首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Endrizzi JA  Kim H  Anderson PM  Baldwin EP 《Biochemistry》2005,44(41):13491-13499
Cytidine triphosphate synthetases (CTPSs) synthesize CTP and regulate its intracellular concentration through direct interactions with the four ribonucleotide triphosphates. In particular, CTP product is a feedback inhibitor that competes with UTP substrate. Selected CTPS mutations that impart resistance to pyrimidine antimetabolite inhibitors also relieve CTP inhibition and cause a dramatic increase in intracellular CTP concentration, indicating that the drugs act by binding to the CTP inhibitory site. Resistance mutations map to a pocket that, although adjacent, does not coincide with the expected UTP binding site in apo Escherichia coli CTPS [EcCTPS; Endrizzi, J. A., et al. (2004) Biochemistry 43, 6447-6463], suggesting allosteric rather than competitive inhibition. Here, bound CTP and ADP were visualized in catalytically active EcCTPS crystals soaked in either ATP and UTP substrates or ADP and CTP products. The CTP cytosine ring resides in the pocket predicted by the resistance mutations, while the triphosphate moiety overlaps the putative UTP triphosphate binding site, explaining how CTP competes with UTP while CTP resistance mutations are acquired without loss of catalytic efficiency. Extensive complementarity and interaction networks at the interfacial binding sites provide the high specificity for pyrimidine triphosphates and mediate nucleotide-dependent tetramer formation. Overall, these results depict a novel product inhibition strategy in which shared substrate and product moieties bind to a single subsite while specificity is conferred by separate subsites. This arrangement allows for independent adaptation of UTP and CTP binding affinities while efficiently utilizing the enzyme surface.  相似文献   

2.
While enzyme activity is often regulated by a combination of substrate/effector availability and quaternary structure, many cytosolic enzymes may be further regulated through oligomerization into filaments. Cytidine-5′-triphosphate (CTP) synthase (CTPS) forms such filaments—a process that is promoted by the product CTP. The CTP analog and active chemotherapeutic metabolite gemcitabine-5′-triphosphate (dF-dCTP) is a potent inhibitor of CTPS; however, its effect on the enzyme's ability to form filaments is unknown. Alongside electron microscopy studies, dynamic light scattering showed that dF-dCTP induces Escherichia coli CTPS (EcCTPS) to form filaments in solution with lengths ≥ 30 nm in the presence of CTP or dF-dCTP. The substrate UTP blocks formation of filaments and effects their disassembly. EcCTPS variants were constructed to investigate the role of CTP-binding determinants in CTP- and dF-dCTP-dependent filament formation. Substitution of Glu 149 (i.e., E149D), which interacts with the ribose of CTP, caused reduced affinity for both CTP and dF-dCTP, and obviated filament formation. Phe 227 appears to interact with CTP through an edge-on interaction with the cytosine ring, yet the F227A and F227L variants bound CTP and dF-dCTP. F227A EcCTPS did not form filaments, while F227L EcCTPS formed shorter filaments in the presence of CTP or dF-dCTP. Hence, Phe 227 plays a role in filament formation, although replacement by a bulky hydrophobic amino acid is sufficient for limited filament formation. That dF-dCTP can induce filament formation highlights the fact that nucleotide analogs employed as chemotherapeutic agents may affect the filamentous states of enzymes and potentially alter their regulation in vivo.  相似文献   

3.
Cytidine 5'-triphosphate synthase (CTPS) catalyzes the ATP-dependent formation of CTP from UTP using either NH3 or L-glutamine as the source of nitrogen. To identify the location of the ATP-binding site within the primary structure of E. coli CTPS, we used the affinity label 2',3'-dialdehyde adenosine 5'-triphosphate (oATP). oATP irreversibly inactivated CTPS in a first-order, time-dependent manner while ATP protected the enzyme from inactivation. In the presence of 10 mM UTP, the values of k(inact) and K(I) were 0.054 +/- 0.001 min(-1) and 3.36 +/- 0.02 mM, respectively. CTPS was labeled using (2,8-3H)oATP and subsequently subjected to trypsin-catalyzed proteolysis. The tryptic peptides were separated using reversed-phase HPLC, and two peptides were identified using N-terminal sequencing (S(492)GDDQLVEIIEVPNH(506) and Y(298)IELPDAY(K(306)) in a 5:1 ratio). The latter suggested that Lys 306 had been modified by oATP. Replacement of Lys 306 by alanine reduced the rate of oATP-dependent inactivation (k(inact) = 0.0058 +/- 0.0005 min(-1), K(I) = 3.7 +/- 1.3 mM) and reduced the apparent affinity of CTPS for both ATP and UTP by approximately 2-fold. The efficiency of K306A-catalyzed glutamine-dependent CTP formation was also reduced 2-fold while near wild-type activity was observed when NH3 was the substrate. These findings suggest that Lys 306 is not essential for ATP binding, but does play a role in bringing about the conformational changes that mediate interactions between the ATP and UTP sites, and between the ATP-binding site and the glutamine amide transfer domain. Replacement of the nearby, fully conserved Lys 297 by alanine did not affect NH3-dependent CTP formation, relative to wild-type CTPS, but reduced k(cat) for the glutaminase activity 78-fold. Our findings suggest that the conformational change associated with binding ATP may be transmitted through the L10-alpha11 structural unit (residues 297-312) and thereby mediate effects on the glutaminase activity of CTPS.  相似文献   

4.
Cytidine 5'-triphosphate synthase catalyses the ATP-dependent formation of CTP from UTP using either ammonia or l-glutamine as the source of nitrogen. When glutamine is the substrate, GTP is required as an allosteric effector to promote catalysis. Limited trypsin-catalysed proteolysis, Edman degradation, and site-directed mutagenesis were used to identify peptide bonds C-terminal to three basic residues (Lys187, Arg429, and Lys432) of Escherichia coli CTP synthase that were highly susceptible to proteolysis. Lys187 is located at the CTP/UTP-binding site within the synthase domain, and cleavage at this site destroyed all synthase activity. Nucleotides protected the enzyme against proteolysis at Lys187 (CTP > ATP > UTP > GTP). The K187A mutant was resistant to proteolysis at this site, could not catalyse CTP formation, and exhibited low glutaminase activity that was enhanced slightly by GTP. K187A was able to form tetramers in the presence of UTP and ATP. Arg429 and Lys432 appear to reside in an exposed loop in the glutamine amide transfer (GAT) domain. Trypsin-catalyzed proteolysis occurred at Arg429 and Lys432 with a ratio of 2.6 : 1, and nucleotides did not protect these sites from cleavage. The R429A and R429A/K432A mutants exhibited reduced rates of trypsin-catalyzed proteolysis in the GAT domain and wild-type ability to catalyse NH3-dependent CTP formation. For these mutants, the values of kcat/Km and kcat for glutamine-dependent CTP formation were reduced approximately 20-fold and approximately 10-fold, respectively, relative to wild-type enzyme; however, the value of Km for glutamine was not significantly altered. Activation of the glutaminase activity of R429A by GTP was reduced 6-fold at saturating concentrations of GTP and the GTP binding affinity was reduced 10-fold. This suggests that Arg429 plays a role in both GTP-dependent activation and GTP binding.  相似文献   

5.
CTP synthetase (EC 6.3.4.2, UTP:ammonia ligase (ADP-forming)) is an essential enzyme in all organisms; it generates the CTP required for the synthesis of nucleic acids and membrane phospholipids. In this work we showed that the human CTP synthetase genes, CTPS1 and CTPS2, were functional in Saccharomyces cerevisiae and complemented the lethal phenotype of the ura7Delta ura8Delta mutant lacking CTP synthetase activity. The expression of the CTPS1- and CTPS2-encoded human CTP synthetase enzymes in the ura7Delta ura8Delta mutant was shown by immunoblot analysis of CTP synthetase proteins, the measurement of CTP synthetase activity, and the synthesis of CTP in vivo. Phosphoamino acid and phosphopeptide mapping analyses of human CTP synthetase 1 isolated from (32)P(i)-labeled cells revealed that the enzyme was phosphorylated on multiple serine residues in vivo. Activation of protein kinase A activity in yeast resulted in transient increases (2-fold) in the phosphorylation of human CTP synthetase 1 and the cellular level of CTP. Human CTP synthetase 1 was also phosphorylated by mammalian protein kinase A in vitro. Using human CTP synthetase 1 purified from Escherichia coli as a substrate, protein kinase A activity was dose- and time-dependent, and dependent on the concentrations of CTP synthetase 1 and ATP. These studies showed that S. cerevisiae was useful for the analysis of human CTP synthetase phosphorylation.  相似文献   

6.
The URA7-encoded CTP synthetase [EC 6.3.4.2, UTP:ammonia ligase (ADP-forming)] in the yeast Saccharomyces cerevisiae is phosphorylated on a serine residue and stimulated by cAMP-dependent protein kinase (protein kinase A) in vitro. In vivo, the phosphorylation of CTP synthetase is mediated by the RAS/cAMP pathway. In this work, we examined the hypothesis that amino acid residue Ser424 contained in a protein kinase A sequence motif in the URA7-encoded CTP synthetase is the target site for protein kinase A. A CTP synthetase synthetic peptide (SLGRKDSHSA) containing the protein kinase A motif was a substrate (Km = 30 microM) for protein kinase A. This peptide also inhibited (IC50 = 45 microM) the phosphorylation of purified wild-type CTP synthetase by protein kinase A. CTP synthetase with a Ser424 --> Ala (S424A) mutation was constructed by site-directed mutagenesis. The mutated enzyme was not phosphorylated in response to the activation of protein kinase A activity in vivo. Purified S424A mutant CTP synthetase was not phosphorylated and stimulated by protein kinase A. The S424A mutant CTP synthetase had reduced Vmax and elevated Km values for ATP and UTP when compared with the protein kinase A-phosphorylated wild-type enzyme. The specificity constants for ATP and UTP for the S424A mutant CTP synthetase were 4.2- and 2.9-fold lower, respectively, when compared with that of the phosphorylated enzyme. In addition, the S424A mutant enzyme was 2.7-fold more sensitive to CTP product inhibition when compared with the phosphorylated wild-type enzyme. These data indicated that the protein kinase A target site in CTP synthetase was Ser424 and that the phosphorylation of this site played a role in the regulation of CTP synthetase activity.  相似文献   

7.
Cytidine triphosphate synthase 1 (CTPS1) is an enzyme expressed in activated lymphocytes that catalyzes the conversion of uridine triphosphate (UTP) to cytidine triphosphate (CTP) with ATP-dependent amination, using either L-glutamine or ammonia as the nitrogen source. Since CTP plays an important role in DNA/RNA synthesis, phospholipid synthesis, and protein sialyation, CTPS1-inhibition is expected to control lymphocyte proliferation and size expansion in inflammatory diseases. In contrast, CTPS2, an isozyme of CTPS1 possessing 74% amino acid sequence homology, is expressed in normal lymphocytes. Thus, CTPS1-selective inhibition is important to avoid undesirable side effects. Here, we report the discovery of CTpep-3: Ac-FRLGLLKAFRRLF-OH from random peptide libraries displayed on T7 phage, which exhibited CTPS1-selective binding with a KD value of 210 nM in SPR analysis and CTPS1-selective inhibition with an IC50 value of 110 nM in the enzyme assay. Furthermore, two fundamentally different approaches, enzyme inhibition assay and HDX-MS, provided the same conclusion that CTpep-3 acts by binding to the amidoligase (ALase) domain on CTPS1. To our knowledge, CTpep-3 is the first CTPS1-selective inhibitor.  相似文献   

8.
Cytidine triphosphate synthetases (CTPSs) produce CTP from UTP and glutamine, and regulate intracellular CTP levels through interactions with the four ribonucleotide triphosphates. We solved the 2.3-A resolution crystal structure of Escherichia coli CTPS using Hg-MAD phasing. The structure reveals a nearly symmetric 222 tetramer, in which each bifunctional monomer contains a dethiobiotin synthetase-like amidoligase N-terminal domain and a Type 1 glutamine amidotransferase C-terminal domain. For each amidoligase active site, essential ATP- and UTP-binding surfaces are contributed by three monomers, suggesting that activity requires tetramer formation, and that a nucleotide-dependent dimer-tetramer equilibrium contributes to the observed positive cooperativity. A gated channel that spans 25 A between the glutamine hydrolysis and amidoligase active sites provides a path for ammonia diffusion. The channel is accessible to solvent at the base of a cleft adjoining the glutamine hydrolysis active site, providing an entry point for exogenous ammonia. Guanine nucleotide binding sites of structurally related GTPases superimpose on this cleft, providing insights into allosteric regulation by GTP. Mutations that confer nucleoside drug resistance and release CTP inhibition map to a pocket that neighbors the UTP-binding site and can accommodate a pyrimidine ring. Its location suggests that competitive feedback inhibition is affected via a distinct product/drug binding site that overlaps the substrate triphosphate binding site. Overall, the E. coli structure provides a framework for homology modeling of other CTPSs and structure-based design of anti-CTPS therapeutics.  相似文献   

9.
CTP synthetase is a cytosolic-associated glutamine amidotransferase enzyme that catalyzes the ATP-dependent transfer of the amide nitrogen from glutamine to the C-4 position of UTP to form CTP. In the yeast Saccharomyces cerevisiae, the reaction product CTP is an essential precursor of all membrane phospholipids that are synthesized via the Kennedy (CDP-choline and CDP-ethanolamine branches) and CDP-diacylglycerol pathways. The URA7 and URA8 genes encode CTP synthetase in S. cerevisiae, and the URA7 gene is responsible for the majority of CTP synthesized in vivo. The CTP synthetase enzymes are allosterically regulated by CTP product inhibition. Mutations that alleviate this regulation result in an elevated cellular level of CTP and an increase in phospholipid synthesis via the Kennedy pathway. The URA7-encoded enzyme is phosphorylated by protein kinases A and C, and these phosphorylations stimulate CTP synthetase activity and increase cellular CTP levels and the utilization of the Kennedy pathway. The CTPS1 and CTPS2 genes that encode human CTP synthetase enzymes are functionally expressed in S. cerevisiae, and rescue the lethal phenotype of the ura7Deltaura8Delta double mutant that lacks CTP synthetase activity. The expression in yeast has revealed that the human CTPS1-encoded enzyme is also phosphorylated and regulated by protein kinases A and C.  相似文献   

10.
Early studies showed that in addition to GTP, the pyrimidine nucleotides UTP and CTP support activation of the adenylyl cyclase (AC)-stimulating G(s) protein. The aim of this study was to elucidate the mechanism by which UTP and CTP support G(s) activation. As models, we used S49 wild-type lymphoma cells, representing a physiologically relevant system in which the beta(2)-adrenoreceptor (beta(2)AR) couples to G(s), and Sf9 insect cell membranes expressing beta(2)AR-Galpha(s) fusion proteins. Fusion proteins provide a higher sensitivity for the analysis of beta(2)AR-G(s) coupling than native systems. Nucleoside 5'-triphosphates (NTPs) supported agonist-stimulated AC activity in the two systems and basal AC activity in membranes from cholera toxin-treated S49 cells in the order of efficacy GTP > or = UTP > CTP > ATP (ineffective). NTPs disrupted high affinity agonist binding in beta(2)AR-Galpha(s) in the order of efficacy GTP > UTP > CTP > ATP (ineffective). In contrast, the order of efficacy of NTPs as substrates for nucleoside diphosphokinase, catalyzing the formation of GTP from GDP and NTP was ATP > or = UTP > or = CTP > or = GTP. NTPs inhibited beta(2)AR-Galpha(s)-catalyzed [gamma-(32)P]GTP hydrolysis in the order of potency GTP > UTP > CTP. Molecular dynamics simulations revealed that UTP is accommodated more easily within the binding pocket of Galpha(s) than CTP. Collectively, our data indicate that GTP, UTP, and CTP interact differentially with G(s) proteins and that transphosphorylation of GDP to GTP is not involved in this G protein activation. In certain cell systems, intracellular UTP and CTP concentrations reach approximately 10 nmol/mg of protein and are higher than intracellular GTP concentrations, indicating that G protein activation by UTP and CTP can occur physiologically. G protein activation by UTP and CTP could be of particular importance in pathological conditions such as cholera and Lesch-Nyhan syndrome.  相似文献   

11.
Cytidine triphosphate synthetase (CTPS) is the rate-limiting enzyme in de novo CTP synthesis and is required for the formation of RNA, DNA, and phospholipids. This study determined the kinetic properties of the individual human CTPS isozymes (hCTPS1 and hCTPS2) and regulation through substrate concentration, oligomerization, and phosphorylation. Kinetic analysis demonstrated that both hCTPS1 and hCTPS2 were maximally active at physiological concentrations of ATP, GTP, and glutamine, whereas the Km and IC50 values for the substrate UTP and the product CTP, respectively, were close to their physiological concentrations, indicating that the intracellular concentrations of UTP and CTP may precisely regulate hCTPS activity. Low serum treatment increased hCTPS2 phosphorylation, and five probable phosphorylation sites were identified in the hCTPS2 C-terminal domain. Metabolic labeling of hCTPS2 with [32P]H3PO4 demonstrated that Ser568 and Ser571 were two major phosphorylation sites, and additional studies demonstrated that Ser568 was phosphorylated by casein kinase 1 both in vitro and in vivo. Interestingly, mutation of Ser568 (S568A) but not Ser571 significantly increased hCTPS2 activity, demonstrating that Ser568 is a major inhibitory phosphorylation site. The S568A mutation had a greater effect on the glutamine than ammonia-dependent activity, indicating that phosphorylation of this site may influence the glutaminase domain of hCTPS2. Deletion of the C-terminal regulatory domain of hCTPS1 also greatly increased the Vmax of this enzyme. In summary, this is the first study to characterize the kinetic properties of hCTPS1 and hCTPS2 and to identify Ser568 as a major site of CTPS2 regulation by phosphorylation.  相似文献   

12.
Escherichia coli aspartate carbamoyltransferase controls pyrimidine biosynthesis by feedback inhibition involving both CTP and UTP, although UTP only inhibits the enzyme in the presence of CTP (Wild, J. R., Loughrey-Chen, S. J., and Corder, T. S. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 46-50). The mechanism by which the enzyme can discriminate between these two pyrimidines is unknown, as well as where UTP binds and its mode of action. A mutant version of the enzyme with a single amino acid substitution in the regulatory site (Asp-19----Ala) causes loss of the synergistic inhibition of UTP in the presence of CTP, and furthermore, this enzyme is inhibited by UTP alone. Analysis of CTP binding to the mutant enzyme reveals that UTP can bind to the mutant enzyme in the absence of CTP but not in its presence. This is completely opposite to the wild-type enzyme in which case UTP only exhibits significant binding in the presence of CTP. Further analysis of the binding data for the wild-type enzyme reveals that, in the presence of UTP, CTP only binds to three sites, although CTP binds to six sites, three with high affinity and three with low affinity in the absence of UTP. Parallel UTP binding experiments in the presence of CTP suggest that UTP binds to the three weak CTP sites. The Asp-19----Ala substitution prevents UTP binding in the presence of CTP and allows UTP to bind and inhibit the enzyme in the absence of CTP. Since the x-ray data indicate no specific interactions between the amino group of cytosine and amino acid side chains in the regulatory binding site, the discrimination between UTP and CTP by the wild-type enzyme must be due to subtle differences in the binding sites rather than direct side chain contacts.  相似文献   

13.
The Saccharomyces cerevisiae URA7-encoded CTP synthetase is phosphorylated and stimulated by protein kinase C. We examined the hypothesis that Ser36, Ser330, Ser354, and Ser454, contained in a protein kinase C sequence motif in CTP synthetase, were target sites for the kinase. Synthetic peptides containing a phosphorylation motif at these serine residues served as substrates for protein kinase C in vitro. Ser --> Ala (S36A, S330A, S354A, and S454A) mutations in CTP synthetase were constructed by site-directed mutagenesis and expressed normally in a ura7 ura8 double mutant that lacks CTP synthetase activity. The CTP synthetase activity in extracts from cells bearing the S36A, S354A, and S454A mutant enzymes was reduced when compared with cells bearing the wild type enzyme. Kinetic analysis of purified mutant enzymes showed that the S36A and S354A mutations caused a decrease in the Vmax of the reaction. This regulation could be attributed in part by the effects phosphorylation has on the nucleotide-dependent oligomerization of CTP synthetase. In contrast, CTP synthetase activity in cells bearing the S330A mutant enzyme was elevated, and kinetic analysis of purified enzyme showed that the S330A mutation caused an elevation in the Vmax of the reaction. In vitro data indicated that phosphorylation of CTP synthetase at Ser330 affected the phosphorylation of the enzyme at another site. The phosphorylation of CTP synthetase at Ser36, Ser330, Ser354, and Ser454 residues was physiologically relevant. Cells bearing the S36A, S354A, and S454A mutations had reduced CTP levels, whereas cells with the S330A mutation had elevated CTP levels. The alterations in CTP levels correlated with the regulatory effects CTP has on the pathways responsible for the synthesis of the membrane phospholipid phosphatidylcholine.  相似文献   

14.
Peripherin-2 and Rom-1 are homologous tetraspanning membrane proteins that assemble into noncovalent tetramers and higher order disulfide-linked oligomers implicated in photoreceptor disc morphogenesis. Individuals who coinherit a L185P peripherin-2 mutation and a null or G113E rom-1 mutation are afflicted with retinitis pigmentosa, whereas individuals who inherit only one defective gene are normal. We examined the expression, subunit assembly, and disulfide-mediated oligomerization of L185P and L185A peripherin-2 and L188P Rom-1 by velocity sedimentation, co-immunoprecipitation, and cross-linking. These mutants formed noncovalent dimers under disulfide-reducing conditions but failed to assemble into core tetramers. Under nonreducing conditions, L185P dimers formed disulfide-linked tetramers but not higher order oligomers. L185P coassembled with wild-type peripherin-2 and Rom-1 to form tetramers and higher order disulfide-linked oligomers characteristic of the wild-type proteins. The G113E Rom-1 mutant expressed 20-fold lower than wild-type Rom-1, indicating that it behaves mechanistically as a null allele. We conclude that Leu(185) of peripherin-2 (Leu(188) of Rom-1) is critical for tetramer but not dimer formation and that the core tetramer has 2-fold symmetry. Peripherin-2-containing tetramers are required for higher order disulfide-linked oligomer formation. The level of these oligomers is critical for stable photoreceptor disc formation and the digenic retinitis pigmentosa disease phenotype.  相似文献   

15.
Y Zhang  E R Kantrowitz 《Biochemistry》1989,28(18):7313-7318
Lysine-60 in the regulatory chain of aspartate transcarbamoylase has been changed to an alanine by site-specific mutagenesis. The resulting enzyme exhibits activity and homotropic cooperativity identical with those of the wild-type enzyme. The substrate concentration at half the maximal observed specific activity decreases from 13.3 mM for the wild-type enzyme to 9.6 mM for the mutant enzyme. ATP activates the mutant enzyme to the same extent that it does the wild-type enzyme, but the concentration of ATP required to reach half of the maximal activation is reduced approximately 5-fold for the mutant enzyme. CTP at a concentration of 10 mM does not inhibit the mutant enzyme, while under the same conditions CTP at concentrations less than 1 mM will inhibit the wild-type enzyme to the maximal extent. Higher concentrations of CTP result in some inhibition of the mutant enzyme that may be due either to hetertropic effects at the regulatory site or to competitive binding at the active site. UTP alone or in the presence of CTP has no effect on the mutant enzyme. Kinetic competition experiments indicate that CTP is still able to displace ATP from the regulatory sites of the mutant enzyme. Binding measurements by equilibrium dialysis were used to estimate a lower limit on the dissociation constant for CTP binding to the mutant enzyme (greater than 1 x 10(-3) M). Equilibrium competition binding experiments between ATP and CTP verified that CTP still can bind to the regulatory site of the enzyme. For the mutant enzyme, CTP affinity is reduced approximately 100-fold, while ATP affinity is increased by 5-fold.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The effector binding site of Escherichia coli aspartate transcarbamoylase, composed of the triphosphate and ribose-base subsites, is located on the regulatory (r) chains of the enzyme. In order to probe the function of amino acid side chains at this nucleotide triphosphate site, site-specific mutagenesis was used to create three mutant versions of the enzyme. On the basis of the three-dimensional structure of the enzyme with CTP bound, three residues were selected. Specifically, Arg-96r was replaced with Gln, and His-20r and Tyr-89r were both replaced with Ala. Analyses of these mutant enzymes indicate that none of these substitutions significantly alter the catalytic properties of the enzyme. However, the mutations at His-20r and Tyr-89r produced altered response to the regulatory nucleotides. For the His-20r----Ala enzyme, the affinities of the enzyme for ATP and CTP are reduced 40-fold and 10-fold, respectively, when compared with the wild-type enzyme. Furthermore, CTP is able to inhibit the His-20r----Ala enzyme 40% more than the wild-type enzyme. In the case of the Tyr-89r----Ala enzyme. ATP can increase the mutant enzyme's activity 181% compared to 157% for the wild-type enzyme, while simultaneously the affinity of this enzyme for ATP decreases about 70%. These results suggest that Tyr-89r does have an indirect role in the discrimination between ATP and CTP. The His-20r----Ala enzyme shows no UTP synergistic inhibition in the presence of CTP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Chitinases (EC 3.2.1.14) are glycosyl hydrolases that catalyze the hydrolysis of beta-(1, 4)-glycosidic bonds in chitin, the major structural polysaccharide present in the cuticle and gut peritrophic matrix of insects. Two conserved regions have been identified from amino acid sequence comparisons of family 18 glycosyl hydrolases, which includes Manduca sexta (tobacco hornworm) chitinase as a member. The second of these regions in M. sexta chitinase contains three very highly conserved acidic amino acid residues, D142, D144 and E146, that are probably active site residues. In this study the functional roles of these three residues were investigated using site-directed mutagenesis for their substitutions to other amino acids. Six mutant proteins, D142E, D142N, D144E, D144N, E146D and E146Q, as well as the wild-type enzyme, were produced using a baculovirus-insect cell line expression system. The proteins were purified by anion-exchange chromatography, after which their physical, kinetic and substrate binding properties were determined. Circular dichroism spectra of the mutant proteins were similar to that of the wild-type protein, indicating that the presence of mutations did not change the overall secondary structures. E146 was required for enzymatic activity because mutants E146Q and E146D were devoid of activity. D144E retained most of the enzymatic activity, but D144N lost nearly 90%. There was a shift in the pH optimum from alkaline pH to acidic pH for mutants D142N and D144E with minimal losses of activity relative to the wild-type enzyme. The pH-activity profile for the D142E mutation resembled that of the wild-type enzyme except activity in the neutral and acidic range was lower. All of the mutant proteins bound to chitin. Therefore, none of these acidic residues was essential for substrate binding. The results indicate that E146 probably functions as an acid/base catalyst in the hydrolytic mechanism, as do homologous residues in other glycosyl hydrolases. D144 apparently functions as an electrostatic stabilizer of the positively charged transition state, whereas D142 probably influences the pKa values of D144 and E146.  相似文献   

18.
CTP synthase (CTPS) catalyzes the conversion of UTP to CTP and is a recognized target for the development of anticancer, antiviral, and antiprotozoal agents. Xanthine and related compounds inhibit CTPS activity (IC50 = 0.16–0.58 mM). The presence of an 8-oxo function (i.e., uric acids) enhances inhibition (IC50 = 0.060–0.121 mM). An intact purine ring with anionic character favors inhibition. In general, methylation of the purine does not significantly affect inhibition.  相似文献   

19.
The binding of arrestin to rhodopsin is initiated by the interaction of arrestin with the phosphorylated rhodopsin C-terminus and/or the cytoplasmic loops, followed by conformational changes that expose an additional high-affinity site on arrestin. Here we use an arrestin mutant (R175E) that binds similarly to phosphorylated and unphosphorylated, wild-type rhodopsin to identify rhodopsin elements other than C-terminus important for arrestin interaction. R175E-arrestin demonstrated greatly reduced binding to unphosphorylated cytoplasmic loop mutants L72A, N73A, P142A and M143A, suggesting that these residues are crucial for high-affinity binding. Interestingly, when these rhodopsin mutants are phosphorylated, R175E-arrestin binding is less severely affected. This effect of phosphorylation on R175E-arrestin binding highlights the co-operative nature of the multi-site interaction between arrestin and the cytoplasmic loops and C-terminus of rhodopsin. However, a combination of any two mutations disrupts the ability of phosphorylation to enhance binding of R175E-arrestin. N73A, P142A and M143A exhibited accelerated rates of dissociation from wild-type arrestin. Using sensitivity to calpain II as an assay, these cytoplasmic loop mutants also demonstrated reduced ability to induce conformational changes in arrestin that correlated with their reduced ability to bind arrestin. These results suggest that arrestin bound to rhodopsin is in a distinct conformation that is co-ordinately regulated by association with the cytoplasmic loops and the C-terminus of rhodopsin.  相似文献   

20.
Each of the three cysteinyl residues per subunit in D-amino acid transaminase from a thermophilic species of Bacillus has been changed to a glycine residue (C142G, C164G, and C212G) by site-directed mutagenesis. The mutant enzymes were detected by Western blots and a stain for activity. After purification to homogeneity, each mutant protein had the same activity as the wild-type enzyme. Thus, none of the Cys residues are essential for catalysis. Each protein when denatured showed the expected titer of two SH groups per subunit. In the native state, each of the three mutant proteins exhibited nearly the same slow rate of titration of SH groups as the wild-type protein with about one SH group titratable over a period of 4 h. Conversion of Ser-146, adjacent to Lys-145 to which the coenzyme pyridoxal phosphate is bound, to an alanine residue (S146A) does not alter the catalytic activity but has a significant effect on the SH titration behavior. Thus, three to four of the six SH groups of S146A are titratable by DTNB. The rapid SH titration of S146A is prevented by the presence of D-alanine. This finding suggests that the change of Ser-146 to Ala at the active site promotes the exposure and rapid titration of a Cys residue in that region. The rapid SH titration of S146A by DTNB is accompanied by a loss of enzyme activity. Two of the mutant enzymes, C142G and S146A, lose activity at 4 degrees C and also upon freezing and thawing. The mutant enzymes C164G and C212G show the same degree of thermostability as the wild-type enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号