首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
As one of the world's most prevalent enteric pathogens, Campylobacter jejuni is a major causative agent of human enterocolitis and is responsible for more than 400 million cases of diarrhea each year. The impact of this pathogen on children is of particular significance. Campylobacter has developed resistance to many antimicrobial agents via multidrug efflux machinery. The CmeABC tripartite multidrug efflux pump, belonging to the resistance‐nodulation‐cell division (RND) superfamily, plays a major role in drug resistant phenotypes of C. jejuni. This efflux complex spans the entire cell envelop of C. jejuni and mediates resistance to various antibiotics and toxic compounds. We here report the crystal structure of C. jejuni CmeC, the outer membrane component of the CmeABC tripartite multidrug efflux system. The structure reveals a possible mechanism for substrate export.  相似文献   

7.
8.
AcrAB of Escherichia coli, an archetype among bacterial multidrug efflux pumps, exports an extremely wide range of substrates including solvents, dyes, detergents and antimicrobial agents. Its expression is regulated by three XylS/AraC family regulators, MarA, SoxS and Rob. Although MarA and SoxS regulation works by the alteration of their own expression levels, it was not known how Rob, which is constitutively expressed, exerts its regulatory action. We show here that the induction of the AcrAB efflux pump by decanoate and the more lipophilic unconjugated bile salts is mediated by Rob, and that the low-molecular-weight inducers specifically bind to the C-terminal, non-DNA-binding domain of Rob. Induction of Rob is not needed for induction of AcrAB, and we suggest that the inducers act by producing conformational alterations in pre-existing Rob, as was suggested recently (Rosner, Dangi, Gronenborn and Martin, J Bacteriol 184: 1407-1416, 2002). Decanoate and unconjugated bile salts, which are present in the normal habitat of E. coli, were further shown to make the bacteria more resistant to lipophilic antibiotics, at least in part because of the induction of the AcrAB efflux pump. Thus, it is likely that E. coli is protecting itself by the Rob-mediated upregulation of AcrAB against the harmful effects of bile salts and fatty acids in the intestinal tract.  相似文献   

9.
Bacteriocins (BCNs) are antimicrobial peptides produced by bacteria with narrow or broad spectra of antimicrobial activity. Recently, several unique anti-Campylobacter BCNs have been identified from commensal bacteria isolated from chicken intestines. These BCNs dramatically reduced C. jejuni colonization in poultry and are being directed toward on-farm control of Campylobacter. However, no information concerning prevalence, development, and mechanisms of BCN resistance in Campylobacter exists. In this study, susceptibilities of 137 C. jejuni isolates and 20 C. coli isolates to the anti-Campylobacter BCNs OR-7 and E-760 were examined. Only one C. coli strain displayed resistance to the BCNs (MIC, 64 μg/ml), while others were susceptible, with MICs ranging from 0.25 to 4 μg/ml. The C. coli mutants resistant to BCN OR-7 also were obtained by in vitro selection, but all displayed only low-level resistance to OR-7 (MIC, 8 to 16 μg/ml). The acquired BCN resistance in C. coli could be transferred at intra- and interspecies levels among Campylobacter strains by biphasic natural transformation. Genomic examination of the OR-7-resistant mutants by using DNA microarray and random transposon mutagenesis revealed that the multidrug efflux pump CmeABC contributes to both intrinsic resistance and acquired resistance to the BCNs. Altogether, this study represents the first report of and a major step forward in understanding BCN resistance in Campylobacter, which will facilitate the development of effective BCN-based strategies to reduce the Campylobacter loads in poultry.  相似文献   

10.

Aims

We tested extracts from Alpinia katsumadai seeds for anti‐Campylobacter activity and investigated the roles of the CmeABC and CmeDEF efflux pumps in Campylobacter resistance to these natural phenolics. Additionally, we investigated an A. katsumadai ethanolic extract (AlpE) and other plant extracts as putative efflux pump inhibitors on Campylobacter isolates and mutants in efflux pump genes.

Methods and Results

AlpE showed antimicrobial activity against sensitive and multidrug‐resistant Campylobacter isolates. CmeB inactivation resulted in the greatest reduction in resistance, while cmeF and cmeR mutations produced only moderate effects on minimal inhibitory concentrations (MICs). The chemical efflux pump inhibitors additionally reduced MICs in isolates and mutants, confirming that active efflux is an important mechanism in resistance to AlpE, with additional contributions of other efflux systems. A notable decrease in resistance to tested antimicrobials in the presence of subinhibitory concentrations of AlpE confirms its modifying activity in Campylobacter spp.

Conclusions

AlpE is important anti‐Campylobacter source of antimicrobial compounds with resistance‐modifying activity. At least two of the efflux systems are involved in the resistance to A. katsumadai antimicrobial seed extracts.

Significance and Impact of the Study

This is the first report of antimicrobial and resistance‐modifying activity of AlpE from A. katsumadai seeds, demonstrating its potential in the control of Campylobacter in the food chain.  相似文献   

11.
12.
13.
14.
The objective of this study was to evaluate the efflux-mediated antibiotic resistance and virulence potential in Salmonella enterica serovar Typhimurium exposed to bile salts. S. enterica serovar Typhimurium KCCM 40253, S. enterica serovar Typhimurium CCARM 8009, and plasmid-cured S. enterica serovar Typhimurium CCARM 8009 were used to evaluate the antimicrobial susceptibility, adherence ability, and gene expression in the presence of 0.3 % bile salts. The sensitivity of S. enterica serovar Typhimurium CCARM 8009 to tetracycline was significantly increased in the presence of phenylalanine-arginine β-naphthylamide (PAβN), showing the decrease in the minimum inhibitory concentration (MIC) values from 256 to 8 mg/ml. The relative ethidium bromide (EtBr) fluorescence intensity was rapidly decreased from 1 to 0.47 in S. enterica serovar Typhimurium CCARM 8009 after 20 min of exposure to bile salts. The highest adhesion ability was observed in S. enterica serovar Typhimurium CCARM 8009 exposed to both absence and presence of bile salts. The tolC and tetA genes were up-regulated in S. enterica serovar Typhimurium CCARM 8009 exposed bile salts. The results suggest that the antimicrobial resistance were positively correlated with efflux pump activity, and virulence potential in antibiotic-resistant S. enterica serovar Typhimurium when exposed to bile salts.  相似文献   

15.
Regulation of bacterial drug export systems.   总被引:5,自引:0,他引:5  
  相似文献   

16.
The ability of bacterial pathogens to infect and cause disease is dependent upon their ability to resist antimicrobial components produced by their host, such as bile acids, fatty acids and other detergent-like molecules, and products of the innate immune system (e.g. cationic antimicrobial peptides). Bacterial resistance to the antimicrobial effects of such compounds is often mediated by active efflux systems belonging to the resistance-nodulation-division (RND) family of transporters. RND efflux systems have been implicated in antibiotic resistance and virulence extending their clinical relevance. In this report the hypothesis that the Francisella tularensis AcrAB RND efflux system contributes to antimicrobial resistance and pathogenesis has been tested. A null mutation was generated in the gene encoding the AcrB RND efflux pump protein of the live vaccine strain of F. tularensis. The resulting mutant exhibited increased sensitivity to multiple antibiotics and antimicrobial compounds. Murine challenge experiments revealed that the acrB mutant was attenuated. Collectively these results suggest that the F. tularensis AcrAB RND efflux system encodes a multiple drug efflux system that is important for virulence.  相似文献   

17.
Taylor DL  Bina XR  Bina JE 《PloS one》2012,7(5):e38208
The resistance-nodulation-division (RND) efflux systems are ubiquitous transporters that function in antimicrobial resistance. Recent studies showed that RND systems were required for virulence factor production in Vibrio cholerae. The V. cholerae genome encodes six RND efflux systems. Three of the RND systems (VexB, VexD, and VexK) were previously shown to be redundant for in vitro resistance to bile acids and detergents. A mutant lacking the VexB, VexD, and VexK RND pumps produced wild-type levels of cholera toxin (CT) and the toxin co-regulated pilus (TCP) and was moderately attenuated for intestinal colonization. In contrast, a RND negative mutant produced significantly reduced amounts of CT and TCP and displayed a severe colonization defect. This suggested that one or more of the three uncharacterized RND efflux systems (i.e. VexF, VexH, and VexM) were required for pathogenesis. In this study, a genetic approach was used to generate a panel of V. cholerae RND efflux pump mutants in order to determine the function of VexH in antimicrobial resistance, virulence factor production, and intestinal colonization. VexH contributed to in vitro antimicrobial resistance and exhibited a broad substrate specificity that was redundant with the VexB, VexD, and VexK RND efflux pumps. These four efflux pumps were responsible for in vitro antimicrobial resistance and were required for virulence factor production and intestinal colonization. Mutation of the VexF and/or VexM efflux pumps did not affect in vitro antimicrobial resistance, but did negatively affect CT and TCP production. Collectively, our results demonstrate that the V. cholerae RND efflux pumps have redundant functions in antimicrobial resistance and virulence factor production. This suggests that the RND efflux systems contribute to V. cholerae pathogenesis by providing the bacterium with protection against antimicrobial compounds that are present in the host and by contributing to the regulated expression of virulence factors.  相似文献   

18.
Preexposure of Bifidobacterium longum NCIMB 702259T to cholate caused increased resistance to cholate, chloramphenicol, and erythromycin. The B. longum ctr gene, encoding a cholate efflux transporter, was transformed into the efflux-negative mutant Escherichia coli KAM3, conferring resistance to bile salts and other antimicrobial compounds and causing the efflux of [14C]cholate.  相似文献   

19.
Multidrug resistant (MDR) tuberculosis is caused by Mycobacterium tuberculosis resistant to isoniazid and rifampicin, the two most effective drugs used in tuberculosis therapy. Here, we investigated the mechanism by which resistance towards isoniazid develops and how overexpression of efflux pumps favors accumulation of mutations in isoniazid targets, thus establishing a MDR phenotype. The study was based on the in vitro induction of an isoniazid resistant phenotype by prolonged serial exposure of M. tuberculosis strains to the critical concentration of isoniazid employed for determination of drug susceptibility testing in clinical isolates. Results show that susceptible and rifampicin monoresistant strains exposed to this concentration become resistant to isoniazid after three weeks; and that resistance observed for the majority of these strains could be reduced by means of efflux pumps inhibitors. RT-qPCR assessment of efflux pump genes expression showed overexpression of all tested genes. Enhanced real-time efflux of ethidium bromide, a common efflux pump substrate, was also observed, showing a clear relation between overexpression of the genes and increased efflux pump function. Further exposure to isoniazid resulted in the selection and stabilization of spontaneous mutations and deletions in the katG gene along with sustained increased efflux activity. Together, results demonstrate the relevance of efflux pumps as one of the factors of isoniazid resistance in M. tuberculosis. These results support the hypothesis that activity of efflux pumps allows the maintenance of an isoniazid resistant population in a sub-optimally treated patient from which isoniazid genetically resistant mutants emerge. Therefore, the use of inhibitors of efflux should be considered in the development of new therapeutic strategies for preventing the emergence of MDR-TB during treatment.  相似文献   

20.
Intestinal tracts of broilers and turkeys from 10 conventional broiler farms and 10 conventional turkey farms, where antimicrobials were routinely used, and from 5 organic broiler farms and 5 organic turkey farms, where antimicrobials had never been used, were collected and cultured for Campylobacter species. A total of 694 Campylobacter isolates from the conventional and organic poultry operations were tested for antimicrobial resistance to nine antimicrobial agents by the agar dilution method. Although Campylobacter species were highly prevalent in both the conventional and organic poultry operations, the antimicrobial resistance rates were significantly different between the organic operations and the conventional operations. Less than 2% of Campylobacter strains isolated from organically raised poultry were resistant to fluoroquinolones, while 46% and 67% of Campylobacter isolates from conventionally raised broilers and conventionally raised turkeys, respectively, were resistant to these antimicrobials. In addition, a high frequency of resistance to erythromycin (80%), clindamycin (64%), kanamycin (76%), and ampicillin (31%) was observed among Campylobacter isolates from conventionally raised turkeys. None of the Campylobacter isolates obtained in this study was resistant to gentamicin, while a large number of the isolates from both conventional and organic poultry operations were resistant to tetracycline. Multidrug resistance was observed mainly among Campylobacter strains isolated from the conventional turkey operation (81%). Findings from this study clearly indicate the influence of conventional and organic poultry production practices on antimicrobial resistance of Campylobacter on poultry farms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号