首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: "High 5" cells derived from Trichoplusia ni ovaries were infected with baculovirus bearing the cDNA of the mouse δ-opioid receptor. The maximal binding capacity for the narcotic antagonist [3H]naltrindole was 1.4 pmol/mg of membrane protein, and that for the agonist [3H][ d -penicillamine2, d -penicillamine5]enkephalin (DPDPE) was 0.3 pmol/mg. DPDPE proved highly potent in competing with its tritiated analogue at δ-receptors of NG108-15 hybrid cells and of High 5 and Sf9 insect cells. However, in insect cells the opioid was more than 100-fold less effective in competing with [3H]naltrindole as compared with the mammalian cells. This decline in potency was counteracted in a dose-dependent manner by exposure of High 5 membranes to the exogenous G protein Go, which increased the binding capacity for DPDPE. Functional studies revealed a dose-dependent inhibition (up to 30%) by opioids on forskolin-stimulated cyclic AMP synthesis, and this effect was potentiated by Go. Quantification of Gαo and Gαi disclosed striking differences between Sf9 and High 5 insect cells, both of which overexpressed the cloned δ-opioid receptor. Although no inhibitory G proteins were detected in membranes of Sf9 cells, High 5 cells contained 0.5 pmol of Gαo/mg of membrane protein, and a 20-fold higher concentration for Gαi. The distinct G-protein expression in insect cells may be considered an advantage for studying functions of G protein-coupled receptors.  相似文献   

2.
Abstract: The μ-opioid receptor has recently been shown to stimulate phosphoinositide-specific phospholipase C via the pertussis toxin-sensitive G16 protein. Given the promiscuous nature of G16 and the high degree of resemblance of signaling properties of the three opioid receptors, both δ- and κ-opioid receptors are likely to activate G16. Interactions of δ- and κ-opioid receptors with G16 were examined by coexpressing the opioid receptors and Gα16 in COS-7 cells. The δ-selective agonist [ d -Pen2, d -Pen5]enkephalin potently stimulated the formation of inositol phosphates in cells coexpressing the δ-opioid receptor and Gα16. The δ-opioid receptor-mediated stimulation of phospholipase C was absolutely dependent on the coexpression of simeter for quality control of blood units and irradiators. 13.   Transfusion 1993 ; 33 : 898 – 901 . [PubMed link] 14.   Butson MJ , Yu PK , Cheung T , et al . Dosimetry of blood irradiation with radiochromic film. Transfus Med 1999 ; 9 : 205 – 8 . [PubMed link] 15.   Nath R , Biggs PJ , Ling CC , et al . AAPM code of practice for radiotherapy accelerators: Report of AAPM Radiation Therapy Task Group No. 45. Med Phys  相似文献   

3.
In a search for sweet taste receptor interacting proteins, we have identified the calcium- and integrin-binding protein 1 (CIB1) as specific binding partner of the intracellular carboxyterminal domain of the rat sweet taste receptor subunit Tas1r2. In heterologous human embryonic kidney 293 (HEK293) cells, the G protein chimeras Gα16gust44 and Gα15i3 link the sweet taste receptor dimer TAS1R2/TAS1R3 to an inositol 1,4,5-trisphosphate (InsP3)-dependent Ca2+ release pathway. To demonstrate the influence of CIB1 on the cytosolic Ca2+ concentration, we used sweet and umami compounds as well as other InsP3-generating ligands in FURA-2-based Ca2+ assays in wild-type HEK293 cells and HEK293 cells expressing functional human sweet and umami taste receptor dimers. Stable and transient depletion of CIB1 by short-hairpin RNA increased the Ca2+ response of HEK293 cells to the InsP3-generating ligands ATP, UTP and carbachol. Over-expression of CIB1 had the opposite effect as shown for the sweet ligand saccharin, the umami receptor ligand monosodium glutamate and UTP. The CIB1 effect was dependent on the thapsigargin-sensitive Ca2+ store of the endoplasmic reticulum (ER) and independent of extracellular Ca2+. The function of CIB1 on InsP3-evoked Ca2+ release from the ER is most likely mediated by its interaction with the InsP3 receptor. Thus, CIB1 seems to be an inhibitor of InsP3-dependent Ca2+ release in vivo .  相似文献   

4.
Little is known concerning coupling of cerebral GABAB receptors to G protein subtypes, and the influence of positive allosteric modulators (PAMs) has not been evaluated. These questions were addressed by an antibody-capture/scintillation proximity assay strategy. GABA concentration-dependently enhanced the magnitude of [35S]GTPγS binding to Gαo and, less markedly, Gαi1/3 in cortex, whereas Gq and Gs/olf were unaffected. ( R )-baclofen and SKF97581 likewise activated Gαo and Gαi1/3, expressing their actions more potently than GABA. Similar findings were acquired in hippocampus and cerebellum, and the GABAB antagonist, CGP55845A, abolished agonist-induced activation of Gαo and Gαi1/3 in all structures. The PAMs, GS39783, CGP7930 and CGP13501, inactive alone, enhanced efficacy and potency of agonist-induced [35S]GTPγS binding to Gαo in all regions, actions abolished by CGP55845A. In contrast, they did not modify efficacies at Gαi1/3. Similarly, in human embryonic kidney cells expressing GABAB(1a+2) or GABAB(1b+2) receptors, allosteric modulators did not detectably enhance efficacy of GABA at Gαi1/3, though they increased its potency. To summarise, GABAB receptors coupled both to Gαo and to Gαi, but not Gq and Gs/olf, in rat brain. PAMs more markedly enhanced efficacy of coupling to Go versus Gi1/3. It will be of interest to confirm these observations employing complementary techniques and to evaluate their potential therapeutic significance.  相似文献   

5.
Parkinson's disease (PD) is characterized in part by the presence of α-synuclein (α-syn) rich intracellular inclusions (Lewy bodies). Mutations and multiplication of the α-synuclein gene ( SNCA ) are associated with familial PD. Since Ca2+ dyshomeostasis may play an important role in the pathogenesis of PD, we used fluorimetry in fura-2 loaded SH-SY5Y cells to monitor Ca2+ homeostasis in cells stably transfected with either wild-type α-syn, the A53T mutant form, the S129D phosphomimetic mutant or with empty vector (which served as control). Voltage-gated Ca2+ influx evoked by exposure of cells to 50 mM K+ was enhanced in cells expressing all three forms of α-syn, an effect which was due specifically to increased Ca2+ entry via L-type Ca2+ channels. Mobilization of Ca2+ by muscarine was not strikingly modified by any of the α-syn forms, but they all reduced capacitative Ca2+ entry following store depletion caused either by muscarine or thapsigargin. Emptying of stores with cyclopiazonic acid caused similar rises of [Ca2+]i in all cells tested (with the exception of the S129D mutant), and mitochondrial Ca2+ content was unaffected by any form of α-synuclein. However, only WT α-syn transfected cells displayed significantly impaired viability. Our findings suggest that α-syn regulates Ca2+ entry pathways and, consequently, that abnormal α-syn levels may promote neuronal damage through dysregulation of Ca2+ homeostasis.  相似文献   

6.
Abstract: In human Y-79 retinoblastoma cells, corticotropin-releasing hormone (CRH) stimulates adenylyl cyclase activity and increases cyclic AMP accumulation. Different CRH analogues mimic the CRH stimulation of adenylyl cyclase and show similar sensitivity to the CRH receptor antagonist α-helical CRH9–41. Vasoactive intestinal peptide (VIP) also increases the enzyme activity but less potently than CRH, and its effect is counteracted by the VIP receptor antagonist [ d - p -Cl-Phe6,Leu17]VIP. The VIP antagonist does not affect the response to CRH. The CRH-stimulated adenylyl cyclase activity is amplified by Mg2+, is inhibited by submicromolar concentrations of Ca2+, and requires GTP. Moreover, the CRH stimulation is reduced by pretreatment of cells with cholera toxin and by incubation of membranes with the RM/1 antibody, which recognizes the C-terminus of the α subunit of Gs. In immunoblots, the RM/1 antibody identifies a doublet of 45 and 52 kDa. Two proteins of similar molecular weights are ADP-ribosylated by cholera toxin. These data demonstrate that in human Y-79 retinoblastoma cells, specific CRH receptors stimulate cyclic AMP formation by interacting with Gs and by affecting a Ca2+-inhibitable form of adenylyl cyclase.  相似文献   

7.
Esterase amplification is the major organophosphorus (OP) insecticide resistance mechanism in Culex mosquitoes. The amplified Estα2 1\ Estβ2 1 esterases are found in > 90% of resistant populations worldwide, whereas amplified DNAs (amplicons) containing Estβ1s are much rarer. Individuals with the Estβ1 amplicons appear to be at a selective disadvantage in competition with those carrying the Estα2 1\ Estβ2 1 amplicons. To test the hypothesis that this is because Estβ1 is less able to bind insecticide than the common amplified esterases, Estβ12 was purified from the multi-resistant Habana strain of Culex quinquefasciatus , from Cuba. In its native form Estβ1 is a monomeric enzyme of 66 kDa, with a pI of 4.8. The bimolecular rate constants for interaction of Estβ12 with several OP insecticides were similar to those for the commonly elevated esterases Estα21 and Estβ21, and much higher than for the electrophoretically identical non-elevated Estβ13 and Estα3. Hence the apparent selective advantage of the Estα2 1\ Estβ2 1 amplicon is not due to its greater efficiency of insecticide binding, as OP insecticides are significantly better inhibitors of all the amplified esterases than of their non-amplified counterparts and therefore should be equally effective at conferring resistance.  相似文献   

8.
Abstract: The 7315c pituitary tumor cell expresses a homogeneous population of dopamine receptors that are functionally similar to brain dopamine D2 receptors. [3H]-Sulpiride binding to 7315c cell homogenates was specific and saturable, and K i values for compounds to compete for these sites were highly correlated with values for the same compounds at D2 receptors in brain. Dopamine maximally inhibited ∼65% of forskolin-stimulated cyclase activity in cell membranes. Some D2 agonists had lower efficacies, suggesting that some compounds are partial agonists at this receptor. Removal of GTP from the assay buffer or pretreatment of the tissue with pertussis toxin abolished the inhibition of adenylyl cyclase by dopamine. Immunodetection of most of the known Gα subunits revealed that Gi1, Gi2, Gi3, Go, Gq, and Gs are present in the 7315c membrane. Pretreatment with the AS antibody (which recognizes the C-terminal regions of Gαi1 and Gαi2) significantly attenuated the inhibition of adenylyl cyclase activity by dopamine, whereas antibodies to C-terminal regions of the other Gα subunits had no effect. These findings suggest that the dopamine D2 receptor regulates cyclase inhibition predominantly via Gi1 and/or Gi2 and that the 7315c tumor cells provide a useful model for studying naturally expressed dopamine D2 receptors in the absence of other dopamine receptor subtypes.  相似文献   

9.
Deposition of the 1,3-β-glucan callose onto the cell wall represents one of the defence reactions of plants against pathogens. This process can be induced in suspension cells of Catharanthus roseus by subtoxic concentrations of the bacterial phytotoxin syringomycin and is associated with a slight increase in Ca2+ uptake and some K+ release. Under these conditions callose formation can be prevented by complexing external Ca2+, indicating that some Ca2+ uptake is essential as a signal. However, higher syringomycin concentrations elicit increased Ca2+ uptake without increasing callose formation, although the potential for callose synthesis is not exhausted – as shown using digitonin as an additional elicitor. These results suggest that, superimposed on Ca2+, another, yet unknown signal is also involved in the regulation of callose synthesis.  相似文献   

10.
The effects of 17β-estradiol (E2) on dopamine (DA) transport could explain gender and life-stage differences in the incidence of some neurological disorders. We tested the effects of E2 at physiological concentrations on DA efflux in nerve growth factor-differentiated rat pheochromocytoma cells that express estrogen receptors (ER) α, ERβ, and G-protein coupled receptor 30 (GPR30), and DA transporter (DAT). DAT efflux was determined as the transporter-specific loss of 3H-DA from pre-loaded cells; a 9–15 min 10−9 M E2 treatment caused maximal DA efflux. Such rapid estrogenic action suggests a non-genomic response, and an E2-dendrimer conjugate (limited to non-nuclear actions) caused DA efflux within 5 min. Efflux dose–responses for E2 were non-monotonic, also characteristic of non-genomic estrogenic actions. ERα siRNA knockdown abolished E2-mediated DA efflux, while ERβ knockdown did not, and GPR30 knockdown increased E2-mediated DA efflux (suggesting GPR30 is inhibitory). Use of ER-selective agonists/antagonists demonstrated that ERα is the predominant mediator of E2-mediated DA efflux, with inhibitory contributions from GPR30 and ERβ. E2 also caused trafficking of ERα to the plasma membrane, trafficking of ERβ away from the plasma membrane, and unchanged membrane GPR30 levels. Therefore, ERα is largely responsible for non-genomic estrogenic effects on DAT activity.  相似文献   

11.
The mean rate of oxygen consumption (routine respiration rate, R R, mg O2 fish−1 h−1), measured for individual or small groups of haddock Melanogrammus aeglefinus (3–12 cm standard length, L S) maintained for 5 days within flow‐through respiratory chambers at four different temperatures, increased with increasing dry mass ( M D). The relationship between R R and M D was allometric ( R R = α  M b ) with b values of 0·631, 0·606, 0·655 and 0·650 at 5·0, 8·0, 12·0 and 15·0° C, respectively. The effect of temperature ( T ) and M D on mean R R was described by     indicating a Q 10 of 2·27 between 5 and 15° C. Juvenile haddock routine metabolic scope, calculated as the ratio of the mean of highest and lowest deciles of R R measured in each chamber, significantly decreased with temperature such that the routine scope at 15° C was half that at 5° C. The cost of feeding ( R SDA) was c . 3% of consumed food energy, a value half that found for larger gadoid juveniles and adults.  相似文献   

12.
Borrelia burgdorferi , the causative agent of Lyme disease, activates multiple signalling pathways leading to induction of pro-inflammatory mediators at sites of inflammation. Binding of B. burgdorferi to integrin α3β1 on human chondrocytes activates signalling leading to release of several pro-inflammatory mediators, but the B. burgdorferi protein that binds integrin α3β1 and elicits this response has remained unknown. A search of the B. burgdorferi genome for a canonical integrin binding motif, the RGD (Arg–Gly–Asp) tripeptide, revealed several candidate ligands for integrins. In this study we show that one of these candidates, BBB07, binds to integrin α3β1 and inhibits attachment of intact B. burgdorferi to the same integrin. BBB07 is expressed during murine infection as demonstrated by recognition by infected mouse sera. Recombinant purified BBB07 induces pro-inflammatory mediators in primary human chondrocyte cells by interaction with integrin α3β1. This interaction is specific, as P66, another integrin ligand of B. burgdorferi , does not activate signalling through α3β1. In summary, we have identified a B. burgdorferi protein, BBB07, that interacts with integrin α3β1 and stimulates production of pro-inflammatory mediators in primary human chondrocyte cells.  相似文献   

13.
《植物生态学报》2014,38(7):749
Aims This study aimed to explore the physiological mechanisms of polyphenols synthesis promoted by chitosan elicitor in Pinus koraiensis.
Methods Pinus koraiensis seedlings were cultured for eight days under different chitosan concentrations in the DCR media and the accumulations of polyphenols and proanthocyanidins were measured, in order to determine the chitosan concentration for optimal polyphenols accumulation. The changes in polyphenols accumulation, activities of defense enzymes, and activities of key enzymes for polyphenol synthesis were then studied in P. koraiensis seedlings under the optimal chitosan concentration.
Important findings Results showed that chitosan at the concentration ranging from 50 to 200 mg·L–1 effectively increased the accumulation of polyphenols and proanthocyanidins in P. koraiensis seedlings. The effect of induction by chitosan reached the peak at 100 mg·L–1. The polyphenols accumulation in P. koraiensis seedlings treated with chitosan reached (9.91 ± 0.68) mg·g–1 in fresh mass, which was 1.64 times the content in the control. The accumulation of proanthocyanidins reached (2.52 ± 0.11) mg·g–1 in fresh mass, which was 1.53 times the accumulation in the control. Activities of defense-related enzymes (superoxide dismutase, peroxidase, and catalase) and polyphenol biosynthesis-related enzymes (phenylalanine ammonia-lyse, and cinnamate-4-hydroxylase) in P. koraiensis seedlings were increased significantly by chitosan elicitor at the concentration of 100 mg·L–1. Chitosan could significantly activate defensive response and the phenylpropanoid pathway in P. koraiensis, thus promoting the synthesis and accumulation of polyphenols and enhancing the resistance of P. koraiensis seedlings.  相似文献   

14.
Escherichia coli K1 invasion of human brain microvascular endothelial cells (HBMEC) mediated by outer membrane protein A (OmpA) results in the leakage of HBMEC monolayers. Despite the influence of nitric oxide (NO) in endothelial cell tight junction integrity, its role in E. coli -induced HBMEC monolayer permeability is poorly defined. Here, we demonstrate that E. coli invasion of HBMEC stimulates NO production by increasing the inducible nitric oxide synthase (iNOS) expression. Exposure to NO-producing agents enhanced the invasion of OmpA+ E. coli and thereby increased the permeability of HBMEC. OmpA+ E. coli- induced NO production lead to increased generation of cGMP and triggered the expression of OmpA receptor, Ec-gp96 in HBMEC. Pre-treatment of HBMEC with iNOS inhibitors or by introducing siRNA to iNOS, but not to eNOS or cGMP inhibitors abrogated the E. coli- induced expression of Ec-gp96. Overexpression of the C-terminal truncated Ec-gp96 in HBMEC prevented NO production and its downstream effector, cGMP generation and consequently, the invasion of OmpA+ E. coli. NO/cGMP production also activates PKC-α, which is previously shown to be involved in HBMEC monolayer leakage. These results indicate that NO/cGMP signalling pathway plays a novel role in OmpA+ E. coli invasion of HBMEC by enhancing the surface expression of Ec-gp96.  相似文献   

15.
Although tumor necrosis factor-α (TNF-α) is an important host factor against intracellular bacteria, little is known about the effect of TNF-α on the persistence of intracellular Staphylococcus aureus in vascular endothelial cells. It was investigated whether recombinant human TNF-α influences the survival of intracellular S. aureus (ATCC 29213) in human umbilical vein endothelial cells (HUVEC) under a condition with an antistaphylococcal agent, and its mechanism. The HUVECs were incubated with TNF-α, oxacillin, or both in 24-well plates for up to 48 h following internalization of S. aureus (106 CFU well−1) into HUVECs for 1 h. TNF-α (1 ng mL−1) significantly reduced the number of intracellular S. aureus in HUVECs, and TNF-α plus oxacillin eliminated more intracellular S. aureus in HUVEC than oxacillin alone. The LDH viability assay and quantification of apoptosis using photometric enzyme-immunoassay showed that TNF-α preferentially induced cell death and apoptosis of HUVECs infected with S. aureus compared with noninfected HUVECs. These results indicate that TNF-α helps antistaphylococcal antibiotics to eliminate intracellular S. aureus in vascular endothelial cells, partly because TNF-α preferentially induces apoptosis of endothelial cells infected by S. aureus .  相似文献   

16.
Abstract: Long-term (48-h) forskolin treatment of rat astroglial cells led to a slight decrease (30–40%) in the response to isoproterenol, vasoactive-intestinal peptide, guanyl 5'-(βγ-imido)diphosphate, guanosine 5'- O -(3-thiotriphosphate) [GTP(S)], and AIF4 in crude membrane fractions. In contrast, the acute stimulatory effect of forskolin was increased by 1.25–1.5-fold. These two opposite effects of forskolin were mediated by a cyclic AMP-dependent mechanism. No changes in Gsα, Giα, or Gβ protein levels could be determined by immunoblotting using specific antisera. No significant differences were observed in the ability of G proteins extracted from control and forskolin-treated cells to reconstitute a full adenylyl cyclase activity in membranes from S49 cyc cells, lacking Gsα protein. Gsα proteins were detected in two pools of membranes, one in the heavy sucrose fractions and the other in light sucrose fractions. Forskolin treatment of the cells shifted Gsα protein toward the light-density membranes. We did not find any significant change in the distribution of adenylyl cyclase. In contrast to the decreased stimulation of adenylyl cyclase activity by agonists acting via Gsα, observed in the crude membrane fraction, the responses of adenylyl cyclase to forskolin as well as to GTP(S) were increased in the purified plasma membrane fractions. These results may indicate that sensitization of the catalyst appears to be the dominant component in the astroglial cell response to long-term treatment by forskolin.  相似文献   

17.
SUMMARY 1. Temporary ponds are inhabited by a variety of invertebrates, of which anostracans are an important group. We studied the lifetables of male and female anostracan Streptocephalus mackini at 3 algal concentrations (0.5 × 106, 1.0 × 106 and 1.5 × 106 cells mL−1).
2. Regardless of sex, S. mackini showed better survivorship at lower food levels. The longest average lifespan observed was 85 ± 2 days for males fed Chlorella at 0.5 × 106 cells mL−1.
3. Both net reproductive rate and generation time decreased with increasing food level. The highest net reproductive rate was about 120 cysts per female. The longest generation time of about 40 days, observed at 0.5 × 106 cells mL−1, was more than three times that at 1.5 × 106 cells mL−1.
4. The rate of population increase ( r ) was nearly the same (0.31 ± 0.06) at high (1.5 × 106 cells mL−1) and intermediate (1.0 × 106 cells mL−1) food levels. The r -value at low food level (0.5 × 106 cells mL−1 of Chlorella ) was 0.20 ± 0.01 per day.  相似文献   

18.
Objectives:  The fate choice of neural progenitor cells could be dictated by local cellular environment of the adult CNS. The aim of our study was to investigate the effect of hippocampal tissue on differentiation and maturation of oligodendrocyte NG2 precursor cells.
Materials and methods:  Hippocampal slice culture was established from the brains of 7-day-old rats. NG2 precursor cells, obtained from a 12-day-old mixed primary culture of neonatal rat cerebral hemispheres, were labelled with chloromethyl-fluorescein-diacetete and seeded on the hippocampal slices. After 7–14 days in co-culture, cells were stained with neural markers.
Results:  NG2 cells differentiated predominantly into oligodendrocytes, presenting various stages of maturation: progenitors (NG2), pre-oligodendrocytes (O4) and finally mature GalC-positive cells. However, except for a few cells with astrocyte-specific S100b staining, a considerable number of these cells differentiated into neurons: TUJ+ and even MAP-2+ cells were frequently observed. Moreover, a certain population of these cells preserved proliferative properties of primary precursor cells, as revealed by Ki67 expression.
Conclusions:  The neuronal micro-environment provided by the culture of hippocampal slices is potent for induction of neurogenesis from oligodendrocyte NG2+/PDGFRα+/CNP+ progenitor cells and promotes their differentiation not only into macroglia but also into neurons. It also sustains their proliferative capacity. The results indicate the crucial role of the local cellular environment in fate decision of primary NG2+ multipotent neural progenitor cells, which may affect their behaviour after transplantation into the central nervous system.  相似文献   

19.
A Cryptococcus flavus gene ( AMY1 ) encoding an extracellular α-amylase has been cloned. The nucleotide sequence of the cDNA revealed an ORF of 1896 bp encoding for a 631 amino acid polypeptide with high sequence identity with a homologous protein isolated from Cryptococcus sp. S-2. The presence of four conserved signature regions, (I) 144DVVVNH149, (II) 235GLRIDSLQQ243, (III) 263GEVFN267, (IV) 327FLENQD332, placed the enzyme in the GH13 α-amylase family. Furthermore, sequence comparison suggests that the C. flavus α-amylase has a C-terminal starch-binding domain characteristic of the CBM20 family. AMY1 was successfully expressed in Saccharomyces cerevisiae . The time course of amylase secretion in S. cerevisiae resulted in a maximal extracellular amylolytic activity (3.93 U mL−1) at 60 h of incubation. The recombinant protein had an apparent molecular mass similar to the native enzyme ( c . 67 kDa), part of which was due to N-glycosylation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号