoubiquitin. The Ede1 UBA domain forms a three-helix bundle structure and binds ubiquitin through a largely hydrophobic surface in a manner reminiscent of the Dsk2 UBA and the remotely homologous Cue2 CUE domains, for which high-resolution structures have been described. However, the interaction is dissimilar to the molecular models proposed for the hHR23A UBA domains bound to either monoubiquitin or Lys48-linked diubiquitin. Our mutational analyses of the Ede1 UBA domain-ubiquitin interaction reveal several key affinity determinants and, unexpectedly, a negative affinity determinant in the wild-type Ede1 protein, implying that high-affinity interactions may not be the sole criterion for optimal function of monoubiquitin-binding endocytic proteins.  相似文献   

8.
UBA domains are a commonly occurring sequence motif of approximately 45 amino acid residues that are found in diverse proteins involved in the ubiquitin/proteasome pathway, DNA excision-repair, and cell signaling via protein kinases. The human homologue of yeast Rad23A (HHR23A) is one example of a nucleotide excision-repair protein that contains both an internal and a C-terminal UBA domain. The solution structure of HHR23A UBA(2) showed that the domain forms a compact three-helix bundle. We report the structure of the internal UBA(1) domain of HHR23A. Comparison of the structures of UBA(1) and UBA(2) reveals that both form very similar folds and have a conserved large hydrophobic surface patch. The structural similarity between UBA(1) and UBA(2), in spite of their low level of sequence conservation, leads us to conclude that the structural variability of UBA domains in general is likely to be rather small. On the basis of the structural similarities as well as analysis of sequence conservation, we predict that this hydrophobic surface patch is a common protein-interacting surface present in diverse UBA domains. Furthermore, accumulating evidence that ubiquitin binds to UBA domains leads us to the prediction that the hydrophobic surface patch of UBA domains interacts with the hydrophobic surface on the five-stranded beta-sheet of ubiquitin. Detailed comparison of the structures of the two UBA domains, combined with previous mutagenesis studies, indicates that the binding site of HIV-1 Vpr on UBA(2) does not completely overlap the ubiquitin binding site.  相似文献   

9.
Swa2p is an auxilin-like yeast protein that is involved in vesicular transport and required for uncoating of clathrin-coated vesicles. Swa2p contains a ubiquitin-associated (UBA) domain, which is present in a variety of proteins involved in ubiquitin (Ub)-mediated processes. We have determined a structural model of the Swa2p UBA domain in complex with Ub using NMR spectroscopy and molecular docking. Ub recognition occurs predominantly through an atypical interaction in which UBA helix α1 and the N-terminal part of helix α2 bind to Ub. Mutation of Ala148, a key residue in helix α1, to polar residues greatly reduced the affinity of the UBA domain for Ub and revealed a second low-affinity Ub-binding site located on the surface formed by helices α1 and α3. Surface plasmon resonance showed that the Swa2p UBA domain binds K48- and K63-linked di-Ub in a non-linkage-specific manner. These results reveal convergent evolution of a Ub-binding site on helix α1 of UBA domains involved in membrane protein trafficking.  相似文献   

10.
A role for Rad23 proteins in 26S proteasome-dependent protein degradation?   总被引:4,自引:0,他引:4  
Treatment of cells with genotoxic agents affects protein degradation in both positive and negative ways. Exposure of S. cerevisiae to the alkylating agent MMS resulted in activation of genes that are involved in ubiquitin- and 26S proteasome-dependent protein degradation. This process partially overlaps with the activation of the ER-associated protein degradation pathway. The DNA repair protein Rad23p and its mammalian homologues have been shown to inhibit degradation of specific substrates in response to DNA damage. Particularly the recently identified inhibition of degradation by mouse Rad23 protein (mHR23) of the associated nucleotide excision repair protein XPC was shown to stimulate DNA repair.Recently, it was shown that Rad23p and the mouse homologue mHR23B also associate with Png1p, a deglycosylation enzyme. Png1p-mediated deglycosylation plays a role in ER-associated protein degradation after accumulation of malfolded proteins in the endoplasmic reticulum. Thus, if stabilization of proteins that are associated with the C-terminus of Rad23p is a general phenomenon, then Rad23 might be implicated in the stimulation of ER-associated protein degradation as well. Interestingly, the recently identified HHR23-like protein Mif1 is also thought to play a role in ER-associated protein degradation. The MIF1 gene is strongly activated in response to ER-stress. Mif1 contains a ubiquitin-like domain which is most probably involved in binding to S5a, a subunit of the 19S regulatory complex of the 26S proteasome. On the basis of its localization in the ER-membrane, it is hypothesized that Mif1 could play a role in the translocation of the 26S proteasome towards the ER-membrane, thereby enhancing ER-associated protein degradation.  相似文献   

11.
The sequence of the ubiquitin protein is highly conserved between species and has facilitated the cloning of numerous ubiquitin-like proteins. In the present study, we report the cloning of the cDNA for human ubiquilin 3 (UBQLN3). The deduced amino acid sequence of UBQLN3 contains a UBQ domain (ubiquitin-like) in the amino terminus as well as two highly conserved domains found in several recently cloned ubiquitin-like proteins. One of these domains, termed the NP domain, is a highly conserved 93 amino acid region present in UBQLN3 and several ubiquitin-like proteins. The last conserved domain is the UBA domain (ubiquitin-associated) found in a variety of proteins of the ubiquination pathway. The human UBQLN3 gene was mapped to the 11p15 region of chromosome 11. Northern blot analysis of multiple human and mouse tissues demonstrated UBQLN3 mRNA expression specifically in testis.  相似文献   

12.
Peptide:N-glycanase (PNGase) releases N-glycans from glycoproteins/glycopeptides. Cytoplasmic PNGase is widely recognized as a component of machinery for ER-associated degradation (ERAD), i.e. proteasomal degradation of misfolded, newly synthesized (glyco)proteins that have been exported from the ER. The enzyme belongs to the "transglutaminase superfamily" that contains a putative catalytic triad of cysteine, histidine, and aspartic acid. The mammalian orthologues of PNGase contain the N-terminal PUB domain that serves as the protein-protein interaction domain. The C-terminus of PNGase was recently found to be a novel carbohydrate-binding domain. Taken together, these observations indicate that C-terminus of mammalian PNGase is important for recognition of the substrates while N-terminus of this enzyme is involved in assembly of a degradation complex.  相似文献   

13.
14.
Cytoplasmic peptide:N-glycanase (PNGase) is an enzyme that removes N-glycans from misfolded glycoproteins. The function of cytoplasmic PNGase plays a significant role in the degradation of misfolded glycoproteins, which is critical for cell viability. Recently, we reported that haloacetoamidyl derivatives of high-mannose-type oligosaccharides selectively modify the catalytic cysteine of cytoplasmic PNGase and serve as its specific inhibitor. Interestingly, a drastically simplified chloroacetamidyl chitobiose derivative [(GlcNAc)(2)-ClAc] was also reactive to PNGase. In our work, it was conjugated to a hydrophobic fluorophore in order to render (GlcNAc)(2)-ClAc cells permeable. We demonstrated that this compound [BODIPY-(GlcNAc)(2)-ClAc] specifically binds to cytoplasmic PNGase from budding yeast (Png1). To date, only Z-VAD-fmk is known as an inhibitor of PNGase. BODIPY-(GlcNAc)(2)-ClAc and Z-VAD-fmk share the same binding site on Png1, while BODIPY-(GlcNAc)(2)-ClAc has markedly stronger inhibitory activity. The functional analysis of PNGase using Z-VAD-fmk should be carefully interpreted because of its intrinsic property as a caspase inhibitor. In sharp contrast, chloroacetamidyl chitobiose was not reactive to caspase. In addition, BODIPY-(GlcNAc)(2)-ClAc did not bind either chitobiose-binding lectins or PNGase from other sources. Moreover, fluorescent microscopy clearly showed that BODIPY-(GlcNAc)(2)-ClAc was efficiently introduced into cells. These results suggest that this compound could be an in vivo inhibitor of cytoplasmic PNGase.  相似文献   

15.
The endoplasmic reticulum-associated degradation (ERAD) of misfolded (glyco)proteins ensures that only functional, correctly folded proteins exit from the ER and that misfolded ones are degraded by the ubiquitin-proteasome system. During the degradation of misfolded glycoproteins, some of them are subjected to deglycosylation by the cytoplasmic peptide:N-glycanase (PNGase). The cytosolic PNGase is widely distributed throughout eukaryotes. Here we show that the nematode Caenorhabditis elegans PNG-1, the cytoplasmic PNGase orthologue in this organism, exhibits dual enzyme functions, not only as PNGase but also as an oxidoreductase (thioredoxin). Using an in vitro assay as well as an in vivo assay system in budding yeast, the N-terminal thioredoxin domain and the central transglutaminase domain were found to be essential for oxidoreductase activity and PNGase activity, respectively. Occurrence of a C. elegans mutation affecting a catalytic residue in the PNGase domain strongly suggests the functional importance of this protein in higher eukaryotes.  相似文献   

16.
PUB domains are identified in several proteins functioning in the ubiquitin (Ub)-proteasome system and considered as p97-binding modules. To address the further functional roles of these domains, we herein characterized the interactions of the PUB domain of peptide:N-glycanase (PNGase) with Ub and Ub-like domain (UBL) of the proteasome shuttle factor HR23. NMR data indicated that PNGase-PUB exerts an acceptor preferentially for HR23-UBL, electrostatically interacting with the UBL surface employed for binding to other Ub/UBL motifs. Our findings imply that PNGase-PUB serves not only as p97-binding module but also as a possible activator of HR23 in endoplasmic reticulum-associated degradation mechanisms.  相似文献   

17.
The ubiquitin-associated (UBA) domain is one of the most frequently occurring motifs that recognize ubiquitin tags. Dsk2p, a UBA-containing protein from Saccharomyces cerevisiae, is involved in the ubiquitin-proteasome proteolytic pathway and has been implicated in spindle pole duplication. Here we present the solution structure of the UBA domain of Dsk2p (Dsk2(UBA)) in complex with ubiquitin. The structure reveals that the UBA domain uses a mode of ubiquitin recognition that is similar to that of the CUE domain, another ubiquitin binding motif that shares low sequence homology but high structural similarity with UBA domains. These two domains, as well as the structurally unrelated ubiquitin binding motif UIM, provide a common, crucial recognition site for ubiquitin, comprising a hydrogen-bonding acceptor for the amide group of Gly-47, and a methyl group that packs against the hydrophobic pocket of ubiquitin formed by Leu-8, Ile-44, His-68, and Val-70.  相似文献   

18.
EDD (or HYD) is an E3 ubiquitin ligase in the family of HECT (homologous to E6-AP C terminus) ligases. EDD contains an N-terminal ubiquitin-associated (UBA) domain, which is present in a variety of proteins involved in ubiquitin-mediated processes. Here, we use isothermal titration calorimetry (ITC), NMR titrations, and pull-down assays to show that the EDD UBA domain binds ubiquitin. The 1.85 A crystal structure of the complex with ubiquitin reveals the structural basis of ubiquitin recognition by UBA helices alpha1 and alpha3. The structure shows a larger number of intermolecular hydrogen bonds than observed in previous UBA/ubiquitin complexes. Two of these involve ordered water molecules. The functional importance of residues at the UBA/ubiquitin interface was confirmed using site-directed mutagenesis. Surface plasmon resonance (SPR) measurements show that the EDD UBA domain does not have a strong preference for polyubiquitin chains over monoubiquitin. This suggests that EDD binds to monoubiquitinated proteins, which is consistent with its involvement in DNA damage repair pathways.  相似文献   

19.
20.
In addition to a role in DNA repair events in yeast, several lines of evidence indicate that the Rad23 protein (Rad23p) may regulate the activity of the 26 S proteasome. We report evidence that a de-N-glycosylating enzyme, Png1p, may be involved in the proteasomal degradation pathway via its binding to Rad23p. Interaction of Rad23p and Png1p was first detected by two-hybrid screening, and this interaction in vivo was confirmed by biochemical analyses. The Png1p-Rad23p complex was shown to be distinct from the well established DNA repair complex, Rad4p-Rad23p. We propose a model in which Rad23p functions as an escort protein to link the 26 S proteasome with proteins such as Rad4p or Png1p to regulate their cellular activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号