首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic evidence suggests that the product of the mei-1 gene of Caenorhabditis elegans is specifically required for meiosis in the female germline. Loss-of-function mei-1 mutations block meiotic spindle formation while a gain-of-function allele instead results in spindle defects during the early mitotic cleavages. In this report, we use immunocytochemistry to examine the localization of the mei-1 product in wild-type and mutant embryos. During metaphase of meiosis I in wild- type embryos, mei-1 protein was found throughout the spindle but was more concentrated toward the poles. At telophase I, mei-1 product colocalized with the chromatin at the spindle poles. The pattern was repeated during meiosis II but no mei-1 product was visible during the subsequent mitotic cleavages. The mei-1 gain-of-function allele resulted in ectopic mei-1 staining in the centers of the microtubule- organizing centers during interphase and in the spindles during the early cleavages. This aberrant localization is probably responsible for the poorly formed and misoriented cleavage spindles characteristic of the mutation. We also examined the localization of mei-1(+) product in the presence of mutations of genes that genetically interact with mei-1 alleles. mei-2 is apparently required to localize mei-1 product to the spindle during meiosis while mel-26 acts as a postmeiotic inhibitor. We conclude that mei-1 encodes a novel spindle component, one that is specialized for the acentriolar meiotic spindles unique to female meiosis. The genes mei-2 and mel-26 are part of a regulatory network that confines mei-1 activity to meiosis.  相似文献   

2.
M R Dow  P E Mains 《Genetics》1998,150(1):119-128
We have previously described the gene mei-1, which encodes an essential component of the Caenorhabditis elegans meiotic spindle. When ectopically expressed after the completion of meiosis, mei-1 protein disrupts the function of the mitotic cleavage spindles. In this article, we describe the cloning and the further genetic characterization of mel-26, a postmeiotic negative regulator of mei-1. mel-26 was originally identified by a gain-of-function mutation. We have reverted this mutation to a loss-of-function allele, which has recessive phenotypes identical to the dominant defects of its gain-of-function parent. Both the dominant and recessive mutations of mel-26 result in mei-1 protein ectopically localized in mitotic spindles and centrosomes, leading to small and misoriented cleavage spindles. The loss-of-function mutation was used to clone mel-26 by transformation rescue. As suggested by genetic results indicating that mel-26 is required only maternally, mel-26 mRNA was expressed predominantly in the female germline. The gene encodes a protein that includes the BTB motif, which is thought to play a role in protein-protein interactions.  相似文献   

3.
The mei-41 gene of Drosophila melanogaster plays an essential role in meiosis, in the maintenance of somatic chromosome stability, in postreplication repair and in DNA double-strand break repair. This gene has been cytogenetically localized to polytene chromosome bands 14C4-6 using available chromosomal aberrations. About 60 kb of DNA sequence has been isolated following a bidirectional chromosomal walk that extends over the cytogenetic interval 14C1-6. The breakpoints of chromosomal aberrations identified within that walk establish that the entire mei-41 gene has been cloned. Two independently derived mei-41 mutants have been shown to carry P insertions within a single 2.2 kb fragment of the walk. Since revertants of those mutants have lost the P element sequences, an essential region of the mei-41 gene is present in that fragment. A 10.5 kb genomic fragment that spans the P insertion sites has been found to restore methyl methanesulfonate resistance and female fertility of the mei-41 D3 mutants. The results demonstrate that all the sequences required for the proper expression of the mei-41 gene are present on this genomic fragment. This study provides the foundation for molecular analysis of a function that is essential for chromosome stability in both the germline and somatic cells.  相似文献   

4.
The mei-41 gene of Drosophila melanogaster plays an essential role in meiosis, in the maintenance of somatic chromosome stability, in postreplication repair and in DNA double-strand break repair. This gene has been cytogenetically localized to polytene chromosome bands 14C4-6 using available chromosomal aberrations. About 60 kb of DNA sequence has been isolated following a bidirectional chromosomal walk that extends over the cytogenetic interval 14C1-6. The breakpoints of chromosomal aberrations identified within that walk establish that the entire mei-41 gene has been cloned. Two independently derived mei-41 mutants have been shown to carry P insertions within a single 2.2 kb fragment of the walk. Since revertants of those mutants have lost the P element sequences, an essential region of the mei-41 gene is present in that fragment. A 10.5 kb genomic fragment that spans the P insertion sites has been found to restore methyl methanesulfonate resistance and female fertility of the mei-41 D3 mutants. The results demonstrate that all the sequences required for the proper expression of the mei-41 gene are present on this genomic fragment. This study provides the foundation for molecular analysis of a function that is essential for chromosome stability in both the germline and somatic cells.This Paper is dedicated to the memory of Professor James B. Boyd  相似文献   

5.
6.
7.
Laurençon A  Purdy A  Sekelsky J  Hawley RS  Su TT 《Genetics》2003,164(2):589-601
ATM/ATR kinases act as signal transducers in eukaryotic DNA damage and replication checkpoints. Mutations in ATM/ATR homologs have pleiotropic effects that range from sterility to increased killing by genotoxins in humans, mice, and Drosophila. Here we report the generation of a null allele of mei-41, Drosophila ATM/ATR homolog, and the use of it to document a semidominant effect on a larval mitotic checkpoint and methyl methanesulfonate (MMS) sensitivity. We also tested the role of mei-41 in a recently characterized checkpoint that delays metaphase/anaphase transition after DNA damage in cellular embryos. We then compare five existing mei-41 alleles to the null with respect to known phenotypes (female sterility, cell cycle checkpoints, and MMS resistance). We find that not all phenotypes are affected equally by each allele, i.e., the functions of MEI-41 in ensuring fertility, cell cycle regulation, and resistance to genotoxins are genetically separable. We propose that MEI-41 acts not in a single rigid signal transduction pathway, but in multiple molecular contexts to carry out its many functions. Sequence analysis identified mutations, which, for most alleles, fall in the poorly characterized region outside the kinase domain; this allowed us to tentatively identify additional functional domains of MEI-41 that could be subjected to future structure-function studies of this key molecule.  相似文献   

8.
During Drosophila oogenesis, the oocyte is formed within a 16-cell cyst immediately after four incomplete cell divisions. One of the primary events in oocyte development is meiotic recombination. Here, we report the intracellular localization of the MEI-218 protein that is specifically required for meiotic crossing-over. To understand the role of mei-218 in meiosis and to study the regulation of genes required for meiotic recombination, we characterized the expression pattern of its RNA and protein. Furthermore, we cloned and sequenced mei-218 from two other Drosophila species. The mei-218 RNA and protein have a similar expression pattern, appearing first in early meiotic prophase and then rapidly disappearing as prophase is completed. This pattern corresponds to a specific appearance of the mei-218 gene product in the region of the ovary where meiotic prophase occurs. Although mei-218 is required for 95% of all crossovers, the protein is found exclusively in the cytoplasm. Based on these results, we suggest that mei-218 does not have a direct role in recombination but rather regulates other factors required for the production of crossovers. We propose that mei-218 is a molecular link between oocyte differentiation and meiosis.  相似文献   

9.
10.
Meiotic recombination and DNA repair are mediated by overlapping sets of genes. In the yeast Saccharomyces cerevisiae, many genes required to repair DNA double-strand breaks are also required for meiotic recombination. In contrast, mutations in genes required for nucleotide excision repair (NER) have no detectable effects on meiotic recombination in S. cerevisiae. The Drosophila melanogaster mei-9 gene is unique among known recombination genes in that it is required for both meiotic recombination and NER. We have analyzed the mei-9 gene at the molecular level and found that it encodes a homologue of the S. cerevisiae excision repair protein Rad1, the probable homologue of mammalian XPF/ERCC4. Hence, the predominant process of meiotic recombination in Drosophila proceeds through a pathway that is at least partially distinct from that of S. cerevisiae, in that it requires an NER protein. The biochemical properties of the Rad1 protein allow us to explain the observation that mei-9 mutants suppress reciprocal exchange without suppressing the frequency of gene conversion.  相似文献   

11.
The Membrane-Associated Guanylate Kinase (MAGUK) family of anchor proteins are involved in organising a range of molecules such as cell adhesion molecules, receptors, and intracellular signalling molecules at cell junctions. In mammals, the PSD-95/SAP-90/hDlg class of MAGUK proteins bind to a family of Guanylate Kinase Associated Proteins (GKAPs) that have been found at presumptive synaptic sites in neurons. Here we describe the identification of Mars, a novel Drosophila protein belonging to the GKAP family. RT-PCR analysis reveals that Drosophila mars mRNA and protein are predominantly expressed in embryos and in the adult germline. In embryos, mars is expressed in central nervous system and brain, as determined by RNA in situ hybridisation. In testes, mars is strongly expressed in pre-meiotic germ cells, but is not found in somatic or post-meiotic cells, indicating that in addition to their role in neuronal cells, GKAP proteins are also likely to play a role in germline development.  相似文献   

12.
13.
EM Lee  TT Trinh  HJ Shim  SY Park  TT Nguyen  MJ Kim  YH Song 《DNA Repair》2012,11(9):741-752
ATR and Chk1 are protein kinases that perform major roles in the DNA replication checkpoint that delays entry into mitosis in response to DNA replication stress by hydroxyurea (HU) treatment. They are also activated by ionizing radiation (IR) that induces DNA double-strand breaks. Studies in human tissue culture and Xenopus egg extracts identified Claspin as a mediator that increased the activity of ATR toward Chk1. Because the in vivo functions of Claspin are not known, we generated Drosophila lines that each contained a mutated Claspin gene. Similar to the Drosophila mei-41/ATR and grp/Chk1 mutants, embryos of the Claspin mutant showed defects in checkpoint activation, which normally occurs in early embryogenesis in response to incomplete DNA replication. Additionally, Claspin mutant larvae were defective in G2 arrest after HU treatment; however, the defects were less severe than those of the mei-41/ATR and grp/Chk1 mutants. In contrast, IR-induced G2 arrest, which was severely defective in mei-41/ATR and grp/Chk1 mutants, occurred normally in the Claspin mutant. We also found that Claspin was phosphorylated in response to HU and IR treatment and a hyperphosphorylated form of Claspin was generated only after HU treatment in mei-41/ATR-dependent and tefu/ATM-independent way. In summary, our data suggest that Drosophila Claspin is required for the G2 arrest that is induced by DNA replication stress but not by DNA double-strand breaks, and this difference is probably due to distinct phosphorylation statuses.  相似文献   

14.
In Drosophila, the maternally expressed mei-41 and grp genes are required for successful execution of the nuclear division cycles of early embryogenesis. In fission yeast, genes encoding similar kinases (rad3 and chk1, respectively) are components of a cell cycle checkpoint that delays mitosis by inhibitory phosphorylation of Cdk1. We have identified mutations in a gene encoding a Cdk1 inhibitory kinase, Drosophila wee1 (Dwee1). Like mei-41 and grp, Dwee1 is zygotically dispensable but is required maternally for completing the embryonic nuclear cycles. The arrest phenotype of Dwee1 mutants, as well as genetic interactions between Dwee1, grp, and mei-41 mutations, suggest that Dwee1 is functioning in the same regulatory pathway as these genes. These findings imply that inhibitory phosphorylation of Cdk1 by Dwee1 is required for proper regulation of the early syncytial cycles of embryogenesis.  相似文献   

15.
P elements inserted at the left telomere of the X chromosome evoke the P cytotype, a maternally inherited condition that regulates the P-element family in the Drosophila germline. This regulation is completely disrupted in stocks heterozygous for mutations in aubergine, a gene whose protein product is involved in RNA interference. However, cytotype is not disrupted in stocks heterozygous for mutations in two other RNAi genes, piwi and homeless (spindle-E), or in a stock heterozygous for a mutation in the chromatin protein gene Enhancer of zeste. aubergine mutations exert their effects in the female germline, where the P cytotype is normally established and through which it is maintained. These effects are transmitted maternally to offspring of both sexes independently of the mutations themselves. Lines derived from mutant aubergine stocks reestablish the P cytotype quickly, unlike lines derived from stocks heterozygous for a mutation in Suppressor of variegation 205, the gene that encodes the telomere-capping protein HP1. Cytotype regulation by telomeric P elements may be tied to a system that uses RNAi to regulate the activities of telomeric retrotransposons in Drosophila.  相似文献   

16.
17.
Sensitivity of Drosophila embryos to lethal effect of UV rays was studied in mutants rad202G1 and mei-9a (a homologue of the gene for xeroderma pigmentosum) that are deficient in excision repair, the mutant mei-41D5 (a homologue of the gene for AT) with distorted check-point function in the cell cycle, and wild-type line Oregon R. The mortality of embryos, which were exposed to radiation within the 0.5-16-h interval of embryonic life, served as a criterion of sensitivity. During this interval of embryogenesis, the multicellular system of Drosophila embryo sequentially consecutively passes through a set of well studied cell cycle modifications. It was of interest to compare UV sensitivity at these stages recorded at the organism level. The induced embryonic lethality was tested by means of determining the dose-effect relationship followed by an estimation of corresponding values of the LD50 dose characterizing the pattern of age-associated changes of the character. The obtained data were analyzed in relation to the specificity of the mutagenic effect of UV irradiation, the features of Drosophila development, and repair deficiency of each studied mutant. The interval of the pronounced effect of UV irradiation on embryo viability was shown to be limited to 13 h from the beginning of embryonic life. During this interval, the UV sensitivity of embryogenesis in mutant lines is much higher than in the line of normal genotype. Moreover, at the level of LD50 doses that individually characterize each line, this sensitivity did not exhibit a relation to the mitotic status of cells, in contrast with the effects of rarely ionizing radiation. UV-inducible embryo lethalities that are caused by the mortality of dividing and nondividing cells are whether equal (line Oregon R and mutants rad202G1 and mei-41D5) or even extremum in the case of damage of amitotically growing cells (the mei-9a mutant). Possible mechanisms of these manifestations are discussed.  相似文献   

18.
Female meiosis and the rapid mitotic cycle of early embryos are two non-canonical cell cycles that occur sequentially in the same cell, the egg, and utilize the same pool of cell cycle proteins. Using a genetic approach to identify genes that are specifically required for these cell cycles in Drosophila, we found that a Drosophila Cks gene, Cks30A is required for spindle assembly and anaphase progression in both female meiosis and in the syncytial embryo. Cks30A interacts with Cdk1 to target cyclin A for destruction in the female germline, possibly through the activation of a novel germline specific CDC20 protein, Cortex. These results indicate that anaphase progression in female meiosis and the early embryo are under unique control in Drosophila.  相似文献   

19.
20.
Small RNAs regulate diverse biological processes by directing effector proteins called Argonautes to silence complementary mRNAs. Maturation of some classes of small RNAs involves terminal 2'-O-methylation to prevent degradation. This modification is catalyzed by members of the conserved HEN1 RNA methyltransferase family. In animals, Piwi-interacting RNAs (piRNAs) and some endogenous and exogenous small interfering RNAs (siRNAs) are methylated, whereas microRNAs are not. However, the mechanisms that determine animal HEN1 substrate specificity have yet to be fully resolved. In Caenorhabditis elegans, a HEN1 ortholog has not been studied, but there is evidence for methylation of piRNAs and some endogenous siRNAs. Here, we report that the worm HEN1 ortholog, HENN-1 (HEN of Nematode), is required for methylation of C. elegans small RNAs. Our results indicate that piRNAs are universally methylated by HENN-1. In contrast, 26G RNAs, a class of primary endogenous siRNAs, are methylated in female germline and embryo, but not in male germline. Intriguingly, the methylation pattern of 26G RNAs correlates with the expression of distinct male and female germline Argonautes. Moreover, loss of the female germline Argonaute results in loss of 26G RNA methylation altogether. These findings support a model wherein methylation status of a metazoan small RNA is dictated by the Argonaute to which it binds. Loss of henn-1 results in phenotypes that reflect destabilization of substrate small RNAs: dysregulation of target mRNAs, impaired fertility, and enhanced somatic RNAi. Additionally, the henn-1 mutant shows a weakened response to RNAi knockdown of germline genes, suggesting that HENN-1 may also function in canonical RNAi. Together, our results indicate a broad role for HENN-1 in both endogenous and exogenous gene silencing pathways and provide further insight into the mechanisms of HEN1 substrate discrimination and the diversity within the Argonaute family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号