共查询到20条相似文献,搜索用时 0 毫秒
1.
Shikimate kinase (SK) and other enzymes in the shikimate pathway are potential targets for developing non-toxic antimicrobial agents, herbicides, and anti-parasite drugs, because the pathway is essential in the above species but is absent from mammals. The crystal structure of Mycobacterium tuberculosis SK (MtSK) in complex with MgADP has been determined at 1.8 A resolution, revealing critical information for the structure-based design of novel anti-M. tuberculosis agents. MtSK, with a five-stranded parallel beta-sheet flanked by eight alpha-helices, has three domains: the CORE domain, the shikimate-binding domain (SB), and the LID domain. The ADP molecule is bound with its adenine moiety sandwiched between the side-chains of Arg110 and Pro155, its beta-phosphate group in the P-loop, and the alpha and beta-phosphate groups hydrogen bonded to the guanidinium group of Arg117. Arg117 is located in the LID domain, is strictly conserved in SK sequences, is observed for the first time to interact with any bound nucleotide, and appears to be important in both substrate binding and catalysis. The crystal structure of MtSK (this work) and that of Erwinia chrysanthemi SK suggest a concerted conformational change of the LID and SB domains upon nucleotide binding. 相似文献
2.
【目的】应用原核表达体系对结核分枝杆菌PPE蛋白家族Rv1168c进行高效表达,进一步进行蛋白纯化和结构分析。【方法】以结核分枝杆菌H37Rv基因组为模板,扩增Rv1168c基因,构建pET32a-Rv1168c重组质粒;转化重组质粒到大肠杆菌DH5α并在BL21(DE3)诱导表达,通过十二烷基硫酸钠-聚丙烯酰胺电泳(SDS-PAGE)鉴定Rv1168c在大肠杆菌中的表达情况;Ni-NTAHis﹡Bind Resin纯化重组蛋白Rv1168c;SDS-PAGE和质谱分析测定相对分子量后,用圆二色光谱(CD)和同源模建方法分析和检测重组蛋白Rv1168c的二级和三级结构。【结果】成功克隆了971bp的目的基因Rv1168c,并获得了高纯度的重组蛋白Rv1168c。重组蛋白的分子量为51.5kDa(含载体蛋白)。25℃时重组蛋白Rv1168c的二级结构包括34.4%α螺旋,33.7%β转角,31.9%无规则卷曲,它的三维模型显示为(β/α)5结构。【结论】成功得到高纯度的重组目的Rv1168c蛋白,并初步进行了结构分析,为进一步对Rv1168c结构和功能研究奠定了基础。 相似文献
3.
Hartmann MD Bourenkov GP Oberschall A Strizhov N Bartunik HD 《Journal of molecular biology》2006,364(3):411-423
The structural mechanism of the catalytic functioning of shikimate kinase from Mycobacterium tuberculosis was investigated on the basis of a series of high-resolution crystal structures corresponding to individual steps in the enzymatic reaction. The catalytic turnover of shikimate and ATP into the products shikimate-3-phosphate and ADP, followed by release of ADP, was studied in the crystalline environment. Based on a comparison of the structural states before initiation of the reaction and immediately after the catalytic step, we derived a structural model of the transition state that suggests that phosphoryl transfer proceeds with inversion by an in-line associative mechanism. The random sequential binding of shikimate and nucleotides is associated with domain movements. We identified a synergic mechanism by which binding of the first substrate may enhance the affinity for the second substrate. 相似文献
4.
Filgueira de Azevedo W Canduri F Simões de Oliveira J Basso LA Palma MS Pereira JH Santos DS 《Biochemical and biophysical research communications》2002,295(1):142-148
Tuberculosis (TB) resurged in the late 1980s and now kills approximately 3 million people a year. The reemergence of tuberculosis as a public health threat has created a need to develop new anti-mycobacterial agents. The shikimate pathway is an attractive target for herbicides and anti-microbial agents development because it is essential in algae, higher plants, bacteria, and fungi, but absent from mammals. Homologs to enzymes in the shikimate pathway have been identified in the genome sequence of Mycobacterium tuberculosis. Among them, the shikimate kinase I encoding gene (aroK) was proposed to be present by sequence homology. Accordingly, to pave the way for structural and functional efforts towards anti-mycobacterial agents development, here we describe the molecular modeling of M. tuberculosis shikimate kinase that should provide a structural framework on which the design of specific inhibitors may be based. 相似文献
5.
Prithwiraj De Anita G. Amin Danara Flores Anne Simpson Karen Dobos Delphi Chatterjee 《The Journal of biological chemistry》2021,297(5)
In Mycobacterium tuberculosis (Mtb), surface-exposed Lipoarabinomannan (LAM) is a key determinant of immunogenicity, yet its intrinsic heterogeneity confounds typical structure–function analysis. Recently, LAM gained a strong foothold as a validated marker for active tuberculosis (TB) infection and has shown great potential in new diagnostic efforts. However, no efforts have yet been made to model or evaluate the impact of mixed polyclonal Mtb infections (infection with multiple strains) on TB diagnostic procedures other than antibiotic susceptibility testing. Here, we selected three TB clinical isolates (HN878, EAI, and IO) and purified LAM from these strains to present an integrated analytical approach of one-dimensional and two-dimensional Nuclear Magnetic Resonance (NMR) spectroscopy, as well as enzymatic digestion and site-specific mass spectrometry (MS) to probe LAM structure and behavior at multiple levels. Overall, we found that the glycan was similar in all LAM preparations, albeit with subtle variations. Succinates, lactates, hydroxybutyrate, acetate, and the hallmark of Mtb LAM-methylthioxylose (MTX), adorned the nonreducing terminal arabinan of these LAM species. Newly identified acetoxy/hydroxybutyrate was present only in LAM from EAI and IO Mtb strains. Notably, detailed LC/MS-MS unambiguously showed that all acyl modifications and the lactyl ether in LAM are at the 3-OH position of the 2-linked arabinofuranose adjacent to the terminal β-arabinofuranose. Finally, after sequential enzymatic deglycosylation of LAM, the residual glycan that has ∼50% of α−arabinofuranose -(1→5) linked did not bind to monoclonal antibody CS35. These data clearly indicate the importance of the arabinan termini arrangements for the antigenicity of LAM. 相似文献
6.
The activity of shikimate kinase (EC 2.7.1.71) from spinach ( Spinacia oleracea L.) chloroplasts was increased up to 8.5-fold by addition of thioredoxin and dithio-threitol. 相似文献
7.
8.
Marcio Roberto Silva Adalgiza da Silva Rocha Ronaldo Rodrigues da Costa Andrea Padilha de Alencar Vania Maria de Oliveira Ant?nio Augusto Fonseca Júnior Mariana Lázaro Sales Marina de Azevedo Issa Paulo Martins Soares Filho Omara Tereza Vianello Pereira Eduardo Calazans dos Santos Rejane Silva Mendes ?ngela Maria de Jesus Ferreira Pedro Moacyr Pinto Coelho Mota Philip Noel Suffys Mark Drew Crosland Guimar?es 《Memórias do Instituto Oswaldo Cruz》2013,108(3):321-327
In this cross-sectional study, mycobacteria specimens from 189 tuberculosis (TB) patients living in an urban area in Brazil were characterised from 2008-2010 using phenotypic and molecular speciation methods (pncA gene and oxyR pseudogene analysis). Of these samples, 174 isolates simultaneously grew on Löwenstein-Jensen (LJ) and Stonebrink (SB)-containing media and presented phenotypic and molecular profiles of Mycobacterium tuberculosis, whereas 12 had molecular profiles of M. tuberculosis based on the DNA analysis of formalin-fixed paraffin wax-embedded tissue samples (paraffin blocks). One patient produced two sputum isolates, the first of which simultaneously grew on LJ and SB media and presented phenotypic and molecular profiles of M. tuberculosis, and the second of which only grew on SB media and presented phenotypic profiles of Mycobacterium bovis. One patient provided a bronchial lavage isolate, which simultaneously grew on LJ and SB media and presented phenotypic and molecular profiles of M. tuberculosis, but had molecular profiles of M. bovis from paraffin block DNA analysis, and one sample had molecular profiles of M. tuberculosis and M. bovis identified from two distinct paraffin blocks. Moreover, we found a low prevalence (1.6%) of M. bovis among these isolates, which suggests that local health service procedures likely underestimate its real frequency and that it deserves more attention from public health officials. 相似文献
9.
Pereira JH Canduri F de Oliveira JS da Silveira NJ Basso LA Palma MS de Azevedo WF Santos DS 《Biochemical and biophysical research communications》2003,312(3):608-614
The shikimate pathway is an attractive target for herbicides and antimicrobial agent development because it is essential in algae, higher plants, bacteria, and fungi, but absent from mammals. Homologues to enzymes in the shikimate pathway have been identified in the genome sequence of Mycobacterium tuberculosis. Among them, the EPSP synthase was proposed to be present by sequence homology. Accordingly, in order to pave the way for structural and functional efforts towards anti-mycobacterial agent development, here we describe the molecular modeling of 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase isolated from M. tuberculosis that should provide a structural framework on which the design of specific inhibitors may be based on. Significant differences in the relative orientation of the domains in the two models result in "open" and "closed" conformations. The possible relevance of this structural transition in the ligand biding is discussed. 相似文献
10.
Caceres RA Macedo Timmers LF Vivan AL Schneider CZ Basso LA De Azevedo WF Santos DS 《Journal of molecular modeling》2008,14(5):427-434
Bacterial cytidylate kinase or cytidine monophosphate kinase (CMP kinase) catalyses the phosphoryl transfer from ATP to CMP
and dCMP, resulting in the formation nucleoside diphosphates. In eukaryotes, CMP/UMP kinase catalyses the conversion of UMP
and CMP to, respectively, UDP and CDP with high efficiency. This work describes for the first time a model of bacterial cytidylate
kinase or cytidine monophosphate kinase (CMP kinase) from mycobacterium tuberculosis (MtCMPK). We modeled MtPCMPK in apo form
and in complex with cytidine 5′-monophosphate (CMP) to try to determine the structural basis for specificity. Comparative
analysis of the model of MtCMPK allowed identification of structural features responsible for ligand affinities. Analysis
of the molecular dynamics simulations of these two systems indicates the structural features responsible for the stability
of the structure, and may help in the identification of new inhibitors for this enzyme. 相似文献
11.
Vivan AL Caceres RA Abrego JR Borges JC Ruggiero Neto J Ramos CH de Azevedo WF Basso LA Santos DS 《Proteins》2008,72(4):1352-1362
Tuberculosis (TB) is one of the most common infectious diseases known to man and responsible for millions of human deaths in the world. The increasing incidence of TB in developing countries, the proliferation of multidrug resistant strains, and the absence of resources for treatment have highlighted the need of developing new drugs against TB. The shikimate pathway leads to the biosynthesis of chorismate, a precursor of aromatic amino acids. This pathway is absent from mammals and shown to be essential for the survival of Mycobacterium tuberculosis, the causative agent of TB. Accordingly, enzymes of aromatic amino acid biosynthesis pathway represent promising targets for structure-based drug design. The first reaction in phenylalanine biosynthesis involves the conversion of chorismate to prephenate, catalyzed by chorismate mutase. The second reaction is catalyzed by prephenate dehydratase (PDT) and involves decarboxylation and dehydratation of prephenate to form phenylpyruvate, the precursor of phenylalanine. Here, we describe utilization of different techniques to infer the structure of M. tuberculosis PDT (MtbPDT) in solution. Small angle X-ray scattering and ultracentrifugation analysis showed that the protein oligomeric state is a tetramer and MtbPDT is a flat disk protein. Bioinformatics tools were used to infer the structure of MtbPDT. A molecular model for MtbPDT is presented and molecular dynamics simulations indicate that MtbPDT is stable. Experimental and molecular modeling results were in agreement and provide evidence for a tetrameric state of MtbPDT in solution. 相似文献
12.
Polymorphisms of 20 regulatory proteins between Mycobacterium tuberculosis and Mycobacterium bovis 下载免费PDF全文
María M. Bigi Federico Carlos Blanco Flabio R. Araújo Tyler C. Thacker Martín J. Zumárraga Angel A. Cataldi Marcelo A. Soria Fabiana Bigi 《Microbiology and immunology》2016,60(8):552-560
Mycobacterium tuberculosis and Mycobacterium bovis are responsible for tuberculosis in humans and animals, respectively. Both species are closely related and belong to the Mycobacterium tuberculosis complex (MTC). M. tuberculosis is the most ancient species from which M. bovis and other members of the MTC evolved. The genome of M. bovis is over >99.95% identical to that of M. tuberculosis but with seven deletions ranging in size from 1 to 12.7 kb. In addition, 1200 single nucleotide mutations in coding regions distinguish M. bovis from M. tuberculosis. In the present study, we assessed 75 M. tuberculosis genomes and 23 M. bovis genomes to identify non‐synonymous mutations in 202 coding sequences of regulatory genes between both species. We identified species‐specific variants in 20 regulatory proteins and confirmed differential expression of hypoxia‐related genes between M. bovis and M. tuberculosis. 相似文献
13.
Fonseca IO Magalhães ML Oliveira JS Silva RG Mendes MA Palma MS Santos DS Basso LA 《Protein expression and purification》2006,46(2):429-437
Tuberculosis (TB) poses a major worldwide public health problem. The increasing prevalence of TB, the emergence of multi-drug-resistant strains of Mycobacterium tuberculosis, the causative agent of TB, and the devastating effect of co-infection with HIV have highlighted the urgent need for the development of new antimycobacterial agents. Analysis of the complete genome sequence of M. tuberculosis shows the presence of genes involved in the aromatic amino acid biosynthetic pathway. Experimental evidence that this pathway is essential for M. tuberculosis has been reported. The genes and pathways that are essential for the growth of the microorganisms make them attractive drug targets since inhibiting their function may kill the bacilli. We have previously cloned and expressed in the soluble form the fourth shikimate pathway enzyme of the M. tuberculosis, the aroE-encoded shikimate dehydrogenase (mtSD). Here, we present the purification of active recombinant aroE-encoded M. tuberculosis shikimate dehydrogenase (mtSD) to homogeneity, N-terminal sequencing, mass spectrometry, assessment of the oligomeric state by gel filtration chromatography, determination of apparent steady-state kinetic parameters for both the forward and reverse directions, apparent equilibrium constant, thermal stability, and energy of activation for the enzyme-catalyzed chemical reaction. These results pave the way for structural and kinetic studies, which should aid in the rational design of mtSD inhibitors to be tested as antimycobacterial agents. 相似文献
14.
Fonseca IO Silva RG Fernandes CL de Souza ON Basso LA Santos DS 《Archives of biochemistry and biophysics》2007,457(2):123-133
Mycobacterium tuberculosis shikimate dehydrogenase (MtbSD) catalyzes the fourth reaction in the shikimate pathway, the NADPH-dependent reduction of 3-dehydroshikimate. To gather information on the kinetic mechanism, initial velocity patterns, product inhibition, and primary deuterium kinetic isotope effect studies were performed and the results suggested a steady-state ordered bi-bi kinetic mechanism. The magnitudes of both primary and solvent kinetic isotope effects indicated that the hydride transferred from NADPH and protons transferred from the solvent in the catalytic cycle are not significantly rate limiting in the overall reaction. Proton inventory analysis indicates that one proton gives rise to solvent isotope effects. Multiple isotope effect studies indicate that both hydride and proton transfers are concerted. The pH profiles revealed that acid/base chemistry takes place in catalysis and substrate binding. The MtbSD 3D model was obtained in silico by homology modeling. Kinetic and chemical mechanisms for MtbSD are proposed on the basis of experimental data. 相似文献
15.
16.
17.
Jaewook Lee Si‐Hyun Kim Dong‐Sic Choi Jong Seok Lee Dae‐Kyum Kim Gyeongyun Go Seon‐Min Park Si Hyun Kim Jeong Hwan Shin Yong Song Gho 《Proteomics》2015,15(19):3331-3337
The release of extracellular vesicles, also known as outer membrane vesicles, membrane vesicles, exosomes, and microvesicles, is an evolutionarily conserved phenomenon from bacteria to eukaryotes. It has been reported that Mycobacterium tuberculosis releases extracellular vesicles harboring immunologically active molecules, and these extracellular vesicles have been suggested to be applicable in vaccine development and biomarker discovery. However, the comprehensive proteomic analysis has not been performed for M. tuberculosis extracellular vesicles. In this study, we identified a total of 287 vesicular proteins by four LC‐MS/MS analyses with high confidence. In addition, we identified several vesicular proteins associated with the virulence of M. tuberculosis. This comprehensive proteome profile will help elucidate the pathogenic mechanism of M. tuberculosis. The data have been deposited to the ProteomeXchange with identifier PXD001160 ( http://proteomecentral.proteomexchange.org/dataset/PXD001160 ). 相似文献
18.
Mycobacterium tuberculosis is the causative agent of human tuberculosis, one of the most prevalent infectious diseases in the world. Its genome hosts the glbN and glbO genes coding for two proteins, truncated hemoglobin N (trHbN) and truncated hemoglobin O (trHbO), that belong to different groups (I and II, respectively) of the recently discovered trHb family of hemeproteins. The different expression pattern and kinetics rates constants for ligand association and NO oxidation rate suggest different functions for these proteins. Previous experimental and theoretical studies showed that, in trHbs, ligand migration along the internal tunnel cavity system is a key issue in determining the ligand-binding characteristics. The X-ray structure of trHbO has been solved and shows several internal cavities and secondary-docking sites. In this work, we present an extensive investigation of the tunnel/cavity system ofM. tuberculosis trHbO by means of computer-simulation techniques. We have computed the free-energy profiles for ligand migration along three found tunnels in the oxy and deoxy w.t. and mutant trHbO proteins. Our results show that multiple-ligand migration paths are possible and that several conserved residues such as TrpG8 play a key role in the ligand-migration regulation. 相似文献
19.
Revised structure of a trehalose-containing immunoreactive glycolipid of Mycobacterium tuberculosis 总被引:7,自引:0,他引:7
Anne Lemassu Marie-Antoinette Lanéelle Mamadou Daffé 《FEMS microbiology letters》1991,78(2-3):171-176
Nuclear magnetic resonance spectroscopy, fast-atom bombardment mass spectrometry as well as various chemical degradations and chromatographic techniques were used to re-examine the structure of a highly immunoreactive glycolipid previously described in Mycobacterium tuberculosis (strain Canetti) as a 2,3-diacyl trehalose 2'-sulfate (labelled SL-IV). Ion exchange chromatography allowed the recognition of a neutral and an acidic glycolipid, indistinguishable on conventional silica gel. The neutral glycolipid was shown to be serologically identical to SL-IV and its structure was established as 2,3-diacyl trehalose. It corresponded to the non-chemically defined highly observed immunoreactive lipid previously recognized by others in M. tuberculosis (H37Rv). 相似文献
20.
John Mosior Ronnie Bourland Shivatheja Soma Carl Nathan James Sacchettini 《Protein science : a publication of the Protein Society》2020,29(3):744-757
The amidinourea 8918 was recently reported to inhibit the type II phosphopantetheinyl transferase (PPTase) of Mycobacterium tuberculosis (Mtb), PptT, a potential drug‐target that activates synthases and synthetases involved in cell wall biosynthesis and secondary metabolism. Surprisingly, high‐level resistance to 8918 occurred in Mtb harboring mutations within the gene adjacent to pptT, rv2795c, highlighting the role of the encoded protein as a potentiator of the bactericidal action of the amidinourea. Those studies revealed that Rv2795c (PptH) is a phosphopantetheinyl (PpT) hydrolase, possessing activity antagonistic with respect to PptT. We have solved the crystal structure of Mtb's phosphopantetheinyl hydrolase, making it the first phosphopantetheinyl (carrier protein) hydrolase structurally characterized. The 2.5 Å structure revealed the hydrolases' four‐layer (α/β/β/α) sandwich fold featuring a Mn‐Fe binuclear center within the active site. A structural similarity search confirmed that PptH most closely resembles previously characterized metallophosphoesterases (MPEs), particularly within the vicinity of the active site, suggesting that it may utilize a similar catalytic mechanism. In addition, analysis of the structure has allowed for the rationalization of the previously reported PptH mutations associated with 8918‐resistance. Notably, differences in the sequences and predicted structural characteristics of the PpT hydrolases PptH of Mtb and E. coli's acyl carrier protein hydrolase (AcpH) indicate that the two enzymes evolved convergently and therefore are representative of two distinct PpT hydrolase families. 相似文献