首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Black bears spend four to seven months every winter confined to their den and anorexic. Despite potential for skeletal muscle atrophy and protein loss, bears appear to retain muscle integrity throughout winter dormancy. Other authors have suggested that bears are capable of net protein anabolism during this time. The present study was performed to test this hypothesis by directly measuring skeletal muscle protein metabolism during the summer, as well as early and late hibernation periods. Muscle biopsies were taken from the vastus lateralis of six free-ranging bears in the summer, and from six others early in hibernation and again in late winter. Protein synthesis and breakdown were measured on biopsies using (14)C-phenylalanine as a tracer. Muscle protein, nitrogen, and nucleic acid content, as well as nitrogen stable isotope enrichment, were also measured. Protein synthesis was greater than breakdown in summer bears, suggesting that they accumulate muscle protein during periods of seasonal food availability. Protein synthesis and breakdown were both lower in winter compared to summer but were equal during both early and late denning, indicating that bears are in protein balance during hibernation. Protein and nitrogen content, nucleic acid, and stable isotope enrichment measurements of the biopsies support this conclusion.  相似文献   

2.
3.
The American black bear maintains lean body mass for months without food during winter denning. We asked whether changes in the growth hormone/insulin-like growth factor-I (GH-IGF-I) axis may contribute to this remarkable adaptation to starvation. Serum IGF-I levels were measured by radioimmunoassay, and IGF-binding proteins (IGFBPs) were analyzed by ligand blotting. Initial studies in bears living in the wild showed that IGF-I levels are highest in summer and lowest in early winter denning. Detailed studies in captive bears showed that IGF-I levels decline in autumn when bears are hyperphagic, continue to decline in early denning, and later rise above predenning levels despite continued starvation in the den. IGFBP-2 increased and IGFBP-3 decreased in early denning, and these changes were also reversed in later denning. Treatment with GH (0.1 mg·kg(-1)·day(-1) × 6 days) during early denning increased serum levels of IGF-I and IGFBP-3 and lowered levels of IGFBP-2, indicating that denning bears remain responsive to GH. GH treatment lowered blood urea nitrogen levels, reflecting effects on protein metabolism. GH also accelerated weight loss and markedly increased serum levels of free fatty acids and β-hydroxybutyrate, resulting in a ketoacidosis (bicarbonate decreased to 15 meq/l), which was reversed when GH was withdrawn. These results demonstrate seasonal regulation of GH/IGF-I axis activity in black bears. Diminished GH activity may promote fat storage in autumn in preparation for denning and prevent excessive mobilization and premature exhaustion of fat stores in early denning, whereas restoration of GH/IGF activity in later denning may prepare the bear for normal activity outside the den.  相似文献   

4.
Extreme loss of skeletal muscle mass (atrophy) occurs in human muscles that are not used. In striking contrast, skeletal muscles do not rapidly waste away in hibernating mammals such as bears, or aestivating frogs, subjected to many months of inactivity and starvation. What factors regulate skeletal muscle mass and what mechanisms protect against muscle atrophy in some species? Severe atrophy also occurs with ageing and there is much clinical interest in reducing such loss of muscle mass and strength (sarcopenia). In the meat industry, a key aim is optimizing the control of skeletal muscle growth and meat quality. The impaired response of muscle to insulin resulting in diabetes, that is a consequence of the metabolic impact of increasing obesity and fat deposition in humans, is also of increasing clinical concern. Intensive research in these fields, combined with mouse models, is reviewed with respect to the molecular control of muscle growth (myogenesis) and atrophy/hypertrophy and fat deposition (adipogenesis) in skeletal muscle, with a focus on IGF‐1/insulin signaling. BioEssays 28: 994–1009, 2006. © 2006 Wiley Periodicals, Inc.  相似文献   

5.
Hibernation is an adaptive strategy to survive harsh winter conditions and food shortage. The use of well‐insulated winter dens helps animals minimize energy loss during hibernation. Brown bears (Ursus arctos) commonly use excavated dens for hibernation. Physical attributes of excavated dens are expected to impact the bear's heat retention and energy conservation. The objective of this study was to examine the determinants of cavity size of excavated dens and the impact of physical attributes of excavated dens on energy conservation in hibernating bears, hypothesizing that bears excavate dens in a way to minimize heat loss and optimize energy conservation during hibernation. We predicted that den cavity size would be determined by the bear's body size and that older bears would excavate better‐fitting cavities to minimize heat loss, due to their previous experience. We further predicted that physical attributes of excavated dens would affect the bears’ posthibernation body condition. Our results revealed that bears excavated a den cavity in relation to their body size, regardless of sex, and that older bears tended to excavate better‐fitting den cavities compared to young bears, as we expected. Older bears excavated better‐fitting den cavities, suggesting a potentially experience‐based shift with age in den‐excavation behavior and an optimum cavity size relative to a bear's body size. Our key finding is that insulation of excavated dens provided by wall/rood thickness and bedding materials had a significant positive effect on bears’ posthibernation body condition. We believe that our study provides new insight into how not only the quality of denning habitat, but also the quality of dens may affect hibernating animals, by presenting a potential adaptive aspect of den preparation (age effect on efficiency in den excavation) and effect of den attributes on the posthibernation body condition of brown bears.  相似文献   

6.

Background

Bears are among the most physiologically remarkable mammals. They spend half their life in an active state and the other half in a state of dormancy without food or water, and without urinating, defecating, or physical activity, yet can rouse and defend themselves when disturbed. Although important data have been obtained in both captive and wild bears, long-term physiological monitoring of bears has not been possible until the recent advancement of implantable devices.

Results

Insertable cardiac monitors that were developed for use in human heart patients (Reveal® XT, Medtronic, Inc) were implanted in 15 hibernating bears. Data were recovered from 8, including 2 that were legally shot by hunters. Devices recorded low heart rates (pauses of over 14 seconds) and low respiration rates (1.5 breaths/min) during hibernation, dramatic respiratory sinus arrhythmias in the fall and winter months, and elevated heart rates in summer (up to 214 beats/min (bpm)) and during interactions with hunters (exceeding 250 bpm). The devices documented the first and last day of denning, a period of quiescence in two parturient females after birthing, and extraordinary variation in the amount of activity/day, ranging from 0 (winter) to 1084 minutes (summer). Data showed a transition toward greater nocturnal activity in the fall, preceding hibernation. The data-loggers also provided evidence of the physiological and behavioral responses of bears to our den visits to retrieve the data.

Conclusions

Annual variations in heart rate and activity have been documented for the first time in wild black bears. This technique has broad applications to wildlife management and physiological research, enabling the impact of environmental stressors from humans, changing seasons, climate change, social interactions and predation to be directly monitored over multiple years.  相似文献   

7.
During the denning period, black bears (Ursus americanus) are capable of enduring several months without food. At the same time, female bears that are pregnant or lactating have an added metabolic stress. Based on laboratory studies, much of the energy required to support metabolism and lactation during denning in black bears comes from lipid reserves. These lipid reserves are mobilized and the most metabolically active lipid fraction in the blood are nonesterified fatty acids (NEFA). Therefore, we hypothesized that plasma NEFAs would be higher in denning relative to active bears and in lactating relative to non-lactating female bears. We further hypothesized that in bears with elevated plasma NEFA levels, other lipid-related parameters (e.g., ketone bodies, albumin, cholesterol, lipase) would also be elevated in the plasma. Denning bears had significantly increased NEFA levels in all classes (saturates, monoenes, and polyenes). A doubling of plasma NEFA levels and a 33% increase in albumin, the plasma fatty acid binding protein, in denning bears, resulted in NEFA/albumin ratios that were higher in denning bears (4:1) compared to those of active bears (3:1). Bears became relatively ketonemic with a 17-fold increase in D-beta-hydroxybutyrate levels during the denning period. Plasma cholesterol approximately doubled and lipase was ten-fold lower in denning relative to active bears. These findings indicate a strong correlation between plasma lipid metabolites and the denning period in a wild population of black bears.  相似文献   

8.
The hibernating bear is an excellent model for disuse osteoporosis in humans because it is a naturally occurring large animal model. Furthermore, bears and humans have similar lower limb skeletal morphology, and bears walk plantigrade like humans. Black bears (Ursus americanus) may not develop disuse osteoporosis during long periods of disuse (i.e. hibernation) because they maintain osteoblastic bone formation during hibernation. As a consequence, bone volume, mineral content, porosity, and strength are not adversely affected by annual periods of disuse. In fact, cortical bone bending strength has been shown to increase with age in hibernating black bears without a significant change in porosity. Other animals require remobilization periods 2-3 times longer than the immobilization period to recover the bone lost during disuse. Our findings support the hypothesis that black bears, which hibernate for as long as 5-7 months annually, have evolved biological mechanisms to mitigate the adverse effects of disuse on bone porosity and strength.  相似文献   

9.
  1. Hibernation represents an adaptation for coping with unfavorable environmental conditions. For brown bears Ursus arctos, hibernation is a critical period as pronounced temporal reductions in several physiological functions occur.
  2. Here, we review the three main aspects of brown bear denning: (1) den chronology, (2) den characteristics, and (3) hibernation physiology in order to identify (a) proximate and ultimate factors of hibernation as well as (b) research gaps and conservation priorities.
  3. Den chronology, which varies by sex and reproductive status, depends on environmental factors, such as snow, temperature, food availability, and den altitude. Significant variation in hibernation across latitudes occurs for both den entry and exit.
  4. The choice of a den and its surroundings may affect individual fitness, for example, loss of offspring and excessive energy consumption. Den selection is the result of broad‐ and fine‐scale habitat selection, mainly linked to den insulation, remoteness, and availability of food in the surroundings of the den location.
  5. Hibernation is a metabolic challenge for the brown bears, in which a series of physiological adaptations in tissues and organs enable survival under nutritional deprivation, maintain high levels of lipids, preserve muscle, and bone and prevent cardiovascular pathologies such as atherosclerosis.
It is important to understand: (a) proximate and ultimate factors in denning behavior and the difference between actual drivers of hibernation (i.e., factors to which bears directly respond) and their correlates; (b) how changes in climatic factors might affect the ability of bears to face global climate change and the human‐mediated changes in food availability; (c) hyperphagia (period in which brown bears accumulate fat reserves), predenning and denning periods, including for those populations in which bears do not hibernate every year; and (d) how to approach the study of bear denning merging insights from different perspectives, that is, physiology, ecology, and behavior.  相似文献   

10.
Skeletal muscle weakness is a common finding in patients with chronic heart failure (CHF). This functional deficit cannot be accounted for by muscle atrophy alone, suggesting that the syndrome of heart failure induces a myopathy in the skeletal musculature. To determine whether decrements in muscle performance are related to alterations in contractile protein function, biopsies were obtained from the vastus lateralis muscle of four CHF patients and four control patients. CHF patients exhibited reduced peak aerobic capacity and knee extensor muscle strength. Decrements in whole muscle strength persisted after statistical control for muscle size. Thin filaments and myosin were isolated from biopsies and mechanically assessed using the in vitro motility assay. Isolated skeletal muscle thin-filament function, however, did not differ between CHF patients and controls with respect to unloaded shortening velocity, calcium sensitivity, or maximal force. Similarly, no difference in maximal force or unloaded shortening velocity of isolated myosin was observed between CHF patients and controls. From these results, we conclude that skeletal contractile protein function is unaltered in CHF patients. Other factors, such as a decrease in total muscle myosin content, are likely contributors to the skeletal muscle strength deficit of heart failure.  相似文献   

11.
1. Biopsies of the extensor hallucis longus (EHL) and gastrocnemius (G) muscles of four captive black bears (Ursus americanus) were obtained prior to denning (PRE), during denning (DEN) and following the Spring arousal (POST). 2. Glycogen, triglyceride and protein concentrations did not differ significantly between the three groups. Likewise, the activity of citrate synthase, a mitochondrial oxidative enzyme, was not significantly different between the three groups. 3. DNA concentrations in DEN samples increased 30% compared to other groups while RNA concentrations were significantly elevated in POST samples. The RNA/DNA ratios were significantly depressed during DEN. 4. These results suggest a degree of muscle atrophy during DEN, with the potential for an increased capacity for muscle protein synthesis following the Spring arousal.  相似文献   

12.
13.
14.
The soleus muscle has been consistently shown to atrophy more than other leg muscles during unloading and is difficult to protect using various exercise countermeasure paradigms. However, the efficacy of aerobic exercise, a known stimulus for oxidative adaptations, has not been tested in combination with resistance exercise (RE), a known hypertrophic stimulus. We hypothesized that a concurrent exercise program (AE + RE) would preserve soleus fiber myosin heavy chain (MHC) I size and function during 60 days of bed rest. A secondary objective was to test the hypothesis that a leucine-enriched high protein diet would partially protect soleus single fiber characteristics. Soleus muscle biopsies were obtained before and after bed rest from a control (BR; n = 7), nutrition (BRN; n = 8), and exercise (BRE; n = 6) group. Single muscle fiber diameter (Dia), peak force (Po), contractile velocity, and power were studied. BR decreased (P < 0.05) MHC I Dia (-14%), Po (-38%), and power (-39%) with no change in contractile velocity. Changes in MHC I size (-13%) and contractile function (approximately 30%) from BRN were similar to BR. BRE decreased (P < 0.05) MHC I Dia (-13%) and Po (-23%), while contractile velocity increased (P < 0.05) 26% and maintained power. These soleus muscle data show 1) the AE + RE exercise program maintained MHC I power but not size and strength, and 2) the nutrition countermeasure did not benefit single fiber size and contractile function. The divergent response in size and functional MHC I soleus properties with the concurrent exercise program was a unique finding further highlighting the challenges of protecting the unloaded soleus.  相似文献   

15.
16.
Some hibernating animals are known to reduce muscle and bone loss associated with mechanical unloading during prolonged immobilisation,compared to humans. However, here we show that wild pregnant polar bears (Ursus maritimus) are the first known animals to avoid significant bone loss altogether, despite six months of continuous hibernation. Using serum biochemical markers of bone turnover, we showed that concentrations for bone resorption are not significantly increased as a consequence of hibernation in wild polar bears. This is in sharp contrast to previous studies on other hibernating species, where for example, black bears (Ursus americanus), show a 3-4 fold increase in serum bone resorption concentrations posthibernation,and must compensate for this loss through rapid bone recovery on remobilisation, to avoid the risk of fracture. In further contrast to black bears, serum concentrations of bone formation markers were highly significantly increased in pregnant female polar bears compared to non-pregnant,thus non-hibernating females both prior to and after hibernation. However, bone formation concentrations in new mothers were significantly reduced compared to pre-hibernation concentrations. The de-coupling of bone turnover in favour of bone formation prior to hibernation, suggests that wild polar bears may posses a unique physiological mechanism for building bone in protective preparation against expected osteopenia associated with disuse,starvation, and hormonal drives to mobilise calcium for reproduction, during hibernation. Understanding this physiological mechanism could have profound implications for a natural solution for the prevention of osteoporosis in animals subjected to captivity with inadequate space for exercise,humans subjected to prolonged bed rest while recovering from illness, or astronauts exposed to antigravity during spaceflight.? 2008 Elsevier Inc. All rights reserved.  相似文献   

17.
Abstract Previous studies on wild black bears (Ursus americanus) have shown that skeletal muscle morphology, composition, and overall force-generating capacity do not differ drastically between seasons despite prolonged inactivity during hibernation. However, the amount and characteristics of the seasonal variations were not consistent in these studies. The goals of this study were to compare the amount of muscle atrophy in captive brown bears (Ursus arctos) with that observed in wild black bears and measure seasonal differences in twitch characteristics. Samples from the biceps femoris muscle were collected during the summer and winter. Protein concentration, fiber-type composition, and fiber cross-sectional area were measured along with twitch characteristics. The protein concentration of the winter samples was 8.2% lower than that of the summer samples; fiber cross-sectional area and the relative proportion of fast and slow fibers remained unchanged between seasons. Myosin heavy chain isoforms I, IIa, and IIx were identified by immunoblotting and electrophoresis, and the proportions did not change between seasons. The half-rise time in the twitch contractions increased in winter relative to summer samples, which is unexpected under disuse conditions. These results agreed with a study that showed minimal skeletal muscle atrophy between seasons in wild black bears.  相似文献   

18.
Prolonged inactivity associated with bed rest in a clinical setting or spaceflight is frequently associated with hypercortisolemia and inadequate caloric intake. Here, we determined the effect of 28 days of bed rest (BR); bed rest plus hypercortisolemia (BRHC); and bed rest plus essential amino acid (AA) and carbohydrate (CHO) supplement (BRAA) on the size and function of single slow- and fast-twitch muscle fibers. Supplementing meals, the BRAA group consumed 16.5 g essential amino acids and 30 g sucrose at 1100, 1600, and 2100 h, and the BRHC subjects received 5 daily doses of 10–15 mg of oral hydrocortisone sodium succinate throughout bed rest. Bed rest induced atrophy and loss of force (mN) and power (µN·FL·s–1) in single fibers was exacerbated by hypercortisolemia where soleus peak force declined by 23% in the type I fiber from a prevalue of 0.78 ± 0.02 to 0.60 ± 0.02 mN post bed rest (compared to a 7% decline with bed rest alone) and 27% in the type II fiber (1.10 ± 0.08 vs. 0.81 ± 0.05 mN). In the BRHC group, peak power dropped by 19, 15, and 11% in the soleus type I, and vastus lateralis (VL) type I and II fibers, respectively. The AA/CHO supplement protected against the bed rest-induced loss of peak force in the type I soleus and peak power in the VL type II fibers. These results provide evidence that an AA/CHO supplement might serve as a successful countermeasure to help preserve muscle function during periods of relative inactivity. isotonic contractile properties; peak force and power; calcium sensitivity; essential amino acids  相似文献   

19.
20.
The contractile properties of muscle are usually investigated by analysing the force signal recorded during electrically elicited contractions. The electrically stimulated muscle shows surface oscillations that can be detected by an accelerometer; the acceleration signal is termed the surface mechanomyogram (MMG). In the study described here we compared, in the human tibialis anterior muscle, changes in the MMG and force signal characteristics before, and immediately after fatigue, as well as during 6 min of recovery, when changes in the contractile properties of muscle occur. Fatigue was induced by sustained electrical stimulation. The final aim was to evaluate the reliability of the MMG as a tool to follow the changes in the mechanical properties of muscle caused by fatigue. Because of fatigue, the parameters of the force peak, the peak rate of force production and the peak of the acceleration of force production (d2F/dt2) decreased, while the contraction time and the half-relaxation time (1/2-RT) increased. The MMG peak-to-peak (p-p) also decreased. The attenuation rate of the force oscillation amplitude and MMG p-p at increasing stimulation frequency was greater after fatigue. With the exception of 1/2-RT, all of the force and MMG parameters were restored within 2 min of recovery. A high correlation was found between MMG and d2F/dt2 in un-fatigued muscle and during recovery. In conclusion, the MMG reflects specific aspects of muscle mechanics and can be used to follow the changes in the contractile properties of muscle caused by localised muscle fatigue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号